TRK-MPC5604P User Manual Alliance Member ## **Purchase Agreement** P&E Microcomputer Systems, Inc. reserves the right to make changes without further notice to any products herein to improve reliability, function, or design. P&E Microcomputer Systems, Inc. does not assume any liability arising out of the application or use of any product or circuit described herein. This software and accompanying documentation are protected by United States Copyright law and also by International Treaty provisions. Any use of this software in violation of copyright law or the terms of this agreement will be prosecuted. All the software described in this document is copyrighted by P&E Microcomputer Systems, Inc. Copyright notices have been included in the software. P&E Microcomputer Systems authorizes you to make archival copies of the software and documentation for the sole purpose of back-up and protecting your investment from loss. Under no circumstances may you copy this software or documentation for the purpose of distribution to others. Under no conditions may you remove the copyright notices from this software or documentation. This software may be used by one person on as many computers as that person uses, provided that the software is never used on two computers at the same time. P&E expects that group programming projects making use of this software will purchase a copy of the software and documentation for each user in the group. Contact P&E for volume discounts and site licensing agreements. P&E Microcomputer Systems does not assume any liability for the use of this software beyond the original purchase price of the software. In no event will P&E Microcomputer Systems be liable for additional damages, including any lost profits, lost savings or other incidental or consequential damages arising out of the use or inability to use these programs, even if P&E Microcomputer Systems has been advised of the possibility of such damage. By using this software, you accept the terms of this agreement. © 2011 P&E Microcomputer Systems, Inc. "MS-DOS" and "Windows" are registered trademarks of Microsoft Corporation. "Freescale" and "ColdFire" are registered trademarks of Freescale, Inc. The Power Architecture and Power.org wordmarks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. Qorivva is a registered trademark of Freescale Semiconductor. P&E Microcomputer Systems, Inc. 98 Galen St. Watertown, MA 02472 617-923-0053 http://www.pemicro.com Manual version 1.01, March 2011 | 1 | INTF | RODUCTION | 1 | |---|------|---|----| | | 1.1 | Overview | 1 | | | 1.2 | Package Contents | 1 | | | 1.3 | Supported Devices | 1 | | | 1.4 | Recommended Materials | 1 | | | 1.5 | Handling Precautions | 2 | | 2 | HAR | DWARE FEATURES | 2 | | | 2.1 | TRK-MPC5604P Board Features | 2 | | | 2.2 | On-Board Virtual USB Port | 4 | | | 2.3 | TRK-MPC5604P Jumper/Connector Quick Reference | 5 | | 3 | GET | TING STARTED WITH THE TRK-MPC5604P | 10 | | 4 | SYS | TEM SETUP | 10 | | | 4.1 | Overview | 10 | | | 4.2 | Operating System Requirements | 10 | | | 4.3 | Software Setup | 11 | | | 4.4 | Quick Startup | 11 | | | 4.5 | Hardware Setup | 11 | | 5 | OPE | RATING MODES | 12 | | | 5.1 | Overview | 12 | | | 5.2 | Debug Mode | 12 | | | 5.3 | Run Mode | 13 | | | 5.4 | External JTAG/Nexus Mode | 13 | | 6 | JUM | PER SETTINGS | 13 | | | 6.1 | System Power | 13 | | | 6.2 | I/O Pins | 14 | | | 6.3 | Debug Mode | 15 | | | 6.4 | CAN Port | 15 | | | 6.5 | Virtual Serial Port | 16 | | | 6.6 | LIN Channels/Connectors | 16 | | | 6.7 | MCU VDD Enable | 18 | | | 6.8 | VMOT EN Enable | 19 | | | 6.9 | Boot Configuration | 19 | |----|----------------------------------|---|----| | | 6.10 | System Power Voltage Select | 20 | | | 6.11 | VDDA Enable | 21 | | | 6.12 | Clock Selection | 21 | | | 6.13 | Push Buttons | 22 | | | 6.14 | LED Display Port | 23 | | | 6.15 | DIL Switch | 23 | | | 6.16 | Analog Input Enable | 24 | | | 6.17 | Photo Sensor Enable | 24 | | | 6.18 | Reset Sources | 25 | | | 6.19 | OSJTAG Bootloader Enable | 26 | | | 6.20 | SBC Reset Pull-Up Mode | 26 | | 7 | MOTO | OR CONTROL DAUGHTER CARD CONNECTOR | 26 | | 8 | TRK-N | MPC5604P CODE DEVELOPMENT SOFTWARE | 27 | | | 8.1 | Using CodeWarrior With The TRK-MPC5604P | 27 | | | 8.2 | Using P&E Software With The TRK-MPC5604P | 28 | | 9 | TRANSITIONING TO YOUR OWN TARGET | | | | | 9.1 | Hardware Solutions At A Glance | 28 | | | 9.2 | Working With P&E's Multilink Universal or USB Qorivva Multilink | 30 | | | 9.3 | Working With P&E's Cyclone MAX | 31 | | 10 | TROU | JBLESHOOTING | 32 | | | 10.1 | TRK-MPC5604P Is Undetected | 32 | #### 1 INTRODUCTION #### 1.1 Overview The TRK-MPC5604P is a low-cost development system supporting Freescale MPC5604P microcontrollers in 144LQFP packages. The Embedded OSJTAG circuitry on the TRK-MPC5604P board allows the processor on the board to be debugged and programmed via USB from a PC. In addition, the demo board can be powered using the USB bus. ## 1.2 Package Contents The TRK-MPC5604P package includes the following items: - TRK-MPC5604P Board - CodeWarrior Development Studio DVD-ROM - TRK-MPC5604P Resources CD - USB A-to-B Cable - Freescale Warranty Card ## 1.3 Supported Devices The TRK-MPC5604P supports the following devices: MPC5604P microcontrollers in 144LQFP packages #### 1.4 Recommended Materials - Freescale MPC5604P reference manual and datasheet - TRK-MPC5604P board schematic ## 1.5 Handling Precautions Please take care to handle the package contents in a manner such as to prevent electrostatic discharge. ## 2 HARDWARE FEATURES The TRK-MPC5604P is a demonstration and development system for Freescale's MPC5604P microcontrollers in 144LQFP packages. Application development is quick and easy using Embedded OSJTAG. An optional 14-pin JTAG port is provided to allow the use of an external Qorivva MPC55xx/56xx interface such as P&E's USB Multilink or Cyclone MAX automated programmer. P&E's USB Multilink provides faster communication speeds and can be used to debug both the TRK-MPC5604P and the user's own targets. **Note:** The DEMO board's Embedded OSJTAG is intended to function with the onboard processor only. It cannot be used to communicate with other devices. #### 2.1 TRK-MPC5604P Board Features - Soldered MPC5604P LQFP144 device - Access to MCU pins with standard headers - Embedded OSJTAG: USB to JTAG circuitry which allows host PC to communicate with the microcontroller through USB 2.0. - On-board Virtual Serial Port - ON/OFF Power Switch w/ LED indicator - A 9VDC to 12VDC power supply input barrel connector - Power Input Selection Jumpers for selecting the input voltage source: - Power Input from USB Connector - Power Input from DC Power Jack - Freescale MC3390x - External LDO power circuitry - Oprerating Voltage Selection Jumpers for selecting operating voltage source: - 5V - 3.3V from on-board LDO - 3.3V from Motor Control Port - · Jumper to select BAM source: - From internal memory - From CAN - From LIN Flex - RESET Push Button and LED indicator w/ enable - User Features: - 4 User Push Buttons w/ enable and pull-up & pull-down options - 4 DIL switches w/ enable and pull-up & pull-down options - 10K Ohm POT connected to an ADC input channel w/ enable - 1 photocell w/ enable - 4 User LED's w/ enable - 1 RS232 interface w/ enable (DB9 and transceiver footprint only) - 1 CAN interface w/ enable to high-speed CAN transceiver with DB9 CAN connector - 2 LIN channels w/ enable sharing one LIN transceiver with two standard LIN connectors - 4 distinct GND test points - Specifications: - Board Size 4.7" x 4.3" - Power Input: - USB Cable: 5VDC, 500mA max - DC Power Jack: 2.1/5.5mm barrel connector, 9VDC to 12VDC Center Positive Figure 2-1: Top Component Placement #### 2.2 On-Board Virtual USB Port The TRK-MPC5604P board has a built-in virtual serial port which may be connected to the MPC5604P processor's SCI RXD/TXD. This allows certain PC applications to be able to connect in a serial fashion to the microcontroller without the actual use of serial port hardware. ## 2.3 TRK-MPC5604P Jumper/Connector Quick Reference ## **Default Jumper Settings** The following is a list of default jumper settings for TRK-MPC5604P board. The settings listed indicate the "on" (or installed) position. | JUMPER | OPTION | SETTINGS | DESCRIPTION | |--------|---|---------------|--| | | System Power
Source Select | 1-2 | External Power 9VDC to
12VDC Regulated Down to
5VDC | | J1 | | 3-4 (default) | USB OSJTAG Supplies
5VDC | | | | 5-6 | SBC MC33905 Supplies 5VDC | | 10 | SBC I/O LED
Pull Up/Down | 1-2 (default) | Pull Up | | J2 | | 2-3 | Pull Down | | | SBC I/O Signal | 1-2 (default) | I/O-0 | | J3 | | 3-4 | I/O-3 | | | | 5-6 | I/O-1 | | J4 | SBC DBG
Short to GND
(default: OFF) | 1-2 | Short SBC DBG Pin to GND,
Bypass R21 and D11 | | J5 | SBC DBG Pull
Up
(default: OFF) | 1-2 | Pull Up SBC DBG Pin to
SBC Power Supply via 330
Ohm Resistor | | J6 | CAN Signals to
Transceiver
Enable | 1-2, 3-4
(default) | Enables TXD and RXD signals to CAN Transceiver | |-----|--|---------------------------------|--| | 17 | RS232 TXD | 1-2 (default) | MCU TXD to Virtual Serial Port | | J7 | Signal | 2-3 | MCU TXD to RS232
Transceiver | | 10 | RS232 RXD
Signal | 1-2 (default) | MCU RXD to Virtual Serial Port | | J8 | | 2-3 | MCU RXD to RS232
Transceiver | | J9 | LIN1 VBus
Enable
(default: OFF) | 1-2 | Provides Power to LIN1
Connector | | J10 | LIN0 VBus
Enable
(default: OFF) | 1-2 | Provides Power to LIN0
Connector | | J11 | LIN0 Signals to
Connector
Enable | 1-2 (default),
3-4 (default) | Connects LIN0 Signals to LIN0 Connector | | J12 | LIN1 Signals to
Connector
Enable
(default: OFF) | 1-2, 3-4 | Connects LIN1 Signals to LIN1 Connector | | J13 | LIN TXD Signal | 1-2 (default) | MCU LIN0TX to Transceiver MCU LIN1TX to Transceiver | | | | 2-0 | WOO LINTIN TO HARBORIVE | | | LIN RXD Signal | 1-2 (default) | MCU LIN0RX to Transceiver | |-----|--------------------------------|---------------|---| | J14 | | 2-3 | MCU LIN1RX to Transceiver | | J15 | MCU VDD
Enable | 1-2 (default) | Provides Power to MCU;
Current Measurement | | J16 | VMOT_EN
Enable | 1-2 (default) | Provides Power to TRK-
MPC5604P from Motor
Control Port | | 147 | FAB | 1-2 | FAB Pulled Up High | | J17 | | 2-3 (default) | FAB Pulled Down Low | | 140 | ABS0 | 1-2 | ABS0 Pulled Up High | | J18 | | 2-3 (default) | ABS0 Pulled Down Low | | 140 | ABS2 | 1-2 | ABS2 Pulled Up High | | J19 | | 2-3 (default) | ABS2 Pulled Down Low | | | System Power
Voltage Select | 1-2 (default) | 5V On-Board | | J20 | | 3-4 | 3.3V From LDO | | | | 5-6 | 3.3V From Motor Control
Port | | | | 1-2 (default) | Provides 5V Power to VDDA; Current Measurement | |-----|---|---|--| | J21 | VDDA Enable | 3-4 | Provides 3.3V Power from On-Board LDO to VDDA; Current Measurement | | | | 5-6 | Provides 3.3V Power from
Motor Control Port; Current
Measurement | | | External Crystal | 1-2 (default) | XTAL | | J22 | Circuitry Enable
(default: ALL
ON) | 3-4 (default) | EXTAL | | J23 | External Oscillator via SMA Enable (default: OFF) | 1-2 | EXTAL | | | Push Button | 1-2 (default) | Active Low | | J24 | J24 Active High or
Low; Opposite
of J25 | 2-3 | Active High | | | Push Button | 1-2 (default) | Pull Up | | J25 | Pull Up/Down Enable; Opposite of J24 | 2-3 | Pull Down | | J26 | Push Button
Signals Enable
(default: ALL
ON) | 1-2 (default),
3-4 (default),
5-6 (default),
7-8 (default) | Connects MCU Port D0, D1, D2, and D3 to Push Buttons Correspondingly | | | | | <u> </u> | |-----|--|---|--| | J27 | LED Signals
Enable
(default: ALL
ON) | 1-2 (default),
3-4 (default),
5-6 (default),
7-8 (default) | Connects MCU Port D4, D5, D6, and D7 to LEDs Correspondingly | | J28 | DIL Switch
Signals Enable
(default: ALL
ON) | 1-2 (default),
3-4 (default),
5-6 (default),
7-8 (default) | Connects MCU Port D8, D9, D10, and D11 to DIL Switch Correspondingly | | | DIL Switch | 1-2 (default) | Active High | | J29 | Active High or
Low | 2-3 | Active Low | | J30 | Analog Input
Enable | 1-2 (default) | Connects MCU PE0 to Potentiometer | | J31 | Photo Sensor
Enable | 1-2 (default) | Connects MCU PE1 to
Photo Cell | | J32 | SBC Reset to
MCU Enable
(default: OFF) | 1-2 | Enables SBC Reset Signal to Trigger MCU Reset | | J33 | OSJTAG Reset to MCU Enable | 1-2 (default) | Enables OSJTAG Reset
Signal to Trigger MCU Reset | | J34 | System Reset
Enable | 1-2 (default) | Connects Reset Sources to MCU Reset Signal | | J35 | OSJTAG
Bootloader
Enable
(default: OFF) | 1-2 | Forces OSJTAG to start up in bootloader mode for firmware updates | | | , , | 1-2 (default) | Pull-Up SBC Reset to 5V if SBC power is used | |-----|---------------------|---------------|--| | J36 | SBC Reset
Pullup | 2-3 | Pull-Up to 3.3V if Motor
Control Port is used to
provide power | ## 3 GETTING STARTED WITH THE TRK-MPC5604P The TRK-MPC5604P is a low-cost board targeting quick microcontroller evaluation. Please refer to the TRK-MPC5604P Quick Start Guide for instructions on how to install software, connect the TRK-MPC5604P to your PC, and run quick demonstrations. #### 4 SYSTEM SETUP #### 4.1 Overview The Embedded OSJTAG driver is required to operate the TRK-MPC5604P using a PC. The Embedded OSJTAG driver should be installed with the CodeWarrior Development Studio software before the PC is connected to the TRK-MPC5604P. ## 4.2 Operating System Requirements The following are the resources required to run the CodeWarrior Development Studio and the TRK-MPC5604P: - A PC-compatible system running Windows 2000, Windows XP, Windows Vista, or Windows 7 - 128MB of available system RAM, and 1GB of available hard disk space - · A DVD-ROM drive for software installation - A USB port ## 4.3 Software Setup #### 4.3.1 Installing CodeWarrior Development Studio To install the CodeWarrior Development Studio, follow the instructions on the DVD-ROM. #### 4.3.2 Installing P&E Resources Use the TRK-MPC5604P Resources in the DVD-ROM to access and install P&E resources for the DEMO board. These materials are not required for operation. The TRK-MPC5604P Resources CD-ROM contains the following support materials: - TRK-MPC5604P User Manual (this document) - TRK-MPC5604P Board Schematic - TRK-MPC5604P Component Breakdown List - P&E Evaluation Software - Links to Freescale documentation, P&E Discussion Forums, and TRK-MPC5604P FAQs. ## 4.4 Quick Startup Only a few steps are required to get the TRK-MPC5604P up and running. Please reference the Quick Start Guide. ## 4.5 Hardware Setup #### 4.5.1 First-Time Connection The TRK-MPC5604P may be connected to a PC through a USB port. Connection steps are listed below in typical order: - 1. Install the required software, as described in the previous section. - Make sure the jumper USB_5V for POWER_SELECT is installed. - 3. Plug the USB cable A-M connector into a free USB port of the PC. - 4. Plug the USB cable B-M connector into the USB connector on the TRK-MPC5604P Board. - 5. The operating system will recognize the Embedded OSJTAG circuitry and P&E's USB to Serial circuitry. Depending on the operating system, you may see the "Found New Hardware Wizard" dialog to assist you with installation. Follow the onscreen Windows instructions to install the OSJTAG driver (these instructions may vary slightly depending on your specific operating system). 6. Select the "Install the software automatically (Recommended)" option and click the "Next" button. Windows will install the driver files to your system. At the end of the installation, click the "Finish" button. **Note:** Depending on the operating system, you may see the "Found New Hardware Wizard" dialog again to assist you with software installation for "PEMicro USB Serial Port (i1)." Follow the onscreen Windows instructions. - Select the "Install the software automatically (Recommended)" option and click the "Next" button. - 2. Windows will install the driver files to your system. Click the "Finish" button to exit the "Found New Hardware Wizard." If the TRK-MPC5604P hardware interface driver is now properly installed on your system, the green USB LED on the TRK-MPC5604P Base Board should be illuminated. In addition, if you turn on the system power of the TRK-MPC5604P you will see the yellow Power LED illuminate. ## 5 OPERATING MODES #### 5.1 Overview The TRK-MPC5604P's Embedded OSJTAG circuitry, featured hardware components, and optional external JTAG header make it a versatile development tool. Below are some of the featured operating modes of the TRK-MPC5604P ## 5.2 Debug Mode A host communicates with the TRK-MPC5604P through the Embedded OSJTAG circuitry. Either the CodeWarrior Development Studio or P&E's Qorivva software tools will work with the TRK-MPC5604P. Please refer to **Section 8 - TRK-MPC5604P CODE DEVELOPMENT SOFTWARE** for more information. #### 5.3 Run Mode The TRK-MPC5604P's rich component list empowers it to perform a variety of tasks. Once an application is developed, debugged, and programmed properly into the microcontroller's internal flash memory, it can run with or without connecting to a host. #### 5.4 External JTAG/Nexus Mode The TRK-MPC5604P has an optional JTAG/Nexus header for debugging and programming the on-board MPC5604P microcontroller using an external Qorivva hardware tool, such as P&E's USB Multilink or Cyclone MAX. Please refer to **Section 9 - TRANSITIONING TO YOUR OWN TARGET** for more information. A user can take advantage of this mode to develop a target-specific MPC5604P system and compare it with the TRK-MPC5604P when necessary. #### 6 JUMPER SETTINGS This section describes the various jumpers settings that are available on the TRK-MPC5604P. Figures depict the default setting for each jumper. ## 6.1 System Power The TRK-MPC5604P board provides 3 power options: SBC MC33905 or LDO can regulate external power to 5VDC, or USB can provide 5VDC through OSJTAG. ## 6.1.1 J1 - System Power 1-2 External Power 9VDC to 12VDC Regulated Down to 5VDC 3-4 USB OSJTAG Supplies 5VDC (default) 5-6 SBC MC33905 Supplies 5VDC Figure 6-2: System Power (J1) #### 6.2 I/O Pins The SBC MC33905 provides three I/O pins. Two of them are jumper (J3) selectable to two LEDs, which are further jumper (J2) selectable to pull-up or pull-down. ## 6.2.1 J2 - SBC I/O LED Pull Up/Down 1-2 Pull Up (default) 3-4 Pull Down Figure 6-3: SBC I/O LED Pull Up/Down (J2) ## 6.2.2 J3 - SBC I/O Signal 1-2 I/O-0 (default) 3-4 I/O-3 5-6 I/O-1 Figure 6-4: SBC I/O Signal (J3) ## 6.3 Debug Mode The SBC MC33905 has a DBG pin to put it into debug mode. Jumpers J4 and J5 are designed for this purpose. #### 6.3.1 J4 - SBC DBG Short To GND 1-2 Short SBC DBG Pin to GND, Bypass R21 and D11 (default: OFF) Figure 6-5: SBC DBG Short To GND (J4) #### 6.3.2 J5 - SBC DBG Pull Up 1-2 Pull Up SBC DBG Pin to SBC Power Supply via 330 Ohm Resistor (default: OFF) Figure 6-6: SBC DBG Pull Up (J5) #### 6.4 CAN Port The TRK-MPC5604P board has implemented a CAN port. ## 6.4.1 J6 – CAN Signals To Transceiver Enable CAN_EN Enables TXD and RXD signals to the CAN transceiver. By default, the jumpers are installed. Figure 6-7: CAN_EN (J6) #### 6.5 Virtual Serial Port The TRK-MPC5604P board has a built-in virtual serial port which may be connected to the MPC5504P processor's SCI. This allows certain PC applications to be able to connect in a serial fashion to the microcontroller without the actual use of serial port hardware. It can be enabled or disabled by installing or removing the jumpers J7 and J8. #### 6.5.1 J7 - RS232 TXD Signal Figure 6-8: TXD_EN (J7) #### 6.5.2 J8 - RS232 RXD Signal Figure 6-9: RXD EN (J8) #### 6.6 LIN Channels/Connectors The TRK-MPC5604P board provides two jumper selectable LIN channels to two jumper selectable LIN connectors. #### 6.6.1 J9 - LIN1 VBus Enable 1-2 Provides Power to LIN1 Connector (default: OFF) Figure 6-10: LIN1 VBus Enable (J9) #### 6.6.2 J10 - LIN0 VBus Enable 1-2 Provides Power to LIN0 Connector (default: OFF) Figure 6-11: LIN0 VBus Enable (J10) #### 6.6.3 J11 - LIN0 Signals To Connector Enable 1-2, 3-4 Connects LIN0 Signals to LIN0 Connector (default) Figure 6-12: LIN0 Signals To Connector Enable (J11) ## 6.6.4 J12 - LIN1 Signals To Connector Enable 1-2, 3-4 Connects LIN1 Signals to LIN1 Connector (default: OFF) Figure 6-13: LIN1 Signals To Connector Enable (J12) #### 6.6.5 J13 - LIN TXD Signal - 1-2 MCU LIN0TX to Transceiver (default) - 2-3 MCU LIN1TX to Transceiver Figure 6-14: LIN TXD Signal (J13) ## 6.6.6 J14 - LIN RXD Signal - 1-2 MCU LIN0RX to Transceiver (default) - 2-3 MCU LIN1RX to Transceiver Figure 6-15: LIN RXD Signal (J14) #### 6.7 MCU VDD Enable #### 6.7.1 J15 - MCU VDD Enable 1-2 Provides Power to MCU, Current Measurement (default) Figure 6-16: MCU VDD Enable (J15) ## 6.8 VMOT_EN Enable ## 6.8.1 J16 - VMOT_EN Enable 1-2 Provides Power to TRK-MPC5604P Board from Motor Control Port (default) Figure 6-17: VMOT_EN Enable (J16) ## 6.9 Boot Configuration #### 6.9.1 J17 - FAB 1-2 FAB Uses Serial Boot Mode 2-3 FAB Uses Internal Boot Mode (default) Figure 6-18: FAB (J17) #### 6.9.2 J18 - ABS0 - 1-2 Processor uses FlexCAN interface (if ABS2 = 0) if configured for Serial boot mode (J17) - 2-3 Processor uses LINFlex interface (if ABS2 = 0) or Autobaud scan (if ABS2 = 1) if configured for Serial boot mode (J17) Figure 6-19: ABS0 (J18) #### 6.9.3 J19 - ABS2 - 1-2 Processor uses Autobaud scan (if ABS0 = 0) if configured for Serial boot mode (J17) - 2-3 Processor uses LINFlex interface (if ABS0 = 0) or FlexCAN interface (if ABS0 = 1) if configured for Serial boot mode (J17) Figure 6-20: MPC5604P ABS2 (J19) ## 6.10 System Power Voltage Select #### 6.10.1 J20 - System Power Voltage Select 1-2 5V (default) 3-4 3.3V from On-Board LDO 5-6 3.3V from Motor Control Port # POWER SELECT 5V 3.3V MO Figure 6-21: System Power Voltage Select (J20) #### 6.11 **VDDA** Enable #### 6.11.1 J21 - VDDA Enable 1-2 Provides 5V Power to VDDA, Current Measurement (default) 3-4 Provides 3.3V Power from On-Board LDO to VDDA, Current Measurement 5-6 Provides 3.3V Power from Motor Control Port, Current Measurement Figure 6-22: VDDA Enable (J21) #### 6.12 **Clock Selection** #### 6.12.1 J22 - External Crystal Circuitry Enable 1-2 XTAL 2-3 EXTAL (default: ALL ON) Figure 6-23: External Crystal Circuitry Enable (J22) #### 6.12.2 J23 - External Oscillator via SMA Enable 1-2 EXTAL (default: OFF) Figure 6-24: External Oscillator via SMA Enable (J23) #### 6.13 Push Buttons The TRK-MPC5604P board is designed with 4 jumper enabled push buttons with jumper selectable active high or low states. #### 6.13.1 J24 - Push Button Active High or Low (Opposite of J25) - 1-2 Active Low (default) - 2-3 Active High Figure 6-25: Push Button Active High or Low (J24) #### 6.13.2 J25 - Push Button Pull Up/Down Enable (Opposite of J24) - 1-2 Pull Up (default) - 2-3 Pull Down Figure 6-26: Push Button Pull Up/Down Enable (J25) #### 6.13.3 J26 - Push Button Signals Enable 1-2, 3-4, 5-6, 7-8 Connects MCU Port D0, D1, D2, and D3 to Corresponding Push Buttons (default: ALL ON) Figure 6-27: Push Button Signals Enable (J26) ## 6.14 LED Display Port The TRK-MPC5604P has 4 LEDs connected to signals D4, D5, D6, and D7. They can be enabled or disabled by installing or removing the corresponding jumper, J27, in the LED ENABLE header. #### 6.14.1 J27 - LED Display Enable Port LED_ENABLE Enables all LED outputs. This is the default setting. Figure 6-28: LED Display Enable Header LED_ENABLE (J27) #### 6.15 DIL Switch The TRK-MPC5604P board is designed with a 4 jumper-enabled DIL Switch signal with jumper-selectable active high or low states. #### 6.15.1 J28 - DIL Switch Signals 1-2, 3-4, 5-6, 7-8 Connects MCU Port D8, D9, D10, and D11 to Corresponding DIL Switch (default: ALL ON) Figure 6-29: DIL Switch Signals (J28) #### 6.15.2 J29 - DIL Switch Active High or Low - 1-2 Active Low (default) - 2-3 Active High Figure 6-30: DIL Switch Active High or Low (J29) ## 6.16 Analog Input Enable ## 6.16.1 J30 - Analog Input Enable 1-2 Connects MCU PE0 to Potentiometer (default) Figure 6-31: Analog Input Enable (J30) #### 6.17 Photo Sensor Enable #### 6.17.1 J31 - Photo Sensor Enable 1-2 Connects MCU PE1 to Photo Sensor (default) Figure 6-32: Photo Sensor Enable (J31) #### 6.18 Reset Sources The TRK-MPC5604P board is designed with 3 reset sources: From SBC MC33905, from OSJTAG, and from the Reset Button. #### 6.18.1 J32 - SBC Reset to MCU Enable 1-2 Enables SBC Reset Signal to Trigger MCU Reset (default: OFF) Figure 6-33: SBC Reset to MCU Enable (J32) #### 6.18.2 J33 - OSJTAG Reset to MCU Enable 1-2 Enables OSJTAG Reset Signal MCU Reset (default) Figure 6-34: OSJTAG Reset to MCU Enable (J33) #### 6.18.3 J34 - System Reset Enable 1-2 Connects Reset Sources to MCU Reset Signal (default) Figure 6-35: System Reset Enable (J34) #### 6.19 OSJTAG Bootloader Enable #### 6.19.1 J35 - OSJTAG Bootloader Enable 1-2 Forces OSJTAG to start up in bootloader mode for firmware updates (default: OFF) Figure 6-36: OSJTAG IRQ Enable (J35) #### 6.20 SBC Reset Pull-Up Mode #### 6.20.1 J36 - SBC Reset Pull-Up Enable 1-2 Pull Up SBC Reset to 5V if SBC poewr is used 2-3 Pull Up SBC Reset to 3.3V provided by Motor Control Port if power is provided from it Figure 6-37: SBC Reset Pull-Up Enable (J36) ## 7 MOTOR CONTROL DAUGHTER CARD CONNECTOR The Daughter Card Connector, P8, allows the connection of TRK-MPC5604P Board to the 56F8000 Motor Control Board. The Daughter Card Connector is a 40-pin 0.1" pitch connector with signals from the PWM, ADC, and GPIO peripheral ports. Table xxxxx below shows the Daughter Card Connector's signal-to-pin assignments. | 1 | +3.3V | GPIO40/FlexPWM0_FAULT2 | 2 | |----|---------------------|------------------------|----| | 3 | GND | Reset | 4 | | 5 | GPIO18/TXD | GPIO54/FlexPWM0 FAULT1 | 6 | | 7 | GPIO19/RXD | GND | 8 | | 9 | GPIO58/FlexPWM0 A0 | GPIO23/ADC0 AN0 | 10 | | 11 | GPIO59/FlexPWM0 B0 | GPIO24/ADC0 AN1 | 12 | | 13 | GPIO0/eTimer0 ETC0 | GPIO65/ADC0 AN4 | 14 | | 15 | GPIO1/eTimer0 ETC1 | GND | 16 | | 17 | GPIO3/eTimer0 ETC3 | GPIO29/ADC1 AN0 | 18 | | 19 | GPIO2/eTimer0 ETC2 | GPIO30/ADC1 AN1 | 20 | | 21 | GPIO6/DSPI1 SCK | GPIO31/ADC1 AN2 | 22 | | 23 | GPIO5/DSPI1 CS0 | GND | 24 | | 25 | GPIO45/eTimer1 ETC1 | GPIO42 | 26 | | 27 | GPIO46/eTimer1 ETC2 | GPIO9/FlexPWM0 FAULT0 | 28 | | 29 | GPIO53/FCU0 F0 | GPIO61/FlexPWM0 A1 | 30 | | 31 | GPIO55/FCU0 F1 | GPIO62/FlexPWM0 B1 | 32 | | 33 | GPIO34/ADC0_AN3 | GPIO12/FlexPWM0_A2 | 34 | | 35 | GPIO33/ADC0 AN2 | GPIO13/FlexPWM0 B2 | 36 | | 37 | GPIO32/ADC1 AN3 | GPIO27/ADC0 ADC1 AN13 | 38 | | 39 | GPIO64/ADC1 AN5 | GPIO28/ADC0 ADC1 AN14 | 40 | | | _ | | | Figure 7-38: Motor Control Daughter Card Signal-To-Pin Assignments ## 8 TRK-MPC5604P CODE DEVELOPMENT SOFTWARE The TRK-MPC5604P includes P&E's OSJTAG circuitry, so no external Qorivva hardware tool is needed to debug and program the TRK-MPC5604P. A user only needs to connect the TRK-MPC5604P to their PC to start developing code for it. The TRK-MPC5604P package comes with a special edition of Freescale's CodeWarrior studio. In addition, P&E's evaluation software for Qorivva is available in the TRK-MPC5604P Resources section of the TRK-MPC5604P Resources CD, or online at www.pemicro.com. A user may use either CodeWarrior or P&E software tools to develop code for the TRK-MPC5604P. ## 8.1 Using CodeWarrior With The TRK-MPC5604P The CodeWarrior studio supports Freescale's Qorivva devices. It offers C, C++, and assembly-level support, and provides debugging capabilities based on P&E's debug and programming technologies. A programming or debug session with the project-based CodeWarrior IDE may be launched by double-clicking on the project name (the format is *projectname.mcp*) from your file storage. Its tutorials, FAQs, and quick start guides are easy to follow and will allow you use pre-built templates to begin creating a new project in a short time. Codewarrior tutorials can be followed based on the instructions provided. ## 8.2 Using P&E Software With The TRK-MPC5604P P&E offers an integrated development environment for Freescale's Qorivva devices, which combines a GNU C compiler, in-circuit debugger, and flash memory programmer. The debugger supports both assembly and C source-level debugging. The programmer can program/reprogram both internal and external flash devices in-circuit. ## 9 TRANSITIONING TO YOUR OWN TARGET Once you have finished working with the TRK-MPC5604P and are ready to build your own target, you will need a hardware tool to allow you to develop using your own board. The Multilink Universal and USB Qorivva Multilink are development tools that are functionally comparable to the OSJTAG circuitry on the TRK-MPC5604P. Either interface will enable you to debug your code and program it onto your target. The Cyclone MAX is a more versatile and robust development tool with advanced features and production capabilities. These solutions all work with Freescale's CodeWarrior as well as P&E software, and provide a seamless transition to working with your own hardware. More information is available below to assist you in choosing the appropriate development tool for your needs. #### 9.1 Hardware Solutions At A Glance The Multilink Universal and USB Qorivva Multilink each offer an affordable and compact solution for your development needs, and allow debugging and programming to be accomplished simply and efficiently. Those doing rapid development will find these interfaces easy to use and fully capable of fast-paced debugging and programming. The Cyclone MAX is a more complete solution designed for both development and production. The Cyclone MAX features automated power switching, multiple communications interfaces (including USB, Ethernet, and Serial), stand-alone programming functionality, and many other advanced capabilities. Below is an overview of the features and intended use of the Multilink Universal and USB Qorivva Multilink, as well as the Cyclone MAX. #### 9.1.1 Multilink Universal and USB Qorivva Multilink Features - Direct user control of target's execution - Programming and debugging capabilities - Read/write registers and memory values - Compact and lightweight - Communication via USB 2.0 - Supported by P&E software and Freescale's CodeWarrior - USB Qorivva Multilink supports Freescale Qorivva MPC55xx/56xx. - Multilink Universal supports Freescale Qorivva MPC55xx/56xx, HCS08, HC(S)12(X), RS08, ColdFire V1/+V1, ColdFire V2-4, and Kinetis ARM. ## 9.1.2 Cyclone MAX Key Features Advanced programming and debugging capabilities, including: - PC-Controlled and User-Controlled Stand-Alone Operation - Interactive Programming via Host PC - In-Circuit Debugging, Programming, and Testing - Compatible with Freescale's ColdFireV2/3/4, Power Architecture 5xx/ 8xx, Qorivva MPC55xx/56xx, and Kinetis ARM microcontroller families - Communication via USB, Serial, and Ethernet Ports - Multiple image storage - LCD screen menu interface - Supported by P&E software and Freescale's CodeWarrior ## 9.2 Working With P&E's Multilink Universal or USB Qorivva Multilink Figure 9-1: Multilink Universal (left) & USB Qorivva Multilink (right) #### 9.2.1 Product Features & Implementation P&E's Multilink Universal and USB Qorivva Multilink each connect your target to your PC and allow the PC access to the debug mode on Freescale's Qorivva MPC55xx/56xx microcontrollers (the Multilink Universal also supports several other Freescale processors). These interfaces connect between a USB port on a Windows 2000/XP/2003/Vista/7 machine and a standard 14-pin JTAG/Nexus connector on the target. By using either of these interfaces, the user can take advantage of the background debug mode to halt normal processor execution and use a PC to control the processor. The user can then directly control the target's execution, read/write registers and memory values, debug code on the processor, and program internal or external FLASH memory devices. The Multilink Universal and USB Qorivva Multilink each enable you to debug, program, and test your code on your board. #### 9.2.2 Software The Multilink Universal and USB Qorivva Multilink interfaces each work with Codewarrior as well as P&E's in-circuit debugger and flash programmer to allow debug and flash programming of the target processor. P&E's USB Qorivva Multilink Development Packages come with the USB Qorivva Multilink interface, as well as flash programming software, in-circuit debugging software, Windows IDE, and a register file editor. ## 9.3 Working With P&E's Cyclone MAX Figure 9-2: P&E's Cyclone MAX #### 9.3.1 Product Features & Implementation P&E's Cyclone MAX is an extremely flexible tool designed for debugging, testing, and in-circuit flash programming of Freescale's ColdFireV2/3/4, Power Architecture 5xx/8xx, Qorivva MPC55xx/56xx, and Kinetis ARM microcontrollers. The Cyclone MAX connects your target to the PC via USB, Ethernet, or Serial Port and enables you to debug your code, program, and test it on your board. After development is complete the Cyclone MAX can be used as a production tool on your manufacturing floor. For production, the Cyclone MAX may be operated interactively via Windows-based programming applications as well as under batch or .dll commands from a PC. Once loaded with data by a PC it can be disconnected and operated manually in a stand-alone mode via the LCD menu and control buttons. The Cyclone MAX has over 7Mbytes of non-volatile memory, which allows the on-board storage of multiple programming images. When connected to a PC for programming or loading it can communicate via the ethernet, USB, or serial interfaces. #### 9.3.2 Software The Cyclone MAX comes with intuitive configuration software and interactive programming software, as well as easy to use automated control software. The Cyclone MAX also functions as a full-featured debug interface, and is supported by Freescale's CodeWarrior as well as development software from P&F. P&E's Cyclone MAX is also available bundled with additional software as part of various Development Packages. In addition to the Cyclone MAX, these Development Packages include in-circuit debugging software, flash programming software, a Windows IDE, and a register file editor. ## 10 TROUBLESHOOTING #### 10.1 TRK-MPC5604P Is Undetected **Q:** The connection assistant indicates that my TRK-MPC5604P is undetected even though I have connected the hardware to my USB port. What should I do? **A:** The connection assistant, which displays in either Codewarrior or P&E's development software, is a dialog which allows the user to connect to the TRK-MPC5604P hardware. If this dialog indicates that the TRK-MPC5604P hardware is not connected to the PC, the first step is to make sure that the TRK-MPC5604P hardware is connected to the PC via a USB 2.0 high-speed cable. If it is connected, unplug and then plug in the USB cable on the TRK-MPC5604P board and click refresh in the connection assistant. If the hardware still does not show up, try the following remedies: #### (A) Re-Install the USB driver If the Multilink device does not show up in the device manager, re-install the CodeWarrior Development Studio software from the DVD-ROM. After driver installation, unplug the TRK-MPC5604P from the PC and reboot the PC. When the reboot has completed, connect the interface to the PC with the USB 2.0 cable. Run the software again to see if the interface is now detected. #### (B) USB Hub Usage The TRK-MPC5604P is a high-power USB device. If a USB Hub is used, it must be a self-powered hub (i.e., with its own power supply). If the Hub is not self-powered the TRK-MPC5604P will not work. In general, USB ports located directly on the PC are high-power (self-powered) ports. ## Freescale Controller Continuum 68HC08/S08/RS08/(S)12(X) ColdFire® V1/+V1 ColdFire® V2/V3/V4 Qorivva® ARM® ©2011, P&E Microcomputer Systems, Inc. All rights reserved. P&E Micrcomputer Systems, Inc. 98 Galen St., 2nd Floor Watertown, MA 02472 www.pemicro.com Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.