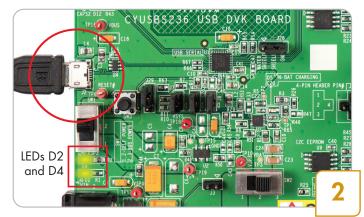
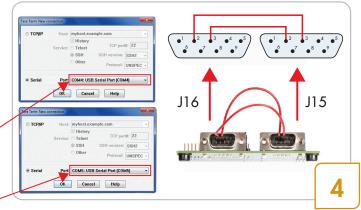

USB-SERIAL DEVELOPMENT KIT

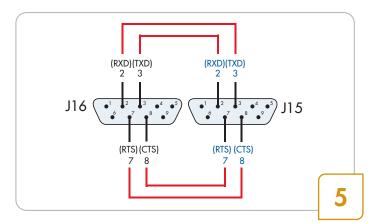

Step 1: Software Installation

- Download and unzip the ISO file from www.cypress.com/go/CYUSBS236
- Run cyautorun.exe and follow the steps in the installer window
- Install Tera Term from the following location: <install directory>/Cypress/CYUSBS236 DVK/ 1.0/teraterm

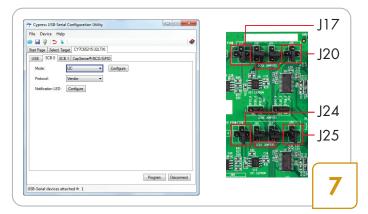

Step 3: Enumeration

 The device appears as two USB Serial Ports (COM#) in the Device Manager. (To launch the Device Manager in Windows 7, click Start and type Device Manager in 'Search programs and files' box)

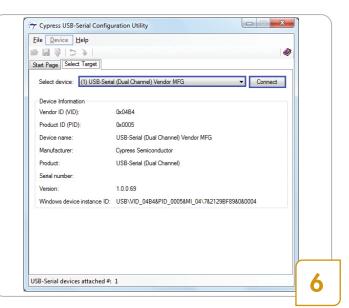
Step 2: Powering the board*


- Connect the board to the PC using the USB cable
- LEDs D2 and D4 glow to indicate that the board is powered

Step 4: Testing basic UART functionality


- Connect J16.3 (TXD) to J15.2 (RXD) and J15.3 (TXD) to J16.2 (RXD), with the provided jumper wires
- Run 2 instances of Tera Term (Start > All Programs > Tera Term)
- Click Serial and select Port (COM#) in the first 'Tera Term: New Connection' window, and then click OK. Repeat the same for second instance of Tera Term window
- Type "HELLO WORLD" in the first terminal, the same text appears on the second terminal. Type "HELLO WORLD" in the second terminal, the same text appears on the first terminal
- Note: * Connect the board to PC only after software installation. For the latest software updates on Windows, Linux, MAC, and Android, visit www.cypress.com/go/usbserial

CYUSBS236 QUICK START GUIDE

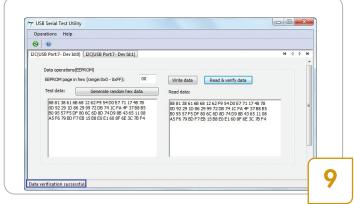

Step 5: 10 MB File transfer at 1 Mbps, with no Data-Loss

- Connect wires as above. Run 2 instances of Tera Term
- Go to Setup > Serial Port in the first Tera Term window, and enter 1000000 in the baud rate box. Select Hardware in the Flow control drop-down menu; go to Setup > Terminal > Receive, select CR+LF. Repeat the same in the second Tera Term window
- Enable file capture in the first Tera Term window: go to **File > Log**; uncheck **Append** and select <file name> to save the received data
- Go to File > Send File in the second Tera Term window. Select Test.txt file from <Install directory>\Cypress\ CYUSBS236 DVK\1.0
- 'Tera Term: Send file' window shows effective data throughput
- Compare Test.txt and received file, using any file compare utility to verify data integrity

Step 7: USB – I2C bridge configuration

- Click the SCBO tab. Select I2C from the drop-down menu and click the Program button. The 'Program succeeded' message appears. Click OK to continue
- Repeat the above by clicking the SCB1 tab. Click the Disconnect button to disconnect the board from configuration utility
- Press reset switch SW3 (refer to the figure in step 13). The board enumerates as dual I2C bridge
- Set jumpers J17, J20, J24 and J25 as shown above

Step 6: Start Configuration Utility

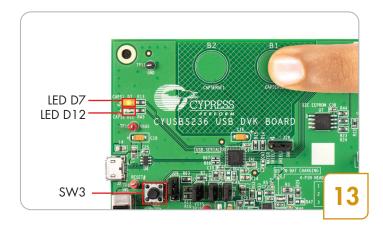

- Run configuration utility from Start > All Programs > Cypress > CYUSBS236 DVK > USB Serial Configuration Utility
- Click Select Target tab. Select the device USB-Serial (Dual Channel) Vendor MFG from the drop down menu and click Connect

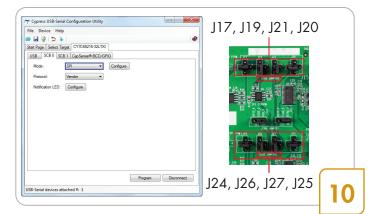
0	0				H 4 P H
-	inter VendorID and Produc	tID			×
	Vendor ID: 0484	Product ID: 000A			OK Cancel
	Device id	Device class	Device type	Serial	Device friendly name
	USB Port: 7- Dev Id:0 USB Port: 7- Dev Id: 1	VENDOR VENDOR	12C 12C		USB-Serial (Dual Channel) Ver USB-Serial (Dual Channel) Ver
	USB Port: 7- Dev Id: 2	VENDOR	MFG		USB-Serial (Dual Channel) Ver
	•	m			•
	NOTE: Test utility suppor	ts data transfer wit	h EEPROM conn	ected to SPI 8	à I2C on DVK.

Step 8: USB - I2C test utility

- Run the USB Serial Test Utility from Start > All Programs > Cypress > CYUSBS236 DVK > USBSerialTestUtility
- Change the Product ID to 000A to match the default Cypress PID. The test utility lists the I2C interfaces on the board. Click **OK** to continue

CYUSBS236 QUICK START GUIDE


Step 9: USB - I2C bridge testing


- Click the Write data button. Data gets written at the default EEPROM page address
- Click the Read & verify data button. When the received and transmitted data is identical, the 'Data verification successful' message appears
- Repeat the above for SCB1 using the tab '12C [USB Port:7 Dev Id:1]' to test the second I2C bridge
- This test proves successful data transfer with I2C interfaces

Vendor ID: 0484 Product ID: 000A OK	
Device list with specified VID & PID: Cancel	
Device id Device class Device type Serial Device friendly name	
USB Port: 7- Dev Id:0 VENDOR SPI USB-Serial (Dual Channel) Ven	
USB Port: 7- Dev Id: 1 VENDOR SPI USB-Serial (Dual Channel) Ver USB Port: 7- Dev Id: 2 VENDOR MFG USB-Serial (Dual Channel) Ver	
NOTE: Test utility supports data transfer with EEPROM connected to SPI & I2C on DVK.	

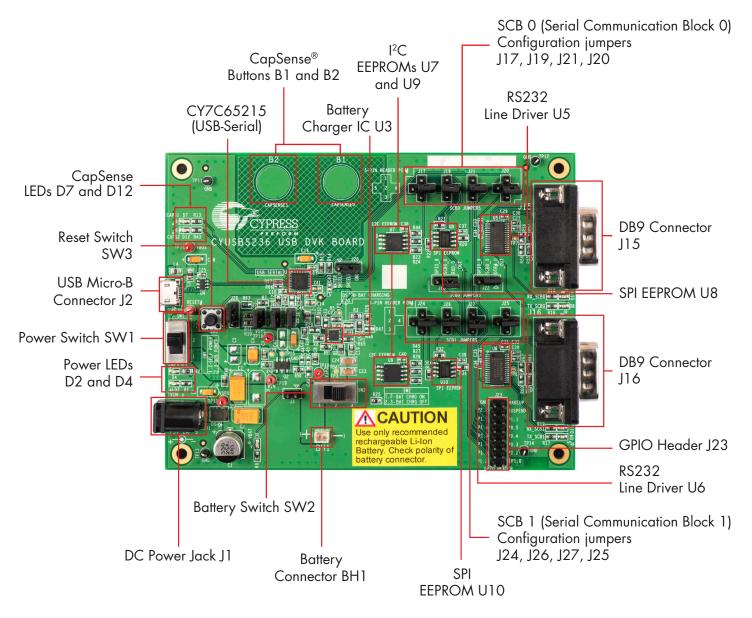
Step 11: USB - SPI test utility

- Run the USB Serial Test Utility from Start > All Programs
 > Cypress > CYUSBS236 DVK > USBSerialTestUtility
- Change the Product ID to 000A and click **OK**

Step 10: USB – SPI bridge configuration

- Repeat step 6
- Click the **SCBO** tab. Select **SPI** from the drop-down menu and click the **Program** button
- Repeat the above by clicking the SCB1 tab. Click the Disconnect button and press the reset switch SW3
- Set jumpers J17, J19, J20, J21, J24, J25, J26 and J27 as shown in the picture above

PI(USB Port:7- Dev Id:0] SPI(USB Port:7- Dev Id:1) Data operations(EEPROM) EEPROM page in hex (range: 0x0 - 0x3FF); 000	Write data Read & verify data	H 4 D H	
		^	
EEPROM page in hex (range: 0x0 - 0x3FF): 000			١.
	Write data Read & verify data		
Test data: Generate random hex data	Read data:		
20 108 042 1 4 4 5 0 4 4 5 1 0 8 4 5 1 7 1 80 109 11 4 4 0 1 5 1 7 6 2 9 3 4 9 1 7 1 5 1 7 1 8 1 7 0 9 1 7 1 1 1 1 1 0 4 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	F	


Step 12: USB - SPI bridge testing

- Click the **Write data** button. Data gets written at the default EEPROM page address
- Click the Read & verify data button. The 'Data verification successful' message appears
- Repeat the above for SCB1 using the tab 'SPI [USB Port:7 – Dev Id:1]' to test the second SPI bridge

Step 13: CapSense button

- Touch CapSense[®] button B1 as shown in the figure. The D7 LED glows to indicate that the button is sensed
- Remove the finger from CapSense button B1 and the LED turns OFF to indicate that the button is released
- Touch the CapSense button B2. The D12 LED glows to indicate that the button is sensed
- Remove the finger from CapSense button B2 and the D12 LED turns OFF to indicate that the button is released

USB-SERIAL DEVELOPMENT KIT

Note: By default, SCB 0 and SCB 1 configuration jumpers are set for dual USB to UART bridge as shown above. Refer to the Table 3-1 in user guide for additional information on jumper settings

Kit operation: The CY7C65215, USB-Serial bridge controller can be configured as dual USB-UART bridge, dual USB-I2C bridge, or dual USB-SPI bridge. As an USB-UART bridge, data is transmitted from USB to UART (TXD). TXD-RXD loop back connection enables the data to be fed back to the UART (RXD) to USB and is displayed on the Tera Term window. The CY7C65215 controller also supports battery charger detection and configurable CapSense functionality, providing best-in-class signal-to-noise ratio (SNR) and water-tolerance

For the latest information about this kit and to download kit software and hardware files, visit www.cypress.com/go/CYUSBS236

