
S1D13505 Embedded RAMDAC LCD/CRT Controller

Programming Notes and Examples

Document Number: X23A-G-003-07

Copyright © 1998, 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain
material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

Page 2 Epson Research and Development
Vancouver Design Center
THIS PAGE LEFT BLANK
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 3
Vancouver Design Center
Table of Contents

1 Introduction . 11

2 Initialization . 12
2.1 Miscellaneous . 15

3 Memory Models . 16
3.1 Display Buffer Location . 16

3.1.1 Memory Organization for One Bit-Per-Pixel (2 Colors/Gray Shades) 16

3.1.2 Memory Organization for Two Bit-Per-Pixel (4 Colors/Gray Shades) 17

3.1.3 Memory Organization for Four Bit-Per-Pixel (16 Colors/Gray Shades) 17

3.1.4 Memory Organization for Eight Bit-Per-Pixel (256 Colors/16 Gray Shades) 18

3.1.5 Memory Organization for Fifteen Bit-Per-Pixel (32768 Colors/16 Gray Shades) . . 18

3.1.6 Memory Organization for Sixteen Bit-Per-Pixel (65536 Colors/16 Gray Shades) . . 19

4 Look-Up Table (LUT) . 20
4.1 Look-Up Table Registers . 20

4.2 Look-Up Table Organization . 21

5 Advanced Techniques . 29
5.1 Virtual Display . 29

5.1.1 Registers . 30

5.1.2 Examples . 31

5.2 Panning and Scrolling . 31

5.2.1 Registers . 32

5.2.2 Examples . 33

5.3 Split Screen . 35

5.3.1 Registers . 35

5.3.2 Examples . 37

6 LCD Power Sequencing and Power Save Modes 38
6.1 LCD Power Sequencing . 38

6.1.1 Registers . 38

6.1.2 LCD Power Disable . 39

6.2 Software Power Save . 40

6.2.1 Registers . 41

6.3 Hardware Power Save . 42

7 Hardware Cursor/Ink Layer . 43
7.1 Introduction . 43

7.2 Registers . 44

7.3 Limitations . 46

7.3.1 Updating Hardware Cursor Addresses . 46
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 4 Epson Research and Development
Vancouver Design Center
7.3.2 Reg[29h] And Reg[2Bh] . 46

7.3.3 Reg [30h] . 46

7.3.4 No Top/Left Clipping on Hardware Cursor . 46

7.4 Examples . .46

8 SwivelView .47
8.1 Introduction To SwivelView .47

8.2 S1D13505 SwivelView .47

8.3 Registers . .47

8.4 Limitations .48

8.5 Examples . .49

9 CRT Considerations .51
9.1 Introduction . .51

9.1.1 CRT Only . 51

9.1.2 Simultaneous Display . 51

10 Identifying the S1D13505 .52

11 Hardware Abstraction Layer (HAL) .53
11.1 Introduction . .53

11.2 Contents of the HAL_STRUCT . .53

11.3 Using the HAL library . .54

11.4 API for 13505HAL . .54

11.5 Initialization . .56

11.5.1 General HAL Support . 58

11.5.2 Advanced HAL Functions . 62

11.5.3 Register / Memory Access . 64

11.5.4 Color Manipulation . 67

11.5.5 Drawing . 69

11.5.6 Hardware Cursor . 71

11.5.7 Ink Layer . 75

11.5.8 Power Save . 78

11.6 Porting LIBSE to a new target platform . .78

11.6.1 Building the LIBSE library for SH3 target example 79

11.6.2 Building the HAL library for the target example 80

11.6.3 Building a complete application for the target example 80
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 5
Vancouver Design Center
12 Sample Code . 84
12.1 Introduction . 84

12.1.1 Sample code using the S1D13505 HAL API . 84

12.1.2 Sample code without using the S1D13505 HAL API 86

12.1.3 Header Files . 95

Appendix A Supported Panel Values .107

A.1 Supported Panel Values .107
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 6 Epson Research and Development
Vancouver Design Center
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 7
Vancouver Design Center
List of Tables

Table 2-1: S1D13505 Initialization Sequence . 12

Table 4-1: Look-Up Table Configurations . 21

Table 4-2: Recommended LUT Values for 1 Bpp Color Mode . 22

Table 4-3: Example LUT Values for 2 Bpp Color Mode . 22

Table 4-4: Suggested LUT Values to Simulate VGA Default 16 Color Palette 23

Table 4-5: Suggested LUT Values to Simulate VGA Default 256 Color Palette 24

Table 4-6: Recommended LUT Values for 1 Bpp Gray Shade . 26

Table 4-7: Suggested Values for 2 Bpp Gray Shade . 26

Table 4-8: Suggested LUT Values for 4 Bpp Gray Shade . 27

Table 5-1: Number of Pixels Panned Using Start Address . 33

Table 5-2: Active Pixel Pan Bits . 33

Table 6-1: Suspend Refresh Selection . 41

Table 7-1: Ink/Cursor Mode . 44

Table 7-2: Cursor/Ink Start Address Encoding . 46

Table 11-1: HAL Functions . 54

Table 12-1: Passive Single Panel @ 320x240 with 40MHz Pixel Clock 107

Table 12-2: Passive Single Panel @ 640x480 with 40MHz Pixel Clock 107

Table 12-3: Passive Dual Panel @ 640x480 with 40MHz Pixel Clock 108

Table 12-4: TFT Single Panel @ 640x480 with 25.175 MHz Pixel Clock 108
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 8 Epson Research and Development
Vancouver Design Center
THIS PAGE LEFT BLANK
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 9
Vancouver Design Center
List of Figures

Figure 3-1: Pixel Storage for 1 Bpp (2 Colors/Gray Shades) in One Byte of Display Buffer 16

Figure 3-2: Pixel Storage for 2 Bpp (4 Colors/Gray Shades) in One Byte of Display Buffer 17

Figure 3-3: Pixel Storage for 4 Bpp (16 Colors/Gray Shades) in One Byte of Display Buffer 17

Figure 3-4: Pixel Storage for 8 Bpp (256 Colors/16 Gray Shades) in One Byte of Display Buffer . . 18

Figure 3-5: Pixel Storage for 15 Bpp (32768 Colors/16 Gray Shades) in
Two Bytes of Display Buffer . 18

Figure 3-6: Pixel Storage for 16 Bpp (65536 Colors/16 Gray Shades) in
Two Bytes of Display Buffer . 19

Figure 5-1: Viewport Inside a Virtual Display . 30

Figure 5-2: Memory Address Offset Registers . 30

Figure 5-3: Screen 1 Start Address Registers . 32

Figure 5-4: Pixel Panning Register . 33

Figure 5-5: 320x240 Single Panel For Split Screen . 35

Figure 5-6: Screen 1 Line Compare . 35

Figure 5-7: Screen 2 Display Start Address . 36

Figure 11-1: Components needed to build 13505 HAL application 78
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 10 Epson Research and Development
Vancouver Design Center
THIS PAGE LEFT BLANK
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 11
Vancouver Design Center
1 Introduction

This guide describes how to program the S1D13505 Embedded RAMDAC LCD/CRT
Controller. The guide presents the basic concepts of the LCD/CRT controller and provides
methods to directly program the registers. It explains some of the advanced techniques used
and the special features of the S1D13505.

The guide also introduces the Hardware Abstraction Layer (HAL), which is designed to
simplify the programming of the S1D13505. Most S1D1350x and S1D1370x products
support the HAL allowing OEMs to switch chips with relative ease.

This document is updated as appropriate. Please check the Epson Electronics America
Website at http://www.eea.epson.com for the latest revision of this document before
beginning any development.

We appreciate your comments on our documentation. Please contact us via email at
documentation@erd.epson.com.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 12 Epson Research and Development
Vancouver Design Center
2 Initialization

This section describes how to initialize the S1D13505. Sample code for performing
initialization of the S1D13505 is provided in the file init13505.c which is available on the
internet at http://www.eea.epson.com.

S1D13505 initialization can be broken into three steps. First, enable the S1D13505
controller (if necessary identify the specific controller). Next, set all the registers to their
initial values. Finally, program the Look-Up Table (LUT) with color values. This section
does not deal with programming the LUT, see Section 4 of this manual for LUT
programming details.

Note
When using an ISA evaluation board in a PC (i.e. S5U13505B00C), there are two addi-
tional steps that must be carried out before initialization. First, confirm that 16-bit mode
is enabled by writing to address F80000h. Then, if hardware suspend is enabled, disable
suspend mode by writing to F00000h. For further information on ISA evaluation boards
refer to the S5U13505B00C Rev. 1.0 ISA Bus Evaluation Board User Manual, document
number X23A-G-004-xx.

The following table represents the sequence and values written to the S1D13505 registers
to control a configuration with these specifications:

• 640x480 color dual passive format 1 LCD @ 75Hz.

• 8-bit data interface.

• 8 bit-per-pixel (bpp) - 256 colors.

• 31.5 MHz input clock.

• 50 ns EDO-DRAM, 2 CAS, 4 ms refresh, CAS before RAS.

Table 2-1: S1D13505 Initialization Sequence

Register Value Notes See Also

[1B] 0000 0000 Enable the host interface

[23] 1000 0000 Disable the FIFO

[01] 0011 0000
Memory configuration
- divide ClkI by 512 to get 4 ms for 256 refresh cycles
- this is 2-CAS# EDO memory

[22] 0100 1000
Performance Enhancement 0 - refer to the hardware
specification for a complete description of these bits

S1D13505 Hardware
Functional Specification,
document number
X23A-A-001-xx

[02] 0001 0110 Panel type - non-EL, 8-bit data, format 1, color, dual, passive

[03] 0000 0000 Mod rate used by older monochrome panels - set to 0

[04] 0100 1111 Horizontal display size = (Reg[04]+1)*8 = (79+1)*8 = 640 pixels
see note for REG[16h] and
REG[17h]

[05] 0000 0011
Horizontal non-display size = (Reg[05]+1)*8 = (3+1)*8 = 32
pixels
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 13
Vancouver Design Center
[06] 0000 0000 FPLINE start position - only required for CRT or TFT/D-TFD

[07] 0000 0000 FPLINE polarity set to active high

[08] 1110 1111 Vertical display size = Reg[09][08] + 1
= 0000 0000 1110 1111 + 1
= 239+1 = 240 lines (total height/2 for dual panels)[09] 0000 0000

[0A] 0011 1000 Vertical non-display size = Reg[0A] + 1 = 57 + 1 = 58 lines

[0B] 0000 0000 FPFRAME start position - only required for CRT or TFT/D-TFD

[0C] 0000 0000 FPFRAME polarity set to active high

[0D] 0000 1100
Display mode - hardware portrait mode disabled, 8 bpp and
LCD disabled, enable LCD in last step of this example.

[0E] 1111 1111 Line compare (Regs[0Eh] and[0Fh] set to maximum allowable
value. We can change this later if we want a split screen.

‘

[0F] 0000 0011

[10] 0000 0000
Screen 1 Start Address (Regs [10h], [11h], and [12h]) set to 0.
This will start the display in the first byte of the display buffer.

[11] 0000 0000

[12] 0000 0000

[13] 0000 0000
Screen 2 Start Address (Regs [13h], [14h], and [15h]) to offset
0. Screen 2 Start Address in not used at this time.

[14] 0000 0000

[15] 0000 0000

[16] 0100 0000 Memory Address Offset (Regs [17h] [16h])
- 640 pixels = 640 bytes = 320 words = 140h words
Note: When setting a horizontal resolution greater than 767
pixels, with a color depth of 15/16 bpp, the Memory Offset
Registers (REG[16h], REG[17h]) must be set to a virtual
horizontal pixel resolution of 1024.

[17] 0000 0001

[18] 0000 0000 Set pixel panning for both screens to 0

[19] 0000 0001
Clock Configuration - set PClk to MClk/2 - the specification says
that for a dual color panel the maximum PClk is MClk/2

[1A] 0000 0000 Enable LCD Power

[1C] 0000 0000 MD Configuration Readback - we write a 0 here to keep the
register configuration logic simpler[1D] 0000 0000

[1E] 0000 0000
General I/O Pins - set to zero.

[1F] 0000 0000

[20] 0000 0000
General I/O Pins Control - set to zero.

[21] 0000 0000

Table 2-1: S1D13505 Initialization Sequence (Continued)

Register Value Notes See Also
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 14 Epson Research and Development
Vancouver Design Center
[24] 0000 0000

The remaining register control operation of the LUT and
hardware cursor/ink layer. During the chip initialization none of
these registers needs to be set. It is safe to write them to zero
as this is the power-up value for the registers.

[26] 0000 0000

[27] 0000 0000

[28] 0000 0000

[29] 0000 0000

[2A] 0000 0000

[2B] 0000 0000

[2C] 0000 0000

[2D] 0000 0000

[2E] 0000 0000

[2F] 0000 0000

[30] 0000 0000

[31] 0000 0000

[23] 0000 0000 Enable FIFO, mask in appropriate FIFO threshold bits

S1D13505 Hardware
Functional Specification,
document number
X23A-A-001-xx

[0D] 0000 1101
Display mode - hardware portrait mode disabled, 8 bpp and
LCD enabled

Table 2-1: S1D13505 Initialization Sequence (Continued)

Register Value Notes See Also
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 15
Vancouver Design Center
2.1 Miscellaneous

This section of the notes contains recommendations which can be set at initialization time
to improve display image quality.

At high color depths the display FIFO introduces two conditions which must be accounted
for in software. Simultaneous display while using a dual passive panel introduces another
possible register change.

Display FIFO Threshold

At 15/16 bit-per-pixel the display FIFO threshold (bits 0-4 of register [23h]) must be
programmed to a value other than '0'. Product testing has shown that at these color depths
a better quality image results when the display FIFO threshold is set to a value of 1Bh.

Memory Address Offset

When an 800x600 display mode is selected at 15 or 16 bpp, memory page breaks can
disrupt the display buffer fetches. This disruption produces a visible flicker on the display.
To avoid this set the Memory Address Offset (Reg [16h] and Reg [17h]) to 200h. This sets
a 1024 pixel line which aligns the memory page breaks and reduces any flicker.

Half Frame Buffer Disable

The half frame buffer stores the display data for dual drive LCD panels. During LCD only
or simultaneous display using a single LCD panel, no special adjustments are required.

However, for simultaneous display using a dual drive LCD panel, the half frame buffer
must be disabled (REG[1Bh] bit 0 = 1). This results in reduced contrast on the LCD panel
because the duty cycle of the LCD is halved. To compensate for this change, the pattern
used by the Frame Rate Modulator (FRM) may need to be adjusted. Programming the
Alternate FRM Register (REG[31h]) with the recommended value of FFh may produce
more visually appealing output.

For further information on the half frame buffer and the Alternate FRM Register see the
S1D13505 Hardware Functional Specification, document number X23A-A-001-xx.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 16 Epson Research and Development
Vancouver Design Center
3 Memory Models

The S1D13505 is capable of several color depths. The memory model for each color depth
is packed pixel. Packed pixel data changes with each color depth from one byte containing
eight consecutive pixels up to two bytes being required for one pixel.

3.1 Display Buffer Location

The S1D13505 supports either a 512k byte or 2M byte display buffer. The display buffer is
memory mapped and can be accessed directly by software. The memory location allocated
to the S1D13505 display buffer varies with each individual hardware platform, and is
determined by the OEM.

For further information on the display buffer, see the S1D13505 Hardware Functional
Specification, document number X23A-A-001-xx.

3.1.1 Memory Organization for One Bit-Per-Pixel (2 Colors/Gray Shades)

Figure 3-1: Pixel Storage for 1 Bpp (2 Colors/Gray Shades) in One Byte of Display Buffer

In this memory format each byte of display buffer contains eight adjacent pixels. Setting or
resetting any pixel will require reading the entire byte, masking out the appropriate bits and,
if necessary, setting the bits to ’1’.

One bit pixels provide two gray shade/color possibilities. For monochrome panels the two
gray shades are generated by indexing into the first two elements of the green component
of the Look-Up Table (LUT). For color panels the two colors are derived by indexing into
positions 0 and 1 of the Look-Up Table.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 17
Vancouver Design Center
3.1.2 Memory Organization for Two Bit-Per-Pixel (4 Colors/Gray Shades)

Figure 3-2: Pixel Storage for 2 Bpp (4 Colors/Gray Shades) in One Byte of Display Buffer

In this memory format each byte of display buffer contains four adjacent pixels. Setting or
resetting any pixel will require reading the entire byte, masking out the appropriate bits and,
if necessary, setting the bits to '1'.

Two bit pixels are capable of displaying four gray shade/color combinations. For
monochrome panels the four gray shades are generated by indexing into the first four
elements of the green component of the Look-Up Table. For color panels the four colors
are derived by indexing into positions 0 through 3 of the Look-Up Table.

3.1.3 Memory Organization for Four Bit-Per-Pixel (16 Colors/Gray Shades)

Figure 3-3: Pixel Storage for 4 Bpp (16 Colors/Gray Shades) in One Byte of Display Buffer

In this memory format each byte of display buffer contains two adjacent pixels. Setting or
resetting any pixel will require reading the entire byte, masking out the upper or lower
nibble (4 bits) and setting the appropriate bits to '1'.

Four bit pixels provide 16 gray shade/color possibilities. For monochrome panels the gray
shades are generated by indexing into the first 16 elements of the green component of the
Look-Up Table. For color panels the 16 colors are derived by indexing into the first 16
positions of the Look-Up Table.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0
Bit 1

Pixel 0
Bit 0

Pixel 1
Bit 1

Pixel 1
Bit 0

Pixel 2
Bit 1

Pixel 2
Bit 0

Pixel 3
Bit 1

Pixel 3
Bit 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0
Bit 3

Pixel 0
Bit 2

Pixel 0
Bit 1

Pixel 0
Bit 0

Pixel 1
Bit 3

Pixel 1
Bit 2

Pixel 1
Bit 1

Pixel 1
Bit 0
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 18 Epson Research and Development
Vancouver Design Center
3.1.4 Memory Organization for Eight Bit-Per-Pixel (256 Colors/16 Gray Shades)

Figure 3-4: Pixel Storage for 8 Bpp (256 Colors/16 Gray Shades) in One Byte of Display Buffer

In eight bit-per-pixel mode each byte of display buffer represents one pixel on the display.
At this color depth the read-modify-write cycles of the lessor pixel depths are eliminated.

Each byte indexes into one of the 256 positions of the Look-Up Table. The S1D13505 LUT
supports four bits per primary color, therefore this translates into 4096 possible colors when
color mode is selected. To display the fullest dynamic range of colors will require careful
selection of the colors in the LUT indices and in the image to be displayed.

When monochrome mode is selected, the green component of the LUT is used to determine
the gray shade intensity. The green indices, with only four bits, can resolve 16 gray shades.
In this situation one might as well use four bit-per-pixel mode and conserve display buffer.

3.1.5 Memory Organization for Fifteen Bit-Per-Pixel (32768 Colors/16 Gray Shades)

Figure 3-5: Pixel Storage for 15 Bpp (32768 Colors/16 Gray Shades) in Two Bytes of Display Buffer

In 15 bit-per-pixel mode the S1D13505 is capable of displaying 32768 colors. The 32768
color pixel is divided into four parts: one reserved bit, five bits for red, five bits for green,
and five bits for blue. In this mode the Look-Up Table is bypassed and output goes directly
into the Frame Rate Modulator.

The full color range is only available on TFT/D-TFD or CRT displays. Passive LCD
displays are limited to using the four most significant bits from each of the red, green and
blue portions of each color. The result is 4096 (24 * 24 * 24) possible colors.

Should monochrome mode be chosen at this color depth, the output reverts to sending the
four most significant bits of the green LUT component to the modulator for a total of 16
possible gray shades. In this situation one might as well use four bit-per-pixel mode and
conserve display buffer.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

One Pixel

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Reserved Red Bit 4 Red Bit 3 Red Bit 2 Red Bit 1 Red Bit 0 Green Bit 4 Green Bit 3

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Green Bit 2 Green Bit 1 Green Bit 0 Blue Bit 4 Blue Bit 3 Blue Bit 2 Blue Bit 1 Blue Bit 0
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 19
Vancouver Design Center
3.1.6 Memory Organization for Sixteen Bit-Per-Pixel (65536 Colors/16 Gray Shades)

Figure 3-6: Pixel Storage for 16 Bpp (65536 Colors/16 Gray Shades) in Two Bytes of Display Buffer

In 16 bit-per-pixel mode the S1D13505 is capable of generating 65536 colors. The 65536
color pixel is divided into three parts: five bits for red, six bits for green, and five bits for
blue. In this mode the Look-Up Table is bypassed and output goes directly into the Frame
Rate Modulator.

The full color range is only available on TFT/D-TFD or CRT displays. Passive LCD
displays are limited to using the four most significant bits from each of the red, green and
blue portions of each color. The result is 4096 (24 * 24 * 24) possible colors.

When monochrome mode is selected, the green component of the LUT is used to determine
the gray shade intensity. The green indices, with only four bits, can resolve 16 gray shades.
In this situation one might as well use four bit-per-pixel mode and conserve display buffer.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Red Bit 4 Red Bit 3 Red Bit 2 Red Bit 1 Red Bit 0 Green Bit 5 Green Bit 4 Green Bit 3

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Green Bit 2 Green Bit 1 Green Bit 0 Blue Bit 4 Blue Bit 3 Blue Bit 2 Blue Bit 1 Blue Bit 0
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 20 Epson Research and Development
Vancouver Design Center
4 Look-Up Table (LUT)

This section is supplemental to the description of the Look-Up Table architecture found in
the S1D13505 Hardware Functional Specification. Covered here is a review of the LUT
registers, recommendations for the color and gray shade LUT values, and additional
programming considerations for the LUT. Refer to the S1D13505 Hardware Functional
Specification, document number X23A-A-001-xx for more detail.

The S1D13505 Look-Up Table is used for both the CRT and panel interface and consists
of 256 indexed red/green/blue entries. Each entry is 4 bits wide. Two registers, at offsets
24h and 26h, control access to the LUT. Color depth affects how many indices will be used
for image display.

In color modes, pixel values are used as indices to an RGB value stored in the Look-Up
Table. In monochrome modes only the green component of the LUT is used. The value in
the display buffer indexes into the LUT and the amount of green at that index controls the
intensity. Monochrome mode look-ups are done for the panel interface only. The CRT
interface always receives the RGB values from the Look-Up Table.

4.1 Look-Up Table Registers

LUT Address

The LUT address register selects which of the 256 LUT entries will be accessed. Writing
to this register will select the red bank. After three successive reads or writes to the data
register this register will be incremented by one.

LUT Data

This register is where the 4-bit red/green/blue data value is written or read. With each
successive read or write the internal bank select is incremented. Three reads from this
register will result in reading the red, then the green, and finally the blue values associated
with the index set in the LUT address register.

After the third read the LUT address register is incremented and the internal index points
to the red bank again.

REG[24h] Look-Up Table Address Register Read/Write

LUT Address
Bit 7

LUT Address
Bit 6

LUT Address
Bit 5

LUT Address
Bit 4

LUT Address
Bit 3

LUT Address
Bit 2

LUT Address
Bit 1

LUT Address
Bit 0

REG[26h] Look-Up Table Data Register Read/Write

LUT Data
Bit 3

LUT Data
Bit 2

LUT Data
Bit 1

LUT Data
Bit 0

n/a n/a n/a n/a
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 21
Vancouver Design Center
4.2 Look-Up Table Organization

• The Look-Up Table treats the value of a pixel as an index into an array of colors or gray
shades. For example, a pixel value of zero would point to the first LUT entry; a pixel
value of 7 would point to the eighth LUT entry.

• The value inside each LUT entry represents the intensity of the given color or gray
shade. This intensity can range in value between 0 and 0Fh.

• The S1D13505 Look-Up Table is linear; increasing the LUT entry number results in a
lighter color or gray shade. For example, a LUT entry of 0Fh into the red LUT entry will
result in a bright red output while a LUT entry of 5 would result in a dull red.

Table 4-1: Look-Up Table Configurations

Display Mode 4-Bit Wide Look-Up Table
Effective Gray Shade/Colors

on an Passive Panel
RED GREEN BLUE

1 bpp gray 2 2 gray shades
2 bpp gray 4 4 gray shades
4 bpp gray 16 16 gray shades

8 bpp gray 16 16 gray shades
15 bpp gray 16 gray shades
16 bpp gray 16 gray shades

1 bpp color 2 2 2 2 colors
2 bpp color 4 4 4 4 colors
4 bpp color 16 16 16 16 colors

8 bpp color 256 256 256 256 colors
15 bpp color 4096 colors*
16 bpp color 4096 colors*

* On an active matrix panel the effective colors are determined by the interface width. (i.e. 9-bit=512, 12-bit=4096, 18-
bit=64K colors) Passive panels are limited to 12-bits through the Frame Rate Modulator.

= Indicates the Look-Up Table is not used for that display mode
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 22 Epson Research and Development
Vancouver Design Center
Color Modes

In color display modes, depending on the color depth, 2 through 256 index entries are used.
The selection of which entries are used is automatic.

1 bpp color

When the S1D13505 is configured for 1 bpp color mode, the LUT is limited to the first two
entries. The two LUT entries can be any two RGB values but are typically set to black-and-
white.

Each byte in the display buffer contains 8 bits, each pertaining to adjacent pixels. A bit
value of '0' results in the LUT 0 index value being displayed. A bit value of '1' results in the
LUT 1 index value being displayed.

The following table shows the recommended values for obtaining a black-and-white mode
while in 1 bpp on a color panel.

2 bpp color

When the S1D13505 is configured for 2 bpp color mode only the first 4 entries of the LUT
are used. These four entries can be set to any desired values.

Each byte in the display buffer contains 4 adjacent pixels. Each pair of bits in the byte are
used as an index into the LUT. The following table shows example values for 2 bpp color
mode.

Table 4-2: Recommended LUT Values for 1 Bpp Color Mode

Index Red Green Blue
00 00 00 00
01 F0 F0 F0

02 00 00 00
... 00 00 00
FF 00 00 00

= Indicates unused entries in the LUT

Table 4-3: Example LUT Values for 2 Bpp Color Mode

Index Red Green Blue
00 00 00 00

01 70 70 70
02 A0 A0 A0
03 F0 F0 F0

04 00 00 00
... 00 00 00
FF 00 00 00

= Indicates unused entries in the LUT
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 23
Vancouver Design Center
4 bpp color

When the S1D13505 is configured for 4 bpp color mode the first 16 entries in the LUT are
used.

Each byte in the display buffer contains two adjacent pixels. The upper and lower nibbles
of the byte are used as indices into the LUT.

The following table shows LUT values that will simulate those of a VGA operating in 16
color mode.

Table 4-4: Suggested LUT Values to Simulate VGA Default 16 Color Palette

Index Red Green Blue
00 00 00 00
01 00 00 0A

02 00 0A 00
03 00 0A 0A
04 0A 00 00

05 0A 00 0A
06 0A 0A 00
07 0A 0A 0A

08 00 00 00
09 00 00 0F
0A 00 0F 00

0B 00 0F 0F
0C 0F 00 00
0D 0F 00 0F

0E 0F 0F 00
0F 0F 0F 0F
10 00 00 00

... 00 00 00
FF 00 00 00

= Indicates unused entries in the LUT
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 24 Epson Research and Development
Vancouver Design Center
8 bpp color

When the S1D13505 is configured for 8 bpp color mode all 256 entries in the LUT are used.
Each byte in display buffer corresponds to one pixel and is used as an index value into the
LUT.

The S1D13505 LUT has four bits (16 intensities) of intensity control per primary color
while a standard VGA RAMDAC has six bits (64 intensities). This four to one difference
has to be considered when attempting to match colors between a VGA RAMDAC and the
S1D13505 LUT. (i.e. VGA levels 0 - 3 map to LUT level 0, VGA levels 4 - 7 map to LUT
level 1...). Additionally, the significant bits of the color tables are located at different offsets
within their respective bytes. After calculating the equivalent intensity value the result must
be shifted into the correct bit positions.

The following table shows LUT values that will approximate the VGA default color palette.

Table 4-5: Suggested LUT Values to Simulate VGA Default 256 Color Palette

Index R G B Index R G B Index R G B Index R G B
00 00 00 00 40 F0 70 70 80 30 30 70 C0 00 40 00
01 00 00 A0 41 F0 90 70 81 40 30 70 C1 00 40 10
02 00 A0 00 42 F0 B0 70 82 50 30 70 C2 00 40 20

03 00 A0 A0 43 F0 D0 70 83 60 30 70 C3 00 40 30
04 A0 00 00 44 F0 F0 70 84 70 30 70 C4 00 40 40
05 A0 00 A0 45 D0 F0 70 85 70 30 60 C5 00 30 40

06 A0 50 00 46 B0 F0 70 86 70 30 50 C6 00 20 40
07 A0 A0 A0 47 90 F0 70 87 70 30 40 C7 00 10 40
08 50 50 50 48 70 F0 70 88 70 30 30 C8 20 20 40

09 50 50 F0 49 70 F0 90 89 70 40 30 C9 20 20 40
0A 50 F0 50 4A 70 F0 B0 8A 70 50 30 CA 30 20 40
0B 50 F0 F0 4B 70 F0 D0 8B 70 60 30 CB 30 20 40

0C F0 50 50 4C 70 F0 F0 8C 70 70 30 CC 40 20 40
0D F0 50 F0 4D 70 D0 F0 8D 60 70 30 CD 40 20 30
0E F0 F0 50 4E 70 B0 F0 8E 50 70 30 CE 40 20 30

0F F0 F0 F0 4F 70 90 F0 8F 40 70 30 CF 40 20 20
10 00 00 00 50 B0 B0 F0 90 30 70 30 D0 40 20 20
11 10 10 10 51 C0 B0 F0 91 30 70 40 D1 40 20 20

12 20 20 20 52 D0 B0 F0 92 30 70 50 D2 40 30 20
13 20 20 20 53 E0 B0 F0 93 30 70 60 D3 40 30 20
14 30 30 30 54 F0 B0 F0 94 30 70 70 D4 40 40 20

15 40 40 40 55 F0 B0 E0 95 30 60 70 D5 30 40 20
16 50 50 50 56 F0 B0 D0 96 30 50 70 D6 30 40 20
17 60 60 60 57 F0 B0 C0 97 30 40 70 D7 20 40 20

18 70 70 70 58 F0 B0 B0 98 50 50 70 D8 20 40 20
19 80 80 80 59 F0 C0 B0 99 50 50 70 D9 20 40 20
1A 90 90 90 5A F0 D0 B0 9A 60 50 70 DA 20 40 30

1B A0 A0 A0 5B F0 E0 B0 9B 60 50 70 DB 20 40 30
1C B0 B0 B0 5C F0 F0 B0 9C 70 50 70 DC 20 40 40
1D C0 C0 C0 5D E0 F0 B0 9D 70 50 60 DD 20 30 40
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 25
Vancouver Design Center
15 bpp color

The Look-Up Table is bypassed at this color depth, hence programming the LUT is not
necessary.

16 bpp color

The Look-Up Table is bypassed at this color depth, hence programming the LUT is not
necessary.

1E E0 E0 E0 5E D0 F0 B0 9E 70 50 60 DE 20 30 40
1F F0 F0 F0 5F C0 F0 B0 9F 70 50 50 DF 20 20 40

20 00 00 F0 60 B0 F0 B0 A0 70 50 50 E0 20 20 40
21 40 00 F0 61 B0 F0 C0 A1 70 50 50 E1 30 20 40
22 70 00 F0 62 B0 F0 D0 A2 70 60 50 E2 30 20 40

23 B0 00 F0 63 B0 F0 E0 A3 70 60 50 E3 30 20 40
24 F0 00 F0 64 B0 F0 F0 A4 70 70 50 E4 40 20 40
25 F0 00 B0 65 B0 E0 F0 A5 60 70 50 E5 40 20 30

26 F0 00 70 66 B0 D0 F0 A6 60 70 50 E6 40 20 30
27 F0 00 40 67 B0 C0 F0 A7 50 70 50 E7 40 20 30
28 F0 00 00 68 00 00 70 A8 50 70 50 E8 40 20 20

29 F0 40 00 69 10 00 70 A9 50 70 50 E9 40 30 20
2A F0 70 00 6A 30 00 70 AA 50 70 60 EA 40 30 20
2B F0 B0 00 6B 50 00 70 AB 50 70 60 EB 40 30 20

2C F0 F0 00 6C 70 00 70 AC 50 70 70 EC 40 40 20
2D B0 F0 00 6D 70 00 50 AD 50 60 70 ED 30 40 20
2E 70 F0 00 6E 70 00 30 AE 50 60 70 EE 30 40 20

2F 40 F0 00 6F 70 00 10 AF 50 50 70 EF 30 40 20
30 00 F0 00 70 70 00 00 B0 00 00 40 F0 20 40 20
31 00 F0 40 71 70 10 00 B1 10 00 40 F1 20 40 30

32 00 F0 70 72 70 30 00 B2 20 00 40 F2 20 40 30
33 00 F0 B0 73 70 50 00 B3 30 00 40 F3 20 40 30
34 00 F0 F0 74 70 70 00 B4 40 00 40 F4 20 40 40

35 00 B0 F0 75 50 70 00 B5 40 00 30 F5 20 30 40
36 00 70 F0 76 30 70 00 B6 40 00 20 F6 20 30 40
37 00 40 F0 77 10 70 00 B7 40 00 10 F7 20 30 40

38 70 70 F0 78 00 70 00 B8 40 00 00 F8 00 00 00
39 90 70 F0 79 00 70 10 B9 40 10 00 F9 00 00 00
3A B0 70 F0 7A 00 70 30 BA 40 20 00 FA 00 00 00

3B D0 70 F0 7B 00 70 50 BB 40 30 00 FB 00 00 00
3C F0 70 F0 7C 00 70 70 BC 40 40 00 FC 00 00 00
3D F0 70 D0 7D 00 50 70 BD 30 40 00 FD 00 00 00

3E F0 70 B0 7E 00 30 70 BE 20 40 00 FE 00 00 00
3F F0 70 90 7F 00 10 70 BF 10 40 00 FF 00 00 00

Table 4-5: Suggested LUT Values to Simulate VGA Default 256 Color Palette (Continued)

Index R G B Index R G B Index R G B Index R G B
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 26 Epson Research and Development
Vancouver Design Center
Gray Shade Modes

This discussion of gray shade/monochrome modes only applies to the panel interface.
Monochrome mode is selected when register [01] bit 2 = 0. In this mode the output value
to the panel is derived solely from the green component of the LUT. The CRT image will
continue to be formed from all three (RGB) Look-Up Table components.

Note
In order to match the colors on a CRT with the colors on a monochrome panel it is im-
portant to ensure that the red and blue components of the Look-Up Table be set to the
same intensity as the green component.

1 bpp gray shade

In 1 bpp gray shade mode only the first two entries of the green LUT are used. All other
LUT entries are unused.

2 bpp gray shade

In 2 bpp gray shade mode the first four green elements are used to provide values to the
panel. The remaining indices are unused.

Table 4-6: Recommended LUT Values for 1 Bpp Gray Shade

Address Red Green Blue
00 00 00 00
01 F0 F0 F0

02 00 00 00
... 00 00 00
FF 00 00 00

= Required to match CRT to panel

= Unused entries

Table 4-7: Suggested Values for 2 Bpp Gray Shade

Index Red Green Blue
0 00 00 00

1 50 50 50
2 A0 A0 A0
3 F0 F0 F0

4 00 00 00
... 00 00 00
FF 00 00 00

= Required to match CRT to panel

= Unused entries
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 27
Vancouver Design Center
4 bpp gray shade

The 4 bpp gray shade mode uses the first 16 LUT elements. The remaining indices of the
LUT are unused.

8 bpp gray shade

When 8 bpp gray shade mode is selected the gray shade intensity is determined by the green
LUT value. The green portion of the LUT has 16 possible intensities. There is no color
advantage to selecting 8 bpp mode over 4 bpp mode; however, hardware rotate can be only
used in 8 and 16 bpp modes.

15 bpp gray shade

The Look-Up Table is bypassed at this color depth, hence programming the LUT is not
necessary.

As with 8 bpp there are limitations to the colors which can be displayed. In this mode the
four most significant bits of green are used to set the absolute intensity of the image. Four
bits of green resolves to 16 colors. Now however, each pixel requires two bytes.

Table 4-8: Suggested LUT Values for 4 Bpp Gray Shade

Index Red Green Blue
00 00 00 00
01 10 10 10

02 20 20 20
03 30 30 30
04 40 40 40

05 50 50 50
06 60 60 60
07 70 70 70

08 80 80 80
09 90 90 90
0A A0 A0 A0

0B B0 B0 B0
0C C0 C0 C0
0D D0 D0 D0

0E E0 E0 E
0F F0 F0 F0
10 00 00 00

... 00 00 00
FF 00 00 00

Required to match CRT to panel
Unused entries
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 28 Epson Research and Development
Vancouver Design Center
16 bpp gray

The Look-Up Table is bypassed at this color depth, hence programming the LUT is not
necessary.

As with 8 bpp there are limitations to the colors which can be displayed. In this mode the
four most significant bits of green are used to set the absolute intensity of the image. Four
bits of green resolves to 16 colors. Now however, each pixel requires two bytes.
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 29
Vancouver Design Center
5 Advanced Techniques

This section presents information on the following:

• virtual display

• panning and scrolling

• split screen display

5.1 Virtual Display

Virtual display refers to the situation where the image to be viewed is larger than the
physical display. This can be in the horizontal, the vertical or both dimensions. To view the
image, the display is used as a window (or viewport) into the display buffer. At any given
time only a portion of the image is visible. Panning and scrolling are used to view the full
image.

The Memory Address Offset registers are used to determine the number of horizontal pixels
in the virtual image. The offset registers can be set for a maximum of 211 or 2048 words.
In 1 bpp display modes these 2048 words cover 16,384 pixels. At 16 bpp 2048 words cover
1024 pixels.

The maximum vertical size of the virtual image is the result of a number of variables. In its
simplest, the number of lines is the total display buffer divided by the number of bytes per
horizontal line. The number of bytes per line is the number of words in the offset register
multiplied by two. At maximum horizontal size, the greatest number of lines that can be
displayed is 1024. Reducing the horizontal size makes memory available to increase the
virtual vertical size.

In addition to the calculated limit the virtual vertical size is limited by the size and location
of the half frame buffer and the ink/cursor if present.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 30 Epson Research and Development
Vancouver Design Center
Seldom are the maximum sizes used. Figure 5-1: “Viewport Inside a Virtual Display,”
depicts a more typical use of a virtual display. The display panel is 320x240 pixels, an
image of 640x480 pixels can be viewed by navigating a 320x240 pixel viewport around the
image using panning and scrolling.

Figure 5-1: Viewport Inside a Virtual Display

5.1.1 Registers

Figure 5-2: Memory Address Offset Registers

Registers [16h] and [17h] form an 11-bit value called the memory address offset. This
offset is the number of words from the beginning of one line of the display to the beginning
of the next line of the display.

Note that this value does not necessarily represent the number of words to be shown on the
display. The display width is set in the Horizontal Display Width register. If the offset is set
to the same as the display width then there is no virtual width.

To maintain a constant virtual width as color depth changes, the memory address offset
must also change. At 1 bpp each word contains 16 pixels, at 16 bpp each word contains one
pixel. The formula to determine the value for these registers is:

offset = pixels_per_line / pixels_per_word

REG[16h] Memory Address Offset Register 0

Memory
Address
Offset
Bit 7

Memory
Address
Offset
Bit 6

Memory
Address
Offset
Bit 5

Memory
Address
Offset
Bit 4

Memory
Address
Offset
Bit 3

Memory
Address
Offset
Bit 2

Memory
Address
Offset
Bit 1

Memory
Address
Offset
Bit 0

REG[17h] Memory Address Offset Register 1

n/a n/a n/a n/a n/a

Memory
Address
Offset
Bit 10

Memory
Address
Offset
Bit 9

Memory
Address
Offset
Bit 8

320x240
Viewport

640x480
“Virtual” Display
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 31
Vancouver Design Center
5.1.2 Examples

Example 1: Determine the offset value required for 800 pixels at a color depth of 8
bpp.

At 8 bpp each byte contains one pixel, therefore each word contains two pixels.

pixels_per_word = 16 / bpp = 16 / 8 = 2

Using the above formula.

offset = pixels_per_line / pixels_per_word = 800 / 2 = 400 = 190h words

Register [17h] would be set to 01h and register [16h] would be set to 90h.

Example 2: Program the Memory Address Offset Registers to support a 16 color (4
bpp) 640x480 virtual display on a 320x240 LCD panel.

To create a virtual display the offset registers must be programmed to the horizontal size of
the larger “virtual” image. After determining the amount of memory used by each line, do
a calculation to see if there is enough memory to support the desired number of lines.

1. Initialize the S1D13505 registers for a 320x240 panel. (See Introduction on page 11).

2. Determine the offset register value.

pixels_per_word = 16 / bpp = 16 / 4 = 4

offset = pixels_per_line / pixels_per_word = 640 / 4 = 160 words = 0A0h words

Register [17h] will be written with 00h and register [16h] will be written with A0h.

3. Check that we have enough memory for the required virtual height.

Each line uses 160 words and we need 480 lines for a total of (160*480) 76,800
words. This display could be done on a system with the minimum supported memory
size of 512 K bytes. It is safe to continue with these values.

5.2 Panning and Scrolling

The terms panning and scrolling refer to the actions used to move the viewport about a
virtual display. Although the image is stored entirely in the display buffer, only a portion is
actually visible at any given time.

Panning describes the horizontal (side to side) motion of the viewport. When panning to the
right the image in the viewport appears to slide to the left. When panning to the left the
image to appears to slide to the right. Scrolling describes the vertical (up and down) motion
of the viewport. Scrolling down causes the image to appear to slide up and scrolling up
causes the image to appear to slide down.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 32 Epson Research and Development
Vancouver Design Center
Both panning and scrolling are performed by modifying the start address register. The start
address refers to the word offset in the display buffer where the image will start being
displayed from. At color depths less than 15 bpp a second register, the pixel pan register, is
required for smooth pixel level panning.

Internally, the S1D13505 latches different signals at different times. Due to this internal
sequence, there is an order in which the start address and pixel pan registers should be
accessed during scrolling operations to provide the smoothest scrolling. Setting the
registers in the wrong sequence or at the wrong time will result in a “tearing” or jitter effect
on the display.

The start address is latched at the beginning of each frame, therefore the start address can
be set any time during the display period. The pixel pan register values are latched at the
beginning of each display line and must be set during the vertical non-display period. The
correct sequence for programing these registers is:

1. Wait until just after a vertical non-display period (read register [0Ah] and watch bit 7
for the non-display status).

2. Update the start address registers.

3. Wait until the next vertical non-display period.

4. Update the pixel paning register.

5.2.1 Registers

Figure 5-3: Screen 1 Start Address Registers

These three registers form the address of the word in the display buffer where screen 1 will
start displaying from. Changing these registers by one will cause a change of 0 to 16 pixels
depending on the current color depth. Refer to the following table to see the minimum
number of pixels affected by a change of one to these registers.

REG[10h] Screen 1 Display Start Address 0

Start Addr
Bit 7

Start Addr
Bit 6

Start Addr
Bit 5

Start Addr
Bit 4

Start Addr
Bit 3

Start Addr
Bit 2

Start Addr
Bit 1

Start Addr
Bit 0

REG[11h] Screen 1 Display Start Address 1

Start Addr
Bit 15

Start Addr
Bit 14

Start Addr
Bit 13

Start Addr
Bit 12

Start Addr
Bit 11

Start Addr
Bit 10

Start Addr
Bit 9

Start Addr
Bit 8

REG[12h] Screen 1 Display Start Address 2

n/a n/a n/a n/a
Start Addr

Bit 19
Start Addr

Bit 18
Start Addr

Bit 17
Start Addr

Bit 16
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 33
Vancouver Design Center
Figure 5-4: Pixel Panning Register

The pixel panning register offers finer control over pixel pans than is available with the
Start Address Registers. Using this register it is possible to pan the displayed image one
pixel at a time. Depending on the current color depth certain bits of the pixel pan register
are not used. The following table shows this.

5.2.2 Examples

For the examples in this section assume that the display system has been set up to view a
640x480 pixel image in a 320x240 viewport. Refer to Section 2, “Initialization” on page 12
and Section 5.1, “Virtual Display” on page 29 for assistance with these settings.

Example 3: Panning - Right and Left

To pan to the right, increment the pixel pan value. If the pixel pan value is equal to the
current color depth then set the pixel pan value to zero and increment the start address
value. To pan to the left decrement the pixel pan value. If the pixel pan value is less than
zero set it to the color depth (bpp) less one and decrement the start address.

Note
Scrolling operations are easier to follow if a value, call it pan_value, is used to track
both the pixel pan and start address. The least significant bits of pan_value will repre-
sent the pixel pan value and the more significant bits are the start address value.

Table 5-1: Number of Pixels Panned Using Start Address

Color Depth (bpp) Pixels per Word Number of Pixels Panned
1 16 16
2 8 8

4 4 4
8 2 2

15 1 1

16 1 1

REG[18h] Pixel Panning Register

Screen 2
Pixel Pan Bit
3

Screen 2
Pixel Pan Bit
2

Screen 2
Pixel Pan Bit
1

Screen 2
Pixel Pan Bit
0

Screen 1
Pixel Pan Bit
3

Screen 1
Pixel Pan Bit
2

Screen 1
Pixel Pan Bit
1

Screen 1
Pixel Pan Bit
0

Table 5-2: Active Pixel Pan Bits

Color Depth (bpp) Pixel Pan bits used
1 bits [3:0]
2 bits [2:0]

4 bits [1:0]
8 bit 0

15/16 ---
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 34 Epson Research and Development
Vancouver Design Center
The following pans to the right by one pixel in 4 bpp display mode.

1. This is a pan to the right. Increment pan_value.

pan_value = pan_value + 1

2. Mask off the values from pan_value for the pixel panning and start address register
portions. In this case, 4 bpp, the lower two bits are the pixel panning value and the up-
per bits are the start address.

pixel_pan = pan_value AND 3

start_address = pan_value SHR 3
(the fist two bits of the shift account for the pixel_pan the last bit of the shift converts
the start_address value from bytes to words)

3. Write the pixel panning and start address values to their respective registers using the
procedure outlined in the registers section.

Example 4: Scrolling - Up and Down

To scroll down, increase the value in the Screen 1 Display Start Address Register by the
number of words in one virtual scan line. To scroll up, decrease the value in the Screen 1
Display Start Address Register by the number of words in one virtual scan line.

Example 5: Scroll down one line for a 16 color 640x480 virtual image using a
320x240 single panel LCD.

1. To scroll down we need to know how many words each line takes up. At 16 colors (4
bpp) each byte contains two pixels so each word contains 4 pixels.

offset_words = pixels_per_line / pixels_per_word = 640 / 4 = 160 = A0h

We now know how much to add to the start address to scroll down one line.

2. Increment the start address by the number of words per virtual line.

start_address = start_address + words

3. Separate the start address value into three bytes. Write the LSB to register [10h] and
the MSB to register [12h].
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 35
Vancouver Design Center
5.3 Split Screen

Occasionally the need arises to display two distinct images on the display. For example, we
may write a game where the main play area will rapidly update and we want a status display
at the bottom of the screen.

The Split Screen feature of the S1D13505 allows a programmer to setup a display for such
an application. The figure below illustrates setting a 320x240 panel to have Image 1
displaying from scan line 0 to scan line 99 and image 2 displaying from scan line 100 to
scan line 239. Although this example picks specific values, image 1 and image 2 can be
shown as varying portions of the screen

.

Figure 5-5: 320x240 Single Panel For Split Screen

5.3.1 Registers

The other registers required for split screen operations, [10h] through [12h] (Screen 1
Display Start Address) and [18h] (Pixel Panning Register), are described in Section 5.2.1
on page 32.

Figure 5-6: Screen 1 Line Compare

Scan Line 0
Image 1...

Scan Line 99
Scan Line 100

Image 2...

Scan Line 239

Screen 1 Display Line Count Register = 99 lines

REG[0E] Screen 1 Line Compare Register 0

Line
Compare Bit
7

Line
Compare Bit
6

Line
Compare Bit
5

Line
Compare Bit
4

Line
Compare Bit
3

Line
Compare Bit
2

Line
Compare Bit
1

Line
Compare Bit
0

REG[0F] Screen 1 Line Compare Register 1

n/a n/a n/a n/a n/a n/a
Line
Compare Bit
9

Line
Compare Bit
8

Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 36 Epson Research and Development
Vancouver Design Center
These two registers form a value known as the line compare. When the line compare value
is equal to or greater than the physical number of lines being displayed there is no visible
effect on the display. When the line compare value is less than the number of physically
displayed lines, display operation works like this:

1. From the end of vertical non-display to the number of lines indicated by line compare
the display data will be from the memory pointed to by the Screen 1 Display Start Ad-
dress.

2. After line compare lines have been displayed the display will begin showing data
from Screen 2 Display Start Address memory.

Figure 5-7: Screen 2 Display Start Address

These three registers form the twenty bit offset to the first word in the display buffer that
will be shown in the screen 2 portion of the display.

Screen 1 memory is always displayed first at the top of the screen followed by screen 2
memory. The start address for the screen 2 image may be lower in memory than that of
screen 1 (i.e. screen 2 could be coming from offset 0 in the display buffer while screen 1
was coming from an offset located several thousand bytes into the display buffer). While
not particularly useful, it is possible to set screen 1 and screen 2 to the same address.

REG[13h] Screen 2 Display Start Address Register 0

Start Addr
Bit 7

Start Addr
Bit 6

Start Addr
Bit 5

Start Addr
Bit 4

Start Addr
Bit 3

Start Addr
Bit 2

Start Addr
Bit 1

Start Addr
Bit 0

REG[14h] Screen 2 Display Start Address Register 1

Start Addr
Bit 15

Start Addr
Bit 14

Start Addr
Bit 13

Start Addr
Bit 12

Start Addr
Bit 11

Start Addr
Bit 10

Start Addr
Bit 9

Start Addr
Bit 8

REG[15h] Screen 2 Display Start Address Register 2

n/a n/a n/a n/a
Start Addr

Bit 19
Start Addr

Bit 18
Start Addr

Bit 17
Start Addr

Bit 16
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 37
Vancouver Design Center
5.3.2 Examples

Example 6: Display 380 scanlines of image 1 and 100 scanlines of image 2. Image 2
is located immediately after image 1 in the display buffer. Assume a
640x480 display and a color depth of 1 bpp.

1. The value for the line compare is not dependent on any other setting so we can set it
immediately (380 = 17Ch).

Write the line compare registers [0Fh] with 01h and register [0Eh] with 7Ch.

2. Screen 1 is coming from offset 0 in the display buffer. Although not necessary, ensure
that the screen 1 start address is set to zero.

Write 00h to registers [10h], [11h] and [12h].

3. Calculate the size of the screen 1 image (so we know where the screen 2 image is lo-
cated). This calculation must be performed on the virtual size (offset register) of the
display. Since a virtual size was not specified assume the virtual size to be the same as
the physical size.

offset = pixels_per_line / pixels_per_word = 640 / 16 = 40 words per line

screen1_size = offset * lines = 40 * 480 = 19,200 words = 4B00h words

4. Set the screen 2 start address to the value we just calculated.

Write the screen 2 start address registers [15h], [14h] and [13h] with the values 00h,
4Bh and 00h respectively.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 38 Epson Research and Development
Vancouver Design Center
6 LCD Power Sequencing and Power Save Modes

The S1D13505 design includes a pin (LCDPWR) which may be used to control an external
LCD bias power supply. If the hardware design makes use of LCDPWR, automatic LCD
power sequencing and power save modes are available to the programmer. If LCDPWR is
not used to control an external LCD bias power supply, this section is not applicable.

6.1 LCD Power Sequencing

The S1D13505 is designed with internal circuitry which automates LCD power sequencing
(the process of powering-on and powering-off the LCD panel). LCD power sequencing
allows the LCD bias voltage to discharge prior to shutting down the LCD signals. Power
sequencing prevents long term damage to the panel and avoids unsightly “lines” at power-
on/power-off.

Proper LCD power sequencing for power-off requires a time delay from the time the LCD
power is disabled to the time the LCD signals are shut down. Power-on requires the LCD
signals to be active prior to applying power to the LCD. This time interval varies depending
on the LCD bias power supply design. For example, the LCD bias power supply on the
S5U13505 Evaluation board requires approximately 0.5 seconds to fully discharge. Your
power supply design may vary.

For most applications internal power sequencing is the appropriate choice. However, there
may be situations where the internal time delay is insufficient to discharge the LCD bias
power supply before the LCD signals are shut down. For the sequence used to manually
power-off the LCD panel, see Section 6.1.2, “LCD Power Disable” on page 39.

6.1.1 Registers

The LCD Enable bit triggers all automatic power sequencing.

Setting the LCD Enable bit to 1 causes the S1D13505 to enable the LCD display. The
following sequence of events occurs:

1. Confirms the LCD power is disabled.

2. Enables the LCD signals.

3. Counts 128 frames.

4. Enables the LCD power.

REG[0Dh] Display Mode Register

SwivelView
Enable

Simultaneous
Display
Option Select
Bit 1

Simultaneous
Display
Option Select
Bit 0

Bit-Per-Pixel
Select Bit 2

Bit-Per-Pixel
Select Bit 1

Bit-Per-Pixel
Select Bit 0

CRT Enable LCD Enable
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 39
Vancouver Design Center
Setting the LCD Enable bit to 0 causes the S1D13505 to disable the LCD display. The
following sequence of events occurs:

1. Disables the LCD power.

2. Counts 128 frames to wait for the LCD bias power supply to discharge.

3. Disables the LCD signals.

The LCD Power Disable bit is used to manually power-off the LCD bias power supply.
Setting the LCD Power Disable bit to 1 begins discharging the LCD bias power supply.
Setting the LCD Power Disable bit to 0 causes the LCD bias power supply to power-on.

If your situation requires using the LCD Power Disable bit, see Section 6.1.2, “LCD Power
Disable” on page 39 for the correct procedure. The LCD Enable bit (REG[0Dh] bit 0)
should be set to 1 to allow the S1D13505 to power-on the LCD using the automatic LCD
Power Sequencing.

6.1.2 LCD Power Disable

If the LCD bias power supply timing requirements are different than those timings built into
the S1D13505 power disable sequence, it may be necessary to manually power-off an LCD
panel. One of two situations may be true:

• Delay is too short.

• Delay is too long.

Different procedures should be used for each situation. Choose the appropriate procedure
based on your requirements from the following:

Delay Too Short

To lengthen the 128 frame delay on LCDPWR.

1. Set REG[1Ah] bit 3 to 1 - disable LCD Power.

2. Count 'x' Vertical Non-Display Periods.
'x' corresponds to the power supply discharge time converted to the equivalent vertical
non-display periods.

3. Set REG[0Dh] bit 0 to 0 - disable the LCD outputs.

REG[1Ah] Power Save Configuration Register

Power Save
Status (RO)

n/a n/a n/a
LCD Power
Disable

Suspend
Refresh
Select Bit 1

Suspend
Refresh
Select Bit 0

Software
Suspend
Mode Enable
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 40 Epson Research and Development
Vancouver Design Center
Delay Too Long

To shorten 128 frame delay on LCDPWR.

1. Set REG[23h] bit 7 to 1 - Blanks screen by disabling the FIFO.

2. Set REG[04h] to 3 (changes display width to 32 pixels)
Set REG[08h] to 0 (changes display height to 1 line)
- This changes the display resolution to minimum (32x1).

3. Set REG[1Ah] bit 0 to 0 - Enables power save mode.

4. Wait delay time (based on new frame rate, see S1D13505 Hardware Functional Spec-
ification, document number X23A-A-001-xx)
 - at this time any clocks can be disabled.
.
.
.

5. Enable any clocks that were disabled in step 4.

6. Set REG[1Ah] bit 0 to 0 - Disables power save mode.

7. Set REG[04h] to original setting
Set REG[08h] to original setting
- Re-initializes the original resolution.

8. Set REG[023h] bit 7 to 0 - Un-blanks screen by enabling the FIFO.

6.2 Software Power Save

The S1D13505 supports a software initiated suspend power save mode. This mode is
controllable using the Software Suspend Mode Enable bit in REG[1Ah]. The type of
memory refresh used during suspend can also be controlled by software.

While software suspend is enabled the following conditions apply.

• display(s) are inactive

• registers are accessible

• memory is not-accessible

• LUT is accessible
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 41
Vancouver Design Center
6.2.1 Registers

The Software Suspend Mode Enable bit initiates Software suspend when set to 1. Setting
the bit back to 0 returns the controller back to normal mode.

The Suspend Refresh Select Bits specify the type of DRAM refresh used during suspend
mode. The type of DRAM refresh is as follows:

Note
The Suspend Refresh Select bits should never be changed while in suspend mode.

The Power Save Status bit is a read-only status bit which indicates the power-save state of
the S1D13505. When this bit returns a 1, the panel is powered-off and the memory is in a
suspend memory refresh mode. When this bit returns a 0, the S1D13505 is either powered-
on, in transition of powering-on, or in transition of powering-off.

REG[1Ah] Power Save Configuration Register

Power Save
Status (RO)

n/a n/a n/a
LCD Power
Disable

Suspend
Refresh
Select Bit 1

Suspend
Refresh
Select Bit 0

Software
Suspend
Mode Enable

REG[1Ah] Power Save Configuration Register

Power Save
Status (RO)

n/a n/a n/a
LCD Power
Disable

Suspend
Refresh
Select Bit 1

Suspend
Refresh
Select Bit 0

Software
Suspend
Mode Enable

Table 6-1: Suspend Refresh Selection

Suspend Refresh Select Bits [1:0] DRAM Refresh Type

00 CAS-before-RAS (CBR) refresh

01 Self-Refresh

1X No Refresh

REG[1Ah] Power Save Configuration Register

Power Save
Status (RO)

n/a n/a n/a
LCD Power
Disable

Suspend
Refresh
Select Bit 1

Suspend
Refresh
Select Bit 0

Software
Suspend
Mode Enable
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 42 Epson Research and Development
Vancouver Design Center
6.3 Hardware Power Save

The S1D13505 supports a hardware suspend power save mode. This mode is not program-
mable by software. It is controlled directly by the S1D13505 SUSPEND# pin.

While hardware suspend is enabled the following conditions apply.

• display(s) are inactive

• registers are not-accessible

• memory is not-accessible

• LUT is not-accessible
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 43
Vancouver Design Center
7 Hardware Cursor/Ink Layer

7.1 Introduction

The S1D13505 provides hardware support for a cursor or an ink layer. These features are
mutually exclusive and therefore only one or the other may be active at any given time.

A hardware cursor improves video throughput in graphical operating systems by off-
loading much of the work typically assigned to software. Take the actions which must be
performed when the user moves the mouse. On a system without hardware support, the
operating system must restore the area under the current cursor position then save the area
under the new location and finally draw the cursor shape. Contrast that with the hardware
assisted system where the operating system must simply update the cursor X and cursor Y
position registers.

An ink layer is used to support stylus or pen input. Without an ink layer the operating
system would have to save an area (possibly all) of the display buffer where pen input was
to occur. After the system recognized the user entered characters, the display would have
to be restored and the characters redrawn in a system font. With an ink layer the stylus path
is drawn in the ink layer, where it overlays the displayed image. After character recognition
takes place the display is updated with the new characters and the ink layer is simply
cleared. There is no need to save and restore display data thus providing faster throughput.

The S1D13505 hardware cursor/ink layer supports a 2 bpp (four color) overlay image. Two
of the available colors are transparent and invert. The remaining two colors are user
definable.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 44 Epson Research and Development
Vancouver Design Center
7.2 Registers

There are a total of eleven registers dedicated to the operation of the hardware cursor/ink
layer. Many of the registers need only be set once. Others, such as the positional registers,
will be updated frequently.

The Ink/Cursor mode bits determine if the hardware will function as a hardware cursor or
as an ink layer. See Table 7-1: for an explanation of these bits.

When cursor mode is selected the cursor image is always 64x64 pixels. Selecting an ink
layer will result in a large enough area to completely cover the display.

The cursor threshold bits are used to control the Ink/Cursor FIFO depth to sustain uninter-
rupted display fetches.

Registers [28h] and [29h] control the horizontal position of the hardware cursor. The value
in this register specifies the location of the left edge of the cursor. When ink mode is
selected these registers should be set to zero.

Cursor X Position bits 9-0 determine the horizontal location of the cursor. With 10 bits of
resolution the horizontal cursor range is 1024 pixels.

REG[27h] Ink/Cursor Control Register

Ink/Cursor
Mode
bit 1

Ink/Cursor
Mode
bit 0

n/a n/a
Cursor High
Threshold
bit 3

Cursor High
Threshold
bit 2

Cursor High
Threshold
bit 1

Cursor High
Threshold
bit 0

Table 7-1: Ink/Cursor Mode

Register [27h] Operating
bit 7 bit 6 Mode

0 0 Inactive

0 1 Cursor
1 0 Ink
1 1 Reserved

REG[28h] Cursor X Position Register 0

Cursor X
Position
bit 7

Cursor X
Position
bit 6

Cursor X
Position
bit 5

Cursor X
Position
bit 4

Cursor X
Position
bit 3

Cursor X
Position
bit 2

Cursor X
Position
bit 1

Cursor X
Position
bit 0

REG[29h] Cursor X Position Register 1

Reserved n/a n/a n/a n/a n/a
Cursor X
Position
bit 9

Cursor X
Position
bit 8
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 45
Vancouver Design Center
Registers [2Ah] and [2Bh] control the vertical position of the hardware cursor. The value
in this register specifies the location of the left edge of the cursor. When ink mode is
selected these registers should be set to zero.

Cursor Y Position bits 9-0 determine the location of the cursor. With ten bits of resolution
the vertical cursor range is 1024 pixels.

Acting in pairs, Registers [2Ch], [2Dh] and registers [2Eh], [2Fh] are used to form the 16
bpp (5-6-5) RGB values for the two user defined colors.

Register [30h] determines the location in the display buffer where the cursor/ink layer will
be located. Table 7-2: can be used to determine this location.

REG[2Ah] Cursor Y Position Register 0

Cursor Y
Position bit 7

Cursor Y
Position bit 6

Cursor Y
Position bit 5

Cursor Y
Position bit 4

Cursor Y
Position bit 3

Cursor Y
Position bit 2

Cursor Y
Position bit 1

Cursor Y
Position bit 0

REG[2Bh] Cursor Y Position Register 0

Reserved n/a n/a n/a n/a n/a
Cursor Y
Position bit 9

Cursor Y
Position bit 8

REG[2Ch] Ink/Cursor Color 0 Register 0

Cursor Color
0 bit 7

Cursor Color
0 bit 6

Cursor Color
0 bit 5

Cursor Color
0 bit 4

Cursor Color
0 bit 3

Cursor Color
0 bit 2

Cursor Color
0 bit 1

Cursor Color
0 bit 0

REG[2Dh] Ink/Cursor Color 0 Register 1

Cursor Color
0 bit 15

Cursor Color
0 bit 14

Cursor Color
0 bit 13

Cursor Color
0 bit 12

Cursor Color
0 bit 11

Cursor Color
0 bit 10

Cursor Color
0 bit 9

Cursor Color
0 bit 8

REG[2Eh] Ink/Cursor Color 1 Register 0

Cursor Color
1 bit 7

Cursor Color
1 bit 6

Cursor Color
1 bit 5

Cursor Color
1 bit 4

Cursor Color
1 bit 3

Cursor Color
1 bit 2

Cursor Color
1 bit 1

Cursor Color
1 bit 0

REG[2Fh] Ink/Cursor Color 1 Register 1

Cursor Color
1 bit 15

Cursor Color
1 bit 14

Cursor Color
1 bit 13

Cursor Color
1 bit 12

Cursor Color
1 bit 11

Cursor Color
1 bit 10

Cursor Color
1 bit 9

Cursor Color
1 bit 8

REG[30h] Ink/Cursor Start Address Select Register

Ink/Cursor
Start Address
bit 7

Ink/Cursor
Start Address
bit 6

Ink/Cursor
Start Address
bit 5

Ink/Cursor
Start Address
bit 4

Ink/Cursor
Start Address
bit 3

Ink/Cursor
Start Address
bit 2

Ink/Cursor
Start Address
bit 1

Ink/Cursor
Start Address
bit 0
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 46 Epson Research and Development
Vancouver Design Center
Note
Bit 7 is write only, when reading back the register this bit reads a '0'.

7.3 Limitations

There are limitations for using the hardware cursor/ink layer which should be noted.

7.3.1 Updating Hardware Cursor Addresses

All hardware cursor addresses must be set during VNDP (vertical non-display period).
Check the VNDP status bit (REG[0Ah] bit 7) to determine if you are in VNDP, then update
the cursor address register.

7.3.2 Reg[29h] And Reg[2Bh]

Bit seven of registers [29h] and [2Bh] are write only, and must always be set to zero as
setting these bits to one, will cause undefined cursor behavior.

7.3.3 Reg [30h]

Bit 7 of register [30h] is write only, therefore programs cannot determine the current
cursor/ink layer start address by reading register [30h]. It is suggested that values written
to this register be stored elsewhere and used when the current state of this register is
required.

7.3.4 No Top/Left Clipping on Hardware Cursor

The S1D13505 does not clip the hardware cursor on the top or left edges of the display. For
cursor shapes where the hot spot is not the upper left corner of the image (the hourglass for
instance), the cursor image will have to be modified to clip the cursor shape.

7.4 Examples

See Section 12, “Sample Code” for hardware cursor programming examples.

Table 7-2: Cursor/Ink Start Address Encoding

Ink/Cursor Start Address Bits [7:0] Start Address (Bytes)
0 Display Buffer Size - 1024

1 - FFh Display Buffer Size - (n * 8192)
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 47
Vancouver Design Center
8 SwivelView

8.1 Introduction To SwivelView

LCD panels are typically designed with row and column drivers mounted such that the
panel's horizontal size is larger than the vertical size. These panels are typically referred to
as “Landscape” panels. A minority of panels have the row and column drivers mounted
such that the vertical size is larger than the horizontal size. These panels are typically
referred to as “Portrait” panels. The SwivelView feature is designed to allow landscape
panels to operate in a portrait orientation without the Operating System driver or software
knowing the panel is not in its natural orientation. Vice-versa, this 90° rotation also allows
a portrait panel to operate as a landscape panel.

The S1D13505 SwivelView option allows only 90° rotation. The display image is rotated
90° in a clockwise direction allowing the panel to be mounted 90° counter-clockwise from
its normal orientation. SwivelView also provides 180° and 270° rotation on some
S1D13x0x products, however, the S1D13505 does not support 180° or 270° rotation.

8.2 S1D13505 SwivelView

The S1D13505 provides hardware support for SwivelView in 8, 15 and 16 bpp modes.

Enabling SwivelView carries several conditions:

• The (virtual) display offset must be set to 1024 pixels.

• The display start address is calculated differently with SwivelView enabled.

• Calculations that would result in panning in landscape mode, result in scrolling when
SwivelView is enabled and vice-versa.

8.3 Registers

This section will detail each of the registers used to setup SwivelView operations on the
S1D13505. The functionality of most of these registers has been covered in previous
sections but is included here to make this section complete.

The first step toward setting up SwivelView operation is to set the SwivelView Enable bit
to 1 (bit 7 of register [0Dh]).
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 48 Epson Research and Development
Vancouver Design Center
Step two involves setting the screen 1 start address registers. Set to 1024 - width for 16 bpp
modes and to (1024 - width) / 2 for 8 bpp modes.

Finally set the memory address offset registers to 1024 pixels. In 16 bpp mode load
registers [17h:16h] with 1024 and in 8 bpp mode load the registers with 512.

8.4 Limitations

The following limitations apply to SwivelView:

• Only 8/15/16 bpp modes are supported - 1/2/4 bpp modes are not supported.

• Hardware Cursor and Ink Layer images are not rotated - software rotation must be used.
SwivelView must be turned off when the programmer is accessing the Hardware Cursor
or the Ink Layer.

• Split screen images appear side-by-side, i.e. when SwivelView is enabled the screen is
split vertically.

• Pixel panning works vertically.

REG[0Dh] Display Mode Register

SwivelView
Enable

Simultaneous
Display
Option Select
Bit 1

Simultaneous
Display
Option Select
Bit 0

Bit-Per-Pixel
Select Bit 2

Bit-Per-Pixel
Select Bit 1

Bit-Per-Pixel
Select Bit 0

CRT Enable LCD Enable

REG[10h] Screen 1 Display Start Address Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[11h] Screen 1 Display Start Address Register 1

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

REG[12h] Screen 1 Display Start Address Register 2

n/a n/a n/a n/a Bit 19 Bit 18 Bit 17 Bit 16

REG[16h] Memory Address Offset Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[17h] Memory Address Offset Register 1

n/a n/a n/a n/a n/a Bit 10 Bit 9 Bit 8
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 49
Vancouver Design Center
Note
Drawing into the Hardware Cursor/Ink Layer with SwivelView enabled does not work
without some form of address manipulation. The easiest way to ensure correct cur-
sor/ink images is to disable SwivelView, draw in the cursor/ink memory, then re-enable
SwivelView. While writing the cursor/ink memory each pixel must be transformed to its
rotated position.

8.5 Examples

Example 7: Enable SwivelView for a 640x480 display at a color depth of 8 bpp.

Before enabling SwivelView, the display buffer should be cleared to make the transition
smoother. Currently displayed images cannot simply be rotated by hardware.

1. Set the line offset to 1024 pixels. The Line Offset register is the offset in words.

Write 200h to registers [17h]:[16h]. That is write 02h to register [17h] and 00h to reg-
ister [16h].

2. Set the Display 1 Start Address. The Display Start Address registers form a pointer to
a word, therefore the value to set the start.

Write C0h (192 or (1024 - 480)/2) to registers [10h], [11h] and [12h]. That is write
Ch) to register [10h], 00h to register [11h] and 00h to register [12h].

3. Enable SwivelView by setting bit 7 of register [0Dh].

4. The display is now configured for SwivelView. Offset zero into display memory will
correspond to the upper left corner of the display. The only difference seen by the pro-
grammer will be in acknowledging that the display offset is now 1024 pixels regard-
less of the physical dimensions of the display surface.

Example 8: Pan the above SwivelView image to the right by 3 pixels then scroll it up
by 4 pixels.

1. With SwivelView enabled, the x and y control is rotated as well. Simply swap the x
and y co-ordinates and calculate as if the display were not rotated.

2. Calculate the new start address and pixel pan values.

BytesPerScanline = 1024

PixelPan = newX & 01h;
StartAddr = (newY * BytesPerScanline / 2) + (newX & FFFEh) >> 1;

3. Write the start address during the display enabled portion of the frame.

a) loop waiting for vertical non-display (b7 of register [0Ah] high).
 do register = ReadRegister(0Ah)
 while (80h != (register & 80h));
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 50 Epson Research and Development
Vancouver Design Center
 b) Loop waiting for the end of vertical non-display.
 do register = ReadRegister(0Ah)
 while (80h == (register & 80h));

 c) Write the new start address.
 SetRegister(REG_SCRN1_DISP_START_ADDR0, (BYTE) (dwAddr & FFh));
 SetRegister(REG_SCRN1_DISP_START_ADDR1, (BYTE)((dwAddr >> 8) &
FFh));
 SetRegister(REG_SCRN1_DISP_START_ADDR2, (BYTE)((dwAddr >> 16) &
0Fh));
 do register = ReadRegister(0Ah)
 while (80h == (register & 80h));

4. Write the pixel pan value during the vertical non-display portion of the frame.

a) Coming from the above code wait for beginning of the non-display period.
 do register = ReadRegister(0Ah)
 while (80h != (register & 80h));

 b) Write the new pixel panning value.
 register = ReadRegister(18h);
 register &= F0h;
 register |= (PixelPan & 0Fh);
 WriteRegister(18h, register);
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 51
Vancouver Design Center
9 CRT Considerations

9.1 Introduction

The S1D13505 is capable of driving either an LCD panel, or a CRT display, or both simul-
taneously.

As display devices, panels tend to be lax in their horizontal and vertical timing require-
ments. CRT displays often cannot vary by more than a very small percentage in their timing
requirements before the image is degraded.

Central to the following sections are VESA timings. Rather than fill this section of the
guide with pages full of register values it is recommended that the program
13505CFG.EXE be used to generate a header file with the appropriate values. For more
information on VESA timings contact the Video Electronics Standards association on the
world-wide web at www.vesa.org.

9.1.1 CRT Only

All CRT output should meet VESA timing specifications. The VESA specification details
all the parameters of the display and non-display times as well as the input clock required
to meet the times. Given a proper VESA input clock the configuration program
13505CFG.EXE will generate correct VESA timings for 640x480 and for 800x600 modes.

9.1.2 Simultaneous Display

As mentioned in the previous section, CRT timings should always comply to the VESA
specification. This requirement implies that during simultaneous operation the timing must
still be VESA compliant. For most panels, being run at CRT frequencies is not a problem.
One side effect of running with these usually slower timings will be a flicker on the panel.

One limitation of simultaneous display is that should a dual panel be the second display
device the half frame buffer must be disabled for correct operation.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 52 Epson Research and Development
Vancouver Design Center
10 Identifying the S1D13505

The S1D13505 can only be identified once the host interface has been enabled. The steps
to identify the S1D13505 are:

1. If using an ISA evaluation board in a PC follow steps a. and b.

a. If a reset has occurred, confirm that 16-bit mode is enabled by writing
to address F8 0000h.

b. If hardware suspend is enabled then disable the suspend by writing to
address F0 0000h.

2. Enable the host interface by writing 00h to REG[1Bh].

3. Read REG[00h].

4. The production version of the S1D13505 will return a value of 0Ch.
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 53
Vancouver Design Center
11 Hardware Abstraction Layer (HAL)

11.1 Introduction

The HAL is a processor independent programming library provided by Epson. The HAL
was developed to aid the implementation of internal test programs, and provides an easy,
consistent method of programming the S1D13505 on different processor platforms. The
HAL also allows for easier porting of programs between S1D1350X products. Integral to
the HAL is an information structure (HAL_STRUCT) that contains configuration data on
clocks, display modes, and default register values. This structure combined with the utility
13505CFG.EXE allows quick customization of a program for a new target display or
environment.

Using the HAL keeps sample code simpler, although some programmers may find the HAL
functions to be limited in their scope, and may wish to program the S1D13505 without
using the HAL.

11.2 Contents of the HAL_STRUCT

The HAL_STRUCT below is contained in the file “hal.h” and is required to use the HAL
library.

typedef struct tagHalStruct
{
 char szIdString[16];
 WORD wDetectEndian;
 WORD wSize;
 WORD wDefaultMode;
 BYTE Regs[MAX_DISP_MODE][MAX_REG + 1];
 DWORD dwClkI; /* Input Clock Frequency (in kHz) */
 DWORD dwBusClk; /* Bus Clock Frequency (in kHz) */
 DWORD dwRegAddr; /* Starting address of registers */
 DWORD dwDispMem; /* Starting address of display buffer memory */
 WORD wPanelFrameRate; /* Desired panel frame rate */
 WORD wCrtFrameRate; /* Desired CRT rate */
 WORD wMemSpeed; /* Memory speed in ns */
 WORD wTrc; /* Ras to Cas Delay in ns */
 WORD wTrp; /* Ras Precharge time in ns */
 WORD wTrac; /* Ras Access Charge time in ns */
 WORD wHostBusWidth; /* Host CPU bus width in bits */
} HAL_STRUCT;
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 54 Epson Research and Development
Vancouver Design Center
Within the Regs array in the structure are all the registers defined in the S1D13505
Hardware Functional Specification, document number X23A-A-001-xx. Using the
13505CFG.EXE utility you can adjust the content of the registers contained in
HAL_STRUCT to allow for different LCD panel timing values and other default settings
used by the HAL. In the simplest case, the program only calls a few basic HAL functions
and the contents of the HAL_STRUCT are used to setup the S1D13505 for operation (see
Section 11.6.3, “Building a complete application for the target example” on page 80).

11.3 Using the HAL library

To utilize the HAL library, the programmer must include two “.h” files in their code.
“Hal.h” contains the HAL library function prototypes and structure definitions, and
“appcfg.h” contains the instance of the HAL_STRUCT that is defined in “Hal.h” and
configured by 13505CFG.EXE. Additionally, “hal_regs.h” can be included if the
programmer intends to change the S1D13505 registers directly using the seGetReg() or
seSetReg() functions. For a more thorough example of using the HAL see Section 12.1.1,
“Sample code using the S1D13505 HAL API” on page 84.

Note
Many of the HAL library functions have pointers as parameters. The programmer
should be aware that little validation of these pointers is performed, so it is up to the
programmer to ensure that they adhere to the interface and use valid pointers.
Programmers are recommended to use the highest warning levels of their compiler in
order to verify the parameter types.

11.4 API for 13505HAL

This section is a description of the HAL library Application Programmers Interface (API).
Updates and revisions to the HAL may include new functions not included in the following
documentation.

Table 11-1: HAL Functions

Function Description

Initialization:

seRegisterDevice
Registers the S1D13505 parameters with the HAL, calls seInitHal if necessary.
seRegisterDevice MUST be the first HAL function called by an application.

seInitHal Initialize the variables used by the HAL library (called by seRegisterDevice)

seSetInit
Programs the S1D13505 for use with the default settings, calls seSetDisplayMode to do the
work, clears display memory. Note: either seSetInit or seSetDisplayMode MUST be called
after calling seRegisterDevice

seSetDisplayMode Programs the S1D13505 for use with the passed display mode and flags.

General HAL Support:

seGetId Interpret the revision code register to determine chip id

seGetHalVersion Return some Version information on the HAL library

seGetLibseVersion Return version information on the LIBSE libraries (for non-x86 platforms)

seGetMemSize Determines the amount of installed video memory
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 55
Vancouver Design Center
seGetLastUsableByte Determine the offset of the last unreserved usable byte in the display buffer

seGetBytesPerScanline Determine the number of bytes or memory consumed per scan line in current mode

seGetScreenSize Determine the height and width of the display surface in pixels

seSelectBusWidth Select the bus width on the ISA evaluation card

seGetHostBusWidth Determine the bus width set in the HAL_STRUCT

seDisplayEnable Turn the display(s) on/off

seDisplayFifo Turn the FIFO on/off

seDelay Use the frame rate timing to delay for required seconds (requires registers to be initialized)

seGetLinearDispAddr Get a pointer to the logical start address of the display buffer

Advanced HAL Functions:

seSplitInit Initialize split screen variables and setup start addresses

seSplitScreen Set the size of either the top or bottom screen

seVirtInit Initialize virtual screen mode setting x and y sizes

seVirtMove pan/scroll the virtual screen surface(s)

Register / Memory Access:

seSetReg Write a Byte value to the specified S1D13505 register

seSetWordReg Write a Word value to the specified S1D13505 register

seSetDwordReg Write a Dword value to the specified S1D13505 register

seGetReg Read a Byte value from the specified S1D13505 register

seGetWordReg Read a Word value from the specified S1D13505 register

seGetDwordReg Read a Dword value from the specified S1D13505 register

seWriteDisplayBytes Write one or more bytes to the display buffer at the specified offset

seWriteDisplayWords Write one or more words to the display buffer at the specified offset

seWriteDisplayDwords Write one or more dwords to the display buffer at the specified offset

seReadDisplayByte Read a byte from the display buffer from the specified offset

seReadDisplayWord Read a word from the display buffer from the specified offset

seReadDisplayDword Read a dword from the display buffer from the specified offset

Color Manipulation:

seSetLut Write to the Look-Up Table (LUT) entries starting at index 0

seGetLut Read from the LUT starting at index 0

seSetLutEntry Write one LUT entry (red, green, blue) at the specified index

seGetLutEntry Read one LUT entry (red, green, blue) from the specified index

seSetBitsPerPixel Set the color depth

seGetBitsPerPixel Determine the current color depth

Drawing:

seSetPixel Draw a pixel at (x,y) in the specified color

seGetPixel Read pixel’s color at (x,y)

seDrawLine Draw a line from (x1,y1) to (x2,y2) in specified color

seDrawRect Draw a rectangle from (x1,y1) to (x2,y2) in specified color

seDrawEllipse Draw an ellipse centered at (xc,yc) of radius (xr,yr) in specified color

seDrawCircle Draw a circle centered at (x,y) of radius r in specified color

Hardware Cursor:

seInitCursor Initialize hardware cursor registers and variables for use; enable cursor

Table 11-1: HAL Functions (Continued)

Function Description
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 56 Epson Research and Development
Vancouver Design Center
11.5 Initialization

The following section describes the HAL functions dealing with initialization of the
S1D13505. Typically a programmer will only use the calls seRegisterDevice() and
seSetInit().

int seRegisterDevice(const LPHAL_STRUC lpHalInfo, int * pDevice)

Description: This function registers the S1D13505 device parameters with the HAL library. The
device parameters include address range, register values, desired frame rate, etc.,
and are stored in the HAL_STRUCT structure pointed to by lpHalInfo. Additionally
this routine allocates system memory as address space for accessing registers and the
display buffer.

Parameters: lpHalInfo - pointer to HAL_STRUCT information structure as defined in
appcfg.h (HalInfo)

pDevice - pointer to the integer to receive the device ID

seCursorOn Enable the cursor

seCursorOff Disable the cursor

seGetCursorStartAddr
Determine the offset of the first byte of cursor memory in the display buffer (landscape
mode)

seMoveCursor Move the cursor to the (x.y) position specified

seSetCursorColor Sets the specified cursor color entry (0-1) to color

seSetCursorPixel Draw one pixel into the cursor memory at (x,y) from top left corner of cursor

seDrawCursorLine Draw a line into the cursor memory from (x1,y1) to (x2,y2) in specified color

seDrawCursorRect Draw a rectangle into the cursor memory from (x1,y1) to (x2,y2) in specified color

seDrawCursorEllipse Draw an ellipse into the cursor memory centered at (xc,yc) of radius (xr,yr) in specified color

seDrawCursorCircle Draw a circle into the cursor memory centered at (x,y) of radius r in specified color

Ink Layer:

seInitInk Initialize the Ink layer variables and registers; enable ink layer

seInkOn Enables the Ink layer

seInkOff Disables the Ink layer

seGetInkStartAddr
Determine the offset of the first byte of Ink layer memory in the display buffer (landscape
mode)

seSetInkColor Sets the specified Ink layer color entry (0-1) to color

seSetInkPixel Draw one pixel into the Ink layer memory at (x,y) from top left corner of cursor

seDrawInkLine Draw a line into the Ink layer memory from (x1,y1) to (x2,y2) in specified color

seDrawInkRect Draw a rectangle into the Ink layer memory from (x1,y1) to (x2,y2) in specified color

seDrawInkEllipse
Draw an ellipse into the Ink layer memory centered at (xc,yc) of radius (xr,yr) in specified
color

seDrawInkCircle Draw a circle into the Ink layer memory centered at (x,y) of radius r in specified color

Power Save:

seSWSuspend Control S1D13505 SW suspend mode (enable/disable)

seHWSuspend Control S1D13505 HW suspend mode (enable/disable)

Table 11-1: HAL Functions (Continued)

Function Description
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 57
Vancouver Design Center
Return Value: ERR_OK - operation completed with no problems

Example: seRegisterDevice(&HalInfo, &DeviceId);

Note
No S1D13505 registers are changed by calling seRegisterDevice().
seRegisterDevice() MUST be called before any other HAL functions.

int seInitHal(void)

Description: This function initializes the variables used by the HAL library. This function or
seRegisterDevice() must be called once when an application starts.

Normally programmers do not have to concern themselves with seInitHal(). On PC
platforms, seRegisterDevice() automatically calls seInitHal(). Consecutive calls to
seRegisterDevice() will not call seInitHal() again. On non-PC platforms the start-up
code, supplied by Epson, will call seInitHal().However, if support code for a new
operating platform is written the programmer must ensure that seInitHAL is called
prior to calling other HAL functions.

Parameters: None

Return Value: ERR_OK - operation completed with no problems

seSetInit(int DevID)

Description: This routine sets the S1D13505 registers for operation using the default settings.
Initialization of the S1D13505 is a two step process consisting of initializing the
HAL (seInitHal) and initializing the S1D13505 registers (seSetInit). Unlike the
HAL the registers do not necessarily require initialization at program startup and
may be initialized as needed (e.g. 13505PLAY.EXE).

Parameters: DevID - registered device ID (acquired in seRegisterDevice)

Return Value: ERR_OK - operation completed with no problems
ERR_FAILED- unable to complete operation. Occurs as a result an invalid register
in the HAL_STRUCT.

Note
This function calls seSetDisplayMode() and uses the configuration designated to be the
default by 13505CFG.EXE (wDefaultMode in HAL_STRUCT). The programmer could
call
seSetDisplayMode() directly allowing the selection of any DisplayMode configuration
along with the options of clearing memory and blanking the display (DISP_FIFO_OFF).

Note
It is strongly recommended that the programmer call either seSetInit() or seSetDisplay-
Mode()
after seRegisterDevice() before calling any other HAL functions. If not, the programmer
must manually disable hardware suspend and enable the host interface before accessing
the registers
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 58 Epson Research and Development
Vancouver Design Center
int seSetDisplayMode(int DevID, int DisplayMode, int flags)

Description: This routine sets the S1D13505 registers according to the values contained in the
HAL_STRUCT register section.

 Setting all the registers means that timing, display surface dimensions, and all other
aspects of chip operation are set with this call, including loading default values into
the color Look-Up Tables (LUTs).

Parameters: DevID - a valid registered device ID
DisplayMode- the HAL_STRUCT register set to use:

 DISP_MODE_LCD,
 DISP_MODE_CRT, or
 DISP_MODE_SIMULTANEOUS

flags - Can be set to one or more flags. Each flag added by using the
 logical OR command. Do not add mutually exclusive flags.
 Flags can be set to 0 to use defaults.
 DONT_CLEAR_MEM (default) - do not clear memory
 CLEAR_MEM - clear display buffer memory
 DISP_FIFO_OFF - turn off display FIFO
 (blank screen except for cursor or ink layer)
 DISP_FIFO_ON (default) - turn on display FIFO

Return Value: ERR_OK - no problems encountered
ERR_FAILED - unable to complete operation. Occurs as a result of an invalid

register in the HAL_STRUCT.

See Also: seDisplayFifo() - for enabling/disabling the FIFO.

Example: seSetDisplayMode(DevID, DISP_MODE_LCD, CLEAR_MEM |
DISP_FIFO_OFF);
The above example will initialize for the LCD, and then clear display buffer memory
and blank the screen. The advantage to this approach is that afterwards the appli-
cation can write to the display without showing the image until memory is
completely updated; the application would then call seDisplayFIFO(DevID, ON).

Note
See note from seSetInit().

11.5.1 General HAL Support

General HAL support covers the miscellaneous functions. There is usually no more than
one or two functions devoted to any particular aspect of S1D13505 operation.

int seGetId(int DevID, int * pId)

Description: Reads the S1D13505 revision code register to determine the chip product and
revisions. The interpreted value is returned in pID.

Parameters: DevID - registered device ID
pId - pointer to the int to receive the controller ID.
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 59
Vancouver Design Center
For the S1D13505 the return values are currently:
ID_S1D13505_REV0
ID_UNKNOWN

Other HAL libraries will return their respective controller IDs upon detection of
their controller.

Return Value: ERR_OK - operation completed with no problems
ERR_UNKNOWN_DEVICE - returned when pID returns ID_UNKNOWN.

(The HAL was unable to identify the display controller).

Note
seGetId() will disable hardware suspend on x86 platforms, and will enable the host in-
terface (register [1Bh]) on all platforms.

void seGetHalVersion(const char ** pVersion, const char ** pStatus,
const char **pStatusRevision)

Description: Retrieves the HAL library version. The return pointers are all to ASCII strings. A
typical return would be: *pVersion == “1.01” (HAL version 1.01),*pStatus == “B”
(The 'B' is the beta designator), *pStatusRevision == “5”. The programmer need
only create pointers of const char type to pass as parameters (see Example below).

Parameters: pVersion - pointer to string of HAL version code
pStatus - pointer to string of HAL status code (NULL is release)
pStatusRevision - pointer to string of HAL statusRevision

Return Value: None

Example: const char *pVersion, *pStatus, *pStatusRevision;
seGetHalVersion(&pVersion, &pStatus, &pStatusRevision);

Note
This document was written for HAL version “1.04”, so any later versions should be a
superset of the functions described here.

void seGetLibseVersion(int ** Version)

Description: Retrieves the LIBSE library version for non-x86 platforms. The return pointer in
parameter Version is valid if the function return value is ERR_OK.

Parameters: Version - pointer to an int to store LIBSE version code

Return Value: ERR_OK - no problems encountered, version code is valid
ERR_FAILED - unable to complete operation. Probably on x86 platform where
LIBSE is not used.

int seGetMemSize(int DevID, DWORD * pSize)

Description: This routine returns the amount of installed video memory. The memory size is
determined by reading the status of MD6 and MD7. *pSize will be set to either
80000h (512 KB) or 200000h (2 MB).
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 60 Epson Research and Development
Vancouver Design Center
Parameters: DevID - registered device ID
pSize - pointer to a DWORD to receive the size

Return Value: ERR_OK - the operation completed successfully

Note
Memory size is only checked when calling seRegisterDevice(), seSetDisplayMode() or
seSetInit(). Afterwards, the memory size is stored and made available through seGet-
MemSize().

int seGetLastUsableByte(int DevID, DWORD * pLastByte)

Description: Calculates the offset of the last byte in the display buffer which can be used by appli-
cations. Locations following LastByte are reserved for system use. Items such as the
half frame buffer, hardware cursor and ink layer will be located in memory from
GetLastUsableByte() + 1 to the end of memory.

It is assumed that the registers will have been initialized before calling seGetLastUs-
ableByte(). Factors such as the half frame buffer and hardware cursor / ink layer
being enabled dynamically alter the amount of display buffer available to an appli-
cation. Call seGetLastUsableByte() any time the true end of usable memory is
required.

Parameters: DevID - registered device ID
pLastByte - pointer to a DWORD to receive the offset to the last usable byte of
display buffer

Return Value: ERR_OK - operation completed with no problems

int seGetBytesPerScanline(int DevID, UINT * pBytes)

Description: Determines the number of bytes per scan line of the current display mode. It is
assumed that the registers have already been correctly initialized before seGetBytes-
PerScanline() is called.

The number of bytes per scanline calculation includes the value in the offset register.
For rotated modes the return value will be either 1024 (8 bpp) or 2048 (15/16 bpp)
to reflect the 1024 x 1024 virtual area of the rotated memory.

Parameters: DevID - registered device ID
pBytes - pointer to an integer which indicates the number of bytes per scan line

Return Value: ERR_OK - operation completed with no problems
ERR_FAILED- returned when this function is called for rotated display modes other
than 8, 15 or 16 bpp.

int seGetScreenSize(int DevID, UINT * Width, UINT * Height)

Description: Gets the width and height in pixels of the display surface. The width and height are
derived by reading the horizontal and vertical size registers and calculating the
dimensions.
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 61
Vancouver Design Center
When the display is in portrait mode the dimensions will be swapped. (i.e. a 640x480
display in portrait mode will return a width and height of 480 and 640, respectively).

Parameters: DevID - registered device ID
Width - unsigned integer to receive the display width
Height - unsigned integer to receive the display height

Return value: ERR_OK - the operation completed successfully

int seSelectBusWidth(int DevID, int Width)

Description: Call this function to select the interface bus width on the ISA evaluation card.
Selectable widths are 8 bit and 16 bit.

Parameters: DevID - registered device ID
Width - desired bus width. Must be 8 or 16.

Return Value: ERR_OK - the operation completed successfully
ERR_FAILED- the function was called on a non-ISA platform or width was not set
to 8 or 16.

Note
This call applies to the S1D13505 ISA evaluation cards only.

int seGetHostBusWidth(int DevID, int * Width)

Description: This function retrieves the default (as set by 13505CFG.EXE) value for the host bus
interface width and returns it in Width.

Parameters: DevID - registered device ID
Width - integer to hold the returned value of the host bus width

Return Value: ERR_OK - the function completed successfully

int seDisplayEnable(int DevID, BYTE State)

Description: This routine turns the display on or off by enabling or disabling the ENABLE bit of
the display device (PANEL, CRT, or SIMULTANEOUS). The Display Mode
setting (LCD, CRT or SIMULTANEOUS) determines which device(s) will be
affected, the default mode is stored in the HAL_STRUCT.

Parameters: DevID - registered device ID
State - set to ON or OFF to respectively enable or disable the display

Return Value: ERR_OK - the function completed successfully

int seDisplayFifo(int DevID, BYTE State)

Description: This routine turns the display on or off by enabling or disabling the display FIFO
(the hardware cursor and ink layer are not affected).
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 62 Epson Research and Development
Vancouver Design Center
To quickly blank the display, use seDisplayFifo() instead of seDisplayEnable().
Enabling and disabling the display FIFO is much faster, allowing full CPU
bandwidth to the display buffer.

Parameters: DevID - registered device ID
State - set to ON or OFF respectively to enable or disable the display FIFO

Return Value: ERR_OK - the function completed successfully

Note
Disabling the display FIFO will force all display data outputs to zero but horizontal and
vertical sync pulses and panel power supply are still active. As stated earlier, the hard-
ware cursor and ink layer are not affected by disabling the FIFO.

int seDelay(int DevID, DWORD Seconds)

Description: This function will delay for the number of seconds given in Seconds before
returning to the caller.

This function was originally intended for non-PC platforms. Because information on
how to access the timers was not always immediately available, we use the frame
rate for timing calculations. The S1D13505 registers must be initialized for this
function to work correctly.

The PC platform version of seDelay() calls the C timing functions and is therefore
independent of the register settings.

Parameters: DevID - registered device ID
Seconds - time to delay in seconds

Return Value: ERR_OK - operation completed with no problems
ERR_FAILED- returned only on non-PC platforms when the S1D13505 registers
have not been initialized.

int seGetLinearDispAddr(int device, DWORD * pDispLogicalAddr)

Description: Determines the logical address of the start of the display buffer. This address may
be used in programs for direct control over the display buffer.

Parameter: device - registered device ID
pDispLogicalAddr - logical address is returned in this variable.

Return Value: ERR_OK - operation completed with no problems.

11.5.2 Advanced HAL Functions

Advanced HAL functions include the functions to support split and virtual screen opera-
tions and are the same features that were described in the section on advanced programming
techniques.

int seSplitInit(int DevID, DWORD Scrn1Addr, DWORD Scrn2Addr)
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 63
Vancouver Design Center
Description: This function prepares the system for split screen operation. In order for split screen
to function the starting address in the display buffer for the upper portion (screen 1),
and the lower portion (screen 2) must be specified. Screen 1 is always displayed
above screen 2 on the display regardless of the location of their respective starting
addresses.

Parameters: DevID - registered device ID
Scrn1Addr - offset in display buffer, in bytes, to the start of screen 1
Scrn2Addr - offset in display buffer, in bytes, to the start of screen 2

Return Value: ERR_OK - operation completed with no problems

Note
It is assumed that the system has been properly initialized prior to calling seSplitInit().

int seSplitScreen(int DevID, int WhichScreen, long VisibleScanlines)

Description: Changes the relevant registers to adjust the split screen according to the number of
visible lines requested. WhichScreen determines which screen, screen 1 or screen 2,
to change.

The smallest screen 1 can be set to is one line. This is due to the way the register
values are used internally on the S1D13505. Setting the line compare register to zero
results in one line of screen 1 being displayed followed by screen 2.

Parameters: DevID - registered device ID
WhichScreen- must be set to 1 or 2, or use the constants SCREEN1 or SCREEN2,

to identify which screen to base calculations on
VisibleScanlines- number of lines to show for the selected screen

Return Value: ERR_OK - operation completed with no problems
ERR_HAL_BAD_ARG- argument VisibleScanlines is negative or is greater than
 vertical panel size or WhichScreen is not SCREEN1 or SCREEN 2.

Note
seSplitInit() must be called before calling seSplitScreen()
Changing the number of lines for one screen will also change the number of lines in the
other screen (e.g. increasing screen 1 lines by 5 will reduce screen 2 lines by 5).

int seVirtInit(int DevID, DWORD VirtX, DWORD * VirtY)

Description: This function prepares the system for virtual screen operation. The programmer
passes the desired virtual width, in pixels, as VirtX. When the routine returns, VirtY
will contain the maximum number of lines that can be displayed at the requested
virtual width.

Parameter: DevID - registered device ID
VirtX - horizontal size of virtual display in pixels.

(Must be greater or equal to physical size of display)
VirtY - a return placeholder for the maximum number of lines available

given VirtX
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 64 Epson Research and Development
Vancouver Design Center
Return Value: ERR_OK - operation completed with no problems
ERR_HAL_BAD_ARG - returned in three situations

1) the virtual width (VirtX) is greater than the largest attainable width
The maximum allowable xVirt is 7FFh * (16 / bpp))
2) the virtual width is less than the physical width, or
3) the maximum number of lines is less than the physical number of
lines

Note
The system must have been properly initialized prior to calling seVirtInit()

int seVirtMove(int DevID, int WhichScreen, DWORD x, DWORD y)

Description: This routine pans and scrolls the display. In the case where split screen operation is
being used the WhichScreen argument specifies which screen to move. The x and y
parameters specify, in pixels, the starting location in the virtual image for the top left
corner of the applicable display.

Parameter: DevID - registered device ID
WhichScreen- must be set to 1 or 2, or use the constants SCREEN1 or SCREEN2,

to identify which screen to base calculations on
x - new starting X position in pixels
y - new starting Y position in pixels

Return Value: ERR_OK - operation completed with no problems
ERR_HAL_BAD_ARG- there are several reasons for this return value:

1) WhichScreen is not SCREEN1 or SCREEN2.
2) the y argument is greater than the last available line.

Note
seVirtInit() must be called before calling seVirtMove().

11.5.3 Register / Memory Access

The Register/Memory Access functions provide access to the S1D13505 registers and
display buffer through the HAL.

int seSetReg(int DevID, int Index, BYTE Value)

Description: Writes Value to the register specified by Index.

Parameters: DevID - registered device ID
Index - register index to set
Value - value to write to the register

Return Value: ERR_OK - operation completed with no problems

int seSetWordReg(int DevID, int Index, WORD Value)

Description: Writes WORD sized Value to the register specified by Index.
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 65
Vancouver Design Center
Parameters: DevID - registered device ID
Index - register index to set
Value - value to write to the register

Return Value: ERR_OK - operation completed with no problems

int seSetDwordReg(int DevID, int Index, DWORD Value)

Description: Writes DWORD sized Value to the register specified by Index.

Parameters: DevID - registered device ID
Index - register index to set
Value - value to write to the register

Return Value: ERR_OK - operation completed with no problems

int seGetReg(int DevID, int Index, BYTE * pValue)

Description: Reads the value in the register specified by index.

Parameters: DevID - registered device ID
Index - register index to read
pValue - return value of the register

Return Value: ERR_OK - operation completed with no problems

int seGetWordReg(int DevID, int Index, WORD * pValue)

Description: Reads the WORD sized value in the register specified by index.

Parameters: DevID - registered device ID
Index - register index to read
pValue - return value of the register

Return Value: ERR_OK - operation completed with no problems

int seGetDwordReg(int DevID, int Index, DWORD * pValue)

Description: Reads the DWORD sized value in the register specified by index.

Parameters: DevID - registered device ID
Index - register index to read
pValue - return value of the register

Return Value: ERR_OK - operation completed with no problems

int seWriteDisplayBytes(int DevID, DWORD Offset, BYTE Value, DWORD Count)

Description: This routine writes one or more bytes to the display buffer at the offset specified by
Offset. If a count greater than one is specified all bytes will have the same value.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 66 Epson Research and Development
Vancouver Design Center
Parameters: DevID - registered device ID
Offset - offset from start of the display buffer
Value - BYTE value to write
Count - number of bytes to write

Return Value: ERR_OK - operation completed with no problems
ERR_HAL_BAD_ARG - if the value for Offset is greater than the amount of

installed memory.

Note
If offset + count > memory size, this function will limit the writes to the end of memory.

int seWriteDisplayWords(int DevID, DWORD Offset, WORD Value, DWORD Count)

Description: Writes one or more words to the display buffer.

Parameters: DevID - registered device ID
Offset - offset from start of the display buffer
Value - WORD value to write
Count - number of words to write

Return Value: ERR_OK - operation completed with no problems
ERR_HAL_BAD_ARG - if the value for Offset is greater than the amount of

installed memory.

Note
If offset + (count*2) > memory size, this function will limit the writes to the end of
memory.

int seWriteDisplayDwords(int DevID, DWORD Offset, DWORD Value, DWORD Count)

Description: Writes one or more dwords to the display buffer.

Parameters: DevID - registered device ID
Offset - offset from start of the display buffer
Value - DWORD value to write
Count - number of dwords to write

Return Value: ERR_OK - operation completed with no problems
ERR_HAL_BAD_ARG - if the value for Offset is greater than the amount of

installed memory.

Note
If offset + (count*4) > memory size, this function will limit the writes to the end of
memory.

int seReadDisplayByte(int DevID, DWORD Offset, BYTE *pByte)

Description: Reads a byte from the display buffer at the specified offset and returns the value in
pByte.
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 67
Vancouver Design Center
Parameters: DevID - registered device ID
Offset - offset, in bytes, from start of the display buffer
pByte - return value of the display buffer location.

Return Value: ERR_OK - operation completed with no problems
ERR_HAL_BAD_ARG - if the value for Offset is greater than the amount of

installed memory.

int seReadDisplayWord(int DevID, DWORD Offset, WORD *pWord)

Description: Reads a word from the display buffer at the specified offset and returns the value in
pWord.

Parameters: DevID - registered device ID
Offset - offset, in bytes, from start of the display buffer
pWord - return value of the display buffer location

Return Value: ERR_OK - operation completed with no problems.
ERR_HAL_BAD_ARG - if the value for Offset is greater than the amount of

installed memory.

int seReadDisplayDword(int DevID, DWORD Offset, DWORD *pDword)

Description: Reads a dword from the display buffer at the specified offset and returns the value
in pDword.

Parameters: DevID - registered device ID
Offset - offset from start of the display buffer
pDword - return value of the display buffer location

Return Value: ERR_OK - operation completed with no problems.
ERR_HAL_BAD_ARG - if the value for Offset is greater than the amount of

installed memory.

11.5.4 Color Manipulation

The functions in the Color Manipulation section deal with altering the color values in the
Look-Up Table directly through the accessor functions and indirectly through the color
depth setting functions.

int seSetLut(int DevID, BYTE *pLut, int Count)

Description: This routine can write one or more LUT entries. The writes always start with Look-
Up Table index 0 and continue for Count entries.

A Look-Up Table entry consists of three bytes, one each for Red, Green, and Blue.
The color information is stored in the four most significant bits of each byte.

Parameters: DevID - registered device ID
pLut - pointer to an array of BYTE lut[16][3]

lut[x][0] == RED component
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 68 Epson Research and Development
Vancouver Design Center
lut[x][1] == GREEN component
l ut[x][2] == BLUE component
Count - the number of LUT entries to write.

Return Value: ERR_OK - operation completed with no problems

int seGetLut(int DevID, BYTE *pLUT, int Count)

Description: This routine reads one or more LUT entries and puts the result in the byte array
pointed to by pLUT.

A Look-Up Table entry consists of three bytes, one each for Red, Green, and Blue.
The color information is stored in the four most significant bits of each byte.

Parameters: DevID - registered device ID
pLUT - pointer to an array of BYTE lut[16][3]

pLUT must point to enough memory to hold Count x 3 bytes of data.
Count - the number of LUT elements to read.

Return Value: ERR_OK - operation completed with no problems

int seSetLutEntry(int DevID, int Index, BYTE *pEntry)

Description: This routine writes one LUT entry. Unlike seSetLut, the LUT entry indicated by
Index can be any value from 0 to 255.

A Look-Up Table entry consists of three bytes, one each for Red, Green, and Blue.
The color information is stored in the four most significant bits of each byte.

Parameters: DevID - registered device ID
Index - index to LUT entry (0 to 255)
pEntry - pointer to an array of three bytes.

Return Value: ERR_OK - operation completed with no problems

int seGetLutEntry(int DevID, int index, BYTE *pEntry)

Description: This routine reads one LUT entry from any index.

Parameters: DevID - registered device ID
Index - index to LUT entry (0 to 255)
pEntry - pointer to an array of three bytes

Return Value: ERR_OK - operation completed with no problems

int seSetBitsPerPixel(int DevID, UINT BitsPerPixel)

Description: This routine sets the system color depth. Valid arguments for BitsPerPixel is are: 1,
2, 4, 8, 15, and 16.

After performing validity checks for the requested color depth the appropriate
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 69
Vancouver Design Center
registers are changed and the Look-Up Table is set its default value.

This call is similar to a mode set call on a standard VGA.

Parameter: DevID - registered device ID
BitsPerPixel - desired color depth in bits per pixel

Return Value: ERR_OK - operation completed with no problems
ERR_FAILED- possible causes for this error message include:

1) attempted to set other than 8 or 15/16 bpp in portrait mode
(portrait mode only supports 8 and 15/16 bpp)
2) factors such as input clock and memory speed will affect the ability
to set some color depths. If the requested color depth cannot be set this
call will fail

int seGetBitsPerPixel(int DevID, UINT * pBitsPerPixel)

Description: This function reads the S1D13505 registers to determine the current color depth and
returns the result in pBitsPerPixel.

Determines the color depth of current display mode.

Parameters: DevID - registered device ID
pBitsPerPixel - return value is the current color depth (1/2/4/8/15/16 bpp)

Return Value: ERR_OK - operation completed with no problems

11.5.5 Drawing

The Drawing section covers HAL functions that deal with displaying pixels, lines and
shapes.

int seSetPixel(int DevID, long x, long y, DWORD Color)

Description: Draws a pixel at coordinates (x,y) in the requested color. This routine can be used
for any color depth.

Parameters: DevID - Registered device ID
x - horizontal coordinate of the pixel (starting from 0)
y - vertical coordinate of the pixel (starting from 0)
Color - at 1, 2, 4, and 8 bpp Color is an index into the LUT.

At 15 and 16 bpp Color defines the color directly
 (i.e. rrrrrggggggbbbbb for 16 bpp)

Return Value: ERR_OK - operation completed with no problems.

int seGetPixel(int DevID, long x, long y, DWORD *pColor)

Description: Reads the pixel color at coordinates (x,y). This routine can be used for any color
depth.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 70 Epson Research and Development
Vancouver Design Center
Parameters: DevID - Registered device ID
x - horizontal coordinate of the pixel (starting from 0)
y - vertical coordinate of the pixel (starting from 0)
pColor - at 1, 2, 4, and 8 bpp pColor points to an index into the LUT.

At 15 and 16 bpp pColor points to the color directly
 (i.e. rrrrrggggggbbbbb for 16 bpp)

Return Value: ERR_OK - operation completed with no problems.

int seDrawLine(int DevID, long x1, long y1, long x2, long y2, DWORD Color)

Description: This routine draws a line on the display from the endpoints defined by (x1,y1) to
(x2,y2) in the requested Color.

seDrawLine() supports horizontal, vertical, and diagonal lines.

Parameters: DevID - registered device ID.
(x1, y1) - top left corner of line
(x2, y2) - bottom right corner of line (see note below)
Color - color of line

- For 1, 2, 4, and 8 bpp, 'Color' refers to the pixel value which points to
the respective LUT/DAC entry.
- For 15 and 16 bpp, 'Color' refers to the pixel value which stores the
red, green, and blue intensities within a WORD.

Return Value: ERR_OK - operation completed with no problems
ERR_INVALID_REG_DEVICE - device argument is not valid.

int seDrawRect(int DevID, long x1, long y1, long x2, long y2, DWORD Color, BOOL
SolidFill)

Description: This routine draws and optionally fills a rectangular area of display buffer. The
upper right corner of the rectangle is defined by (x1,y1) and the lower right corner
is defined by (x2,y2). The color, defined by Color, applies to the border and to the
optional fill.

Parameters: DevID - registered device ID
(x1, y1) - top left corner of the rectangle (in pixels)
(x2, y2) - bottom right corner of the rectangle (in pixels)
Color - The color to draw the rectangle outline and solid fill

- At 1, 2, 4, and 8 bpp Color is an index into the Look-Up Table.
- At 15/16 bpp Color defines the color directly
(i.e. rrrrrggggggbbbbb for 16 bpp)

SolidFill - Flag whether to fill the rectangle or simply draw the border.
- Set to 0 for no fill, set to non-0 to fill the inside of the rectangle

Return Value: ERR_OK - operation completed with no problems.

int seDrawEllipse(int DevID, long xc, long yc, long xr, long yr, DWORD Color, BOOL
SolidFill)
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 71
Vancouver Design Center
Description: This routine draws an ellipse with the center located at (xc,yc). The xr and yr param-
eters specify the x any y radii, in pixels, respectively. The ellipse will be drawn in
the color specified in 'Color'.

Parameters: DevID - registered device ID
(xc, yc) - The center location of the ellipse (in pixels)
xr - horizontal radius of the ellipse (in pixels)
yr - vertical radius of the ellipse (in pixels)
Color - The color to draw the ellipse

- At 1, 2, 4, and 8 bpp Color is an index into the Look-Up Table.
- At 15/16 bpp Color defines the color directly
(i.e. rrrrrggggggbbbbb for 16 bpp)

SolidFill - unused

Return Value: ERR_OK - operation completed with no problems.

Note
The 'SolidFill' argument is currently unused and is included for future considerations.

int seDrawCircle(int DevID, long xc, long yc, long Radius, DWORD Color, BOOL
SolidFill)

Description: This routine draws an circle with the center located at (xc,yc) and a radius of Radius.
The circle will be drawn in the color specified in Color.

Parameters: DevID - registered device ID
xc, yc - The center of the circle (in pixels)
Radius - the circles radius (in pixels)
Color - The color to draw the ellipse

- At 1, 2, 4, and 8 bpp Color is an index into the Look-Up Table.
- At 15/16 bpp Color defines the color directly
(i.e. rrrrrggggggbbbbb for 16 bpp)

SolidFill - unused

Return Value: ERR_OK - operation completed with no problems.

Note
The SolidFill argument is currently unused and is included for future considerations.

11.5.6 Hardware Cursor

The routines in this section support hardware cursor functionality. Several of the calls look
similar to normal drawing calls (i.e. seDrawCursorLine()); however, these calls remove the
programmer from having to know the particulars of the cursor memory location, layout and
whether portrait mode is enabled. Note that hardware cursor and ink layers utilize some of
the same registers and are mutually exclusive.

int seInitCursor(int DevID)

Description: Prepares the hardware cursor for use. This consists of determining a location in
display buffer for the cursor, setting cursor memory to the transparent color and
enabling the cursor.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 72 Epson Research and Development
Vancouver Design Center
When this call returns the cursor is enabled, the cursor image is transparent and
ready to be drawn.

Parameters: DevID - a registered device ID

Return Value: ERR_OK - operation completed with no problems

int seCursorOn(int DevID)

Description: This function enables the cursor after it has been disabled through a call to seCur-
sorOff(). After enabling the cursor will have the same shape and position as it did
prior to being disabled. The exception to the size and position occurs if the ink layer
was used while the cursor was disabled.

Parameters: DevID - a registered device ID

Return Value: ERR_OK - operation completed with no problems

int seCursorOff(int DevID)

Description: This routine disables the cursor. While disabled the cursor is invisible.

Parameters: DevID - a registered device ID

Return Value: ERR_OK - operation completed with no problems

int seGetCursorStartAddr(int DevID, DWORD * Offset)

Description: This function retrieves the offset to the first byte of hardware cursor memory.

Parameters: DevID - a registered device ID
Offset - a DWORD to hold the return value.

Return Value: ERR_OK - the operation completed with no problems.

int seMoveCursor(int DevID, long x, long y)

Description: Moves the upper left corner of the hardware cursor to the pixel position (x,y).

Parameters: DevID - a registered device ID
(x, y) - the (x,y) position (in pixels) to move the cursor to

Return Value: ERR_OK - operation completed with no problems

int seSetCursorColor(int DevID, int Index, DWORD Color)

Description: Sets the color of the specified ink/cursor index to 'Color'. The user definable
hardware cursor colors are 16-bit 5-6-5 RGB colors.

The hardware cursor image is always 2 bpp or four colors. Two of the colors are
defined to be transparent and inverse. This leaves two colors which are user
definable.
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 73
Vancouver Design Center
Parameters: DevID - a registered device ID
Index - the cursor index to set. Valid values are 0 and 1
Color - a DWORD value which hold the requested color

Return Value: ERR_OK - operation completed with no problems
ERR_FAILED- returned if Index if other than 0 or 1

int seSetCursorPixel(int DevID, long x, long y, DWORD Color)

Description: Draws a single pixel into the hardware cursor. The pixel will be of color 'Color'
located at (x,y) pixels relative to the top left of the hardware cursor.

The value of 'Color' must be 0 to 3. Values 0 and 1 refer to the two user definable
colors. If 'Color' is 2 then the pixel will be transparent and if the value is 3 the pixel
will be an inversion of the underlying screen color.

Parameters: DevID - a registered device ID
(x, y) - draw coordinates, in pixels, relative to the top left corner of the cursor
Color - a value of 0 to 3 to draw the pixel with

Return Value: ERR_OK - operation completed with no problems

int seDrawCursorLine(int DevID, long x1, long y1, long x2, long y2, DWORD Color)

Description: Draws a line between the two endpoints, (x1,y1) and (x2,y2), in the hardware cursor
display buffer using color 'Color'.

The value of 'Color' must be 0 to 3. Values 0 and 1 refer to the two user definable
colors. If 'Color' is 2 then the pixel will be transparent and if the value is 3 the pixel
will be an inversion of the underlying screen color.

Parameters: DevID - a registered device ID
(x1,y1) - first line endpoint (in pixels)
(x2,y2) - second line endpoint (in pixels)
Color - a value of 0 to 3 to draw the pixel with

Return Value: ERR_OK - operation completed with no problems

int seDrawCursorRect(int DevID, long x1, long y1, long x2, long y2, DWORD Color,
BOOL SolidFill)

Description: This routine will draw a rectangle in hardware cursor memory. The upper left corner
of the rectangle is defined by the point (x1,y1) and the lower right is the point
(x2,y2). Both points are relative to the upper left corner of the cursor.

The value of 'Color' must be 0 to 3. Values 0 and 1 refer to the two user definable
colors. If 'Color' is 2 then the pixel will be transparent and if the value is 3 the pixel
result will be an inversion of the underlying screen color.

If 'SolidFill' is specified the interior of the rectangle will be filled with 'Color',
otherwise the rectangle is only outlined in 'Color'.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 74 Epson Research and Development
Vancouver Design Center
Parameters: DevID - a registered device ID
(x1,y1) - upper left corner of the rectangle (in pixels)
(x2,y2) - lower right corner of the rectangle (in pixels)
Color - a 0 to 3 value to draw the rectangle with
SolidFill - flag for filling the rectangle interior

- if equal to 0 then outline the rectangle;
if not equal to 0 then fill the rectangle with Color

Return Value: ERR_OK - operation completed with no problems

int seDrawCursorEllipse(int DevID, long xc, long yc, long xr, long yr, DWORD Color,
BOOL SolidFill)

Description: This routine draws an ellipse within the hardware cursor display buffer. The ellipse
will be centered on the point (xc,yc) and will have a horizontal radius of xr and a
vertical radius of yr.

The value of 'Color' must be 0 to 3. Values 0 and 1 refer to the two user definable
colors. If 'Color' is 2 then the pixel will be transparent and if the value is 3 the pixel
will be an inversion of the underlying screen color.

Currently seDrawCursorEllipse() does not support solid fill of the ellipse.

Parameters: DevID - a registered device ID
(xc, yc) - center of the ellipse (in pixels)
xr - horizontal radius (in pixels)
yr - vertical radius (in pixels)
Color - 0 to 3 value to draw the pixels with
SolidFill - flag to solid fill the ellipse (not currently used)

Return Value: ERR_OK - operation completed with no problems

int seDrawCursorCircle(int DevID, long x, long y, long Radius, DWORD Color, BOOL
SolidFill)

Description: This routine draws a circle in hardware cursor display buffer. The center of the circle
will be at (x,y) and the circle will have a radius of 'Radius' pixels.

The value of 'Color' must be 0 to 3. Values 0 and 1 refer to the two user definable
colors. If 'Color' is 2 then the pixel will be transparent and if the value is 3 the pixel
will be an inversion of the underlying screen color.

Currently seDrawCursorCircle() does not support the solid fill option.

Parameters: DevID - a registered device ID
(x,y) - center of the circle (in pixels)
Radius - radius of the circle (in pixels)
Color - 0 to 3 value to draw the circle with
SolidFill - flag to solid fill the circle (currently not used)

Return Value: ERR_OK - operation completed with no problems
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 75
Vancouver Design Center
11.5.7 Ink Layer

The functions in this section support the hardware ink layer. Overall these functions are
nearly identical to the hardware cursor routines. In fact the same S1D13505 hardware is
used for both features which means that only the cursor or the ink layer can be active at any
given time.The difference between the hardware cursor and the ink layer is that in cursor
mode the image is a maximum of 64x64 pixels and can be moved around the display while
in ink layer mode the image is as large as the physical size of the display and is in a fixed
position. Both the Ink layer and Hardware cursor have the same number of colors and
handle these colors identically.

int seInitInk(int DevID)

Description: This routine prepares the ink layer for use. This consists of determining the start
address for the ink layer, setting the ink layer to the transparent color and enabling
the ink layer.

When this function returns the ink layer is enabled, transparent and ready to be
drawn on.

Parameters: DevID - a registered device ID

Return Value: ERR_OK - operation completed with no problems
ERR_FAILED- if the ink layer cannot be enabled due to timing constraints this

 value will be returned.

int seInkOn(int DevID)

Description: Enables the ink layer after a call to seInkOff(). If the hardware cursor has not been
used between the time seInkOff() was called and this call then the contents of the ink
layer should be exactly as it was prior to the call to seInkOff().

Parameters: DevID - a registered device ID

Return Value: ERR_OK - operation completed with no problems

int seInkOff(int DevID)

Description: Disables the ink layer. When disabled the ink layer is not visible.

Parameters: DevID - a registered device ID

Return Value: ERR_OK - operation completed with no problems

int seGetInkStartAddr(int DevID, DWORD * Offset)

Description: This function retrieves the offset to the first byte of hardware ink layer memory.

Parameters: DevID - a registered device ID
Offset - a DWORD to hold the return value.

Return Value: ERR_OK - the operation completed with no problems.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 76 Epson Research and Development
Vancouver Design Center
int seSetInkColor(int DevID, int Index, DWORD Color)

Description: Sets the color of the specified ink/cursor index to 'Color'. The user definable
hardware cursor colors are sixteen bit 5-6-5 RGB colors.

The hardware ink layer image is always 2 bpp or four colors. Two of the colors are
defined to be transparent and inverse. This leaves two colors which are user
definable.

Parameters: DevID - a registered device ID
Index - the index, 0 or 1, to write the color to
Color - a sixteen bit RRRRRGGGGGGBBBBB color to write to 'Index'

Return Value: ERR_OK - operation completed with no problems
ERR_FAILED- an index other than 0 or 1 was specified.

int seSetInkPixel(int DevID, long x, long y, DWORD Color)

Description: Sets one pixel located at (x,y) to the value 'Color'. The point (x,y) is relative to the
upper left corner of the display.

The value of 'Color' must be 0 to 3. Values 0 and 1 refer to the two user definable
colors. If 'Color' is 2 then the pixel will be transparent and if the value is 3 the pixel
will be an inversion of the underlying screen color.

Parameters: DevID - a registered device ID
(x,y) - coordinates of the pixel to draw
Color - a 0 to 3 value to draw the pixel with

Return Value: ERR_OK - operation completed with no problems

int seDrawInkLine(int DevID, long x1, long y1, long x2, long y2, DWORD Color)

Description: This routine draws a line in 'Color' between the endpoints (x1,y1) and (x2,y2).

The value of 'Color' must be 0 to 3. Values 0 and 1 refer to the two user definable
colors. If 'Color' is 2 then the pixel will be transparent and if the value is 3 the pixel
will be an inversion of the underlying screen color.

Parameters: DevID - a registered device ID
(x1,y1) - first endpoint of the line (in pixels)
(x2,y2) - second endpoint of the line (in pixels)
Color -a value from 0 to 3 to draw the line with

Return Value: ERR_OK - operation completed with no problems

int seDrawInkRect(int DevID, long x1, long y1, long x2, long y2, DWORD Color,
BOOL SolidFill)

Description: Draws a rectangle of color 'Color' and optionally fills it. The upper left corner of the
rectangle is the point (x1,y1) and the lower right corner of the rectangle is the point
(x2,y2).
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 77
Vancouver Design Center
The value of 'Color' must be 0 to 3. Values 0 and 1 refer to the two user definable
colors. If 'Color' is 2 then the pixel will be transparent and if the value is 3 the pixel
will be an inversion of the underlying screen color.

Parameters: DevID - a registered device ID
(x1,y1) - upper left corner of the rectangle (in pixels)
(x2.y2) - lower right corner of the rectangle (in pixels)
Color - a two bit value (0 to 3) to draw the rectangle with
SolidFill - a flag to indicate that the interior should be filled

Return Value: ERR_OK - operation completed with no problems

int seDrawInkEllipse(int DevID, long xc, long yc, long xr, long yr, DWORD Color,
BOOL SolidFill)

Description: This routine draws an ellipse with the center located at xc,yc. The xr and yr param-
eters specify the x and y radii, in pixels, respectively. The ellipse will be drawn in
the color specified by 'Color'.

The value of 'Color' must be 0 to 3. Values 0 and 1 refer to the two user definable
colors. If 'Color' is 2 then the pixel will be transparent and if the value is 3 the pixel
will be an inversion of the underlying screen color.

This solid fill option is not yet available for this function.

Parameters: DevID - a registered device ID
xc,yc - center point for the ellipse (in pixels)
xr - horizontal radius of the ellipse (in pixels)
yr - vertical radius of the ellipse (in pixels)
Color - a two bit value (0 to 3) to draw the rectangle with
SolidFill - flag to enable filling the interior of the ellipse (currently not used)

Return Value: ERR_OK - operation completed with no problems

int seDrawInkCircle(int DevID, long x, long y, long Radius, DWORD Color, BOOL
SolidFill)

Description: This routine draws a circle in the ink layer display buffer. The center of the circle
will be at x,y and the circle will have a radius of 'Radius' pixels.

The value of 'Color' must be 0 to 3. Values 0 and 1 refer to the two user definable
colors. If 'Color' is 2 then the pixel will be transparent and if the value is 3 the pixel
will be an inversion of the underlying screen color.

Currently seDrawCursorCircle() does not support the solid fill option.

Parameters: DevID - a registered device ID
x,y - center of the circle (in pixels)
Radius - circle radius (in pixels)
Color - a two bit (0 to 3) value to draw the circle with
SolidFill - flag to fill the interior of the circle (currently not used)

Return Value: ERR_OK - operation completed with no problems
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 78 Epson Research and Development
Vancouver Design Center
11.5.8 Power Save

This section covers the HAL functions dealing with the Power Save features of the
S1D13505.

int seSWSuspend(int DevID, BOOL Suspend)

Description: Causes the S1D13505 to enter software suspend mode.

When software suspend mode is engaged the display is disabled and display buffer
is inaccessible. In this mode the registers and the LUT are accessible.

Parameters: DevID - a registered device ID
Suspend - boolean flag to indicate which state to engage.

- enter suspend mode when non-zero and return to normal power
 when equal to zero.

Return Value: ERR_OK - operation completed with no problems

int seHWSuspend(int DevID, BOOL Suspend)

Description: Causes the S1D13505 to enter/leave hardware suspend mode. This option in only
supported on S1D13505B0B ISA evaluation boards.

When hardware suspend mode is engaged the display is disabled and display buffer
is inaccessible and the registers and LUT are inaccessible.

Parameters: DevID - a registered device ID
Suspend - boolean flag to indicate which state to engage.

- enter suspend mode when non-zero and return to normal power
 when equal to zero.

Return Value: ERR_OK - operation completed with no problems

11.6 Porting LIBSE to a new target platform

Building Epson applications like a simple HelloApp for a new target platform requires 3
things, the HelloApp code, the 13505HAL library, and a some standard C functions
(portable ones are encapsulated in our mini C library LIBSE).

Figure 11-1: Components needed to build 13505 HAL application

HelloApp Source code

13505HAL Library

HelloApp C Library Functions (LIBSE for embedded platforms)
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 79
Vancouver Design Center
For example, when building HELLOAPP.EXE for the x86 16-bit platform, you need the
HELLOAPP source files, the 13505HAL library and its include files, and some Standard C
library functions (which in this case would be supplied by the compiler as part of its run-
time library). As this is a DOS .EXE application, you do not need to supply start-up code
that sets up the chip selects or interrupts, etc... What if you wanted to build the application
for an SH-3 target, one not running DOS?

Before you can build that application to load onto the target, you need to build a C library
for the target that contains enough of the Standard C functions (like sprintf and strcpy) to
let you build the application. Epson supplies the LIBSE for this purpose, but your compiler
may come with one included. You also need to build the 13505HAL library for the target.
This library is the graphics chip dependent portion of the code. Finally, you need to build
the final application, linked together with the libraries described earlier. The following
examples assume that you have a copy of the complete source code for the S1D13505
utilities, including the nmake makefiles, as well as a copy of the GNU Compiler v2.7-96q3a
for Hitachi SH3. These are available on the Epson Electronics America Website at
http://www.eea.epson.com.

11.6.1 Building the LIBSE library for SH3 target example

In the LIBSE files, there are three main types of files:

• C files that contain the library functions.

• assembler files that contain the target specific code.

• makefiles that describe the build process to construct the library.

The C files are generic to all platforms, although there are some customizations for targets
in the form of #ifdef LCEVBSH3 code (the ifdef used for the example SH3 target Low Cost
Eval Board SH3). The majority of this code remains constant whichever target you build
for.

The assembler files contain some platform setup code (stacks, chip selects) and jumps into
the main entry point of the C code that is contained in the C file entry.c. For our example,
the assembler file is STARTSH3.S and it performs only some stack setup and a jump into
the code at _mainEntry (entry.c).

In the embedded targets, printf (in file rprintf.c), putchar (putchar.c) and getch (kb.c)
resolve to serial character input/output. For SH3, much of the detail of handling serial IO
is hidden in the monitor of the evaluation board, but in general the primitives are fairly
straight forward, providing the ability to get characters to/from the serial port.

For our target example, the nmake makefile is makesh3.mk. This makefile calls the Gnu
compiler at a specific location (TOOLDIR), enumerates the list of files that go into the
target and builds a .a library file as the output of the build process.

With nmake.exe in your path run:

nmake -fmakesh3.mk
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 80 Epson Research and Development
Vancouver Design Center
11.6.2 Building the HAL library for the target example

Building the HAL for the target example is less complex because the code is written in C
and requires little platform specific adjustment. The nmake makefile for our example is
makesh3.mk.This makefile contains the rules for building sh3 objects, the files list for the
library and the library creation rules. The Gnu compiler tools are pointed to by TOOLDIR.

With nmake in your path run:

nmake -fmakesh3.mk

11.6.3 Building a complete application for the target example

The following source code is available on the Epson Electronics America Website at
http://www.eea.epson.com.

#include <stdio.h>
#include "Hal.h"
#include "Appcfg.h"
#include "Hal_regs.h"
int main(void);
#define RED16BPP 0xf800
#define GREEN16BPP 0x07e0
#define BLUE16BPP 0x001f
int main(void)
{

int DevId;
UINT height, width, Bpp;
const char *p1, *p2, *p3;
DWORD color_red, color_blue;
BYTE RedBlueLut[3][3] = {

{0, 0, 0}, /* Black */
{0xF0, 0, 0}, /* Red */
{0, 0, 0xF0} /* Blue */

};
BOOL verbose = TRUE;
long x1, x2, y1, y2;
/*
** Call this to get hal.c linked into the image, and HalInfoArray
** which is defined in hal.c and used by other HAL pieces.
*/
seGetHalVersion(&p1, &p2, &p3);
printf("1355 Hal version %s\n", p1);
/*
** Register the device with the HAL
** NOTE: HalInfo is an instance of HAL_STRUCT and is defined
** in Appcfg.h
*/
if (seRegisterDevice(&HalInfo, &DevId) != ERR_OK)
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 81
Vancouver Design Center
{
printf("\r\nERROR: Unable to register device with

HAL\r\n");
return -1;

}
/*
** Init the SED1355 with the defaults stored in the HAL_STRUCT
*/
if (seSetInit(DevId) != ERR_OK)
{

printf("\r\nERROR: Unable to initialize the
SED1355\r\n");

return -1;
}
/*
** Determine the screen size
*/
if (seGetScreenSize(DevId, &width, &height) != ERR_OK)
{

printf("\r\nERROR: Unable to get screen size\r\n");
return -1;

}
/*
** Determine the Bpp mode, and set colors appropriately
** Note: if less than 15Bpp set the color Lookup Table (LUT)
** local color variables contain either index into LUT or RGB value
*/
seGetBitsPerPixel(DevId, &Bpp);
if (verbose)

printf("Bpp is %d\n", Bpp);
switch(Bpp)
{

case 1: /* Can't really do red and blue here */
seSetLut(DevId, (BYTE *)&RedBlue-

Lut[0][0], 3);
color_red = 1;
color_blue = 1;
break;

/* Set the LUT to values appropriate to Black, Red,
and Blue */

case 2:
case 4:
case 8:

seSetLut(DevId, (BYTE *)&RedBlue-
Lut[0][0], 3);

color_red = 1;
color_blue = 2;
break;

default: /* 15 or 16 bpp */
color_red = RED16BPP;
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 82 Epson Research and Development
Vancouver Design Center
color_blue = BLUE16BPP;
break;

}
 /*

** Draw a Blue line from top left hand corner to bottom right hand
corner

*/
if (seDrawLine(DevId, 0,0, width-1, height-1, color_blue) != ERR_OK)
{

printf("\r\nERROR: Unable to draw line\r\n");
return -1;

 }
 /*
 ** Delay for 2 seconds and then draw a filled rectangle

*/
 seDelay(DevId, (DWORD)2);

/*
** Centre the rectangle at 1/4 x,y and 3/4 x,y
*/
x1 = width/4;
x2 = width/2 + x1;
y1 = height/4;
y2 = height/2 + y1;
seDrawRect(DevId, x1, y1, x2, y2, color_red, TRUE);

/*
** Draw a box around the screen
*/
if ((seDrawLine(DevId, 0, 0, width-1, 0, color_blue) != ERR_OK)
 |(seDrawLine(DevId, 0, height-1, width-1, height-1, color_blue) !=

ERR_OK)
 |(seDrawLine(DevId, 0, 0, 0, height-1, color_blue) != ERR_OK)
 |(seDrawLine(DevId, width-1, 0, width-1, height-1, color_blue) !=

ERR_OK))
{

printf("\r\nERROR: Unable to draw box\r\n");
return -1;

 }
/*
** Load a cursor with a blue outlined green rectangle
*/
seInitCursor(DevId);
seCursorOff(DevId);
seSetCursorColor(DevId, 0, GREEN16BPP);
seSetCursorColor(DevId, 1, BLUE16BPP);
seDrawCursorRect(DevId, 0, 0, 63, 63, 1, FALSE);
seDrawCursorRect(DevId, 1, 1, 62, 62, 0, TRUE);
seCursorOn(DevId);
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 83
Vancouver Design Center
/*
** Delay for 2 seconds
*/
seDelay(DevId, (DWORD)2);
/*
** Move the cursor
*/
seMoveCursor(DevId, width-1-63, 0);

return 0;
}

Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 84 Epson Research and Development
Vancouver Design Center
12 Sample Code

12.1 Introduction

There are two included examples of programming the S1D13505 color graphics controller.
First is a demonstration using the HAL library and the second without. These code samples
are for example purposes only. Lastly, are three header files that may make some of the
structures used clearer.

12.1.1 Sample code using the S1D13505 HAL API
*/
// Sample code using 1355HAL API
*/

*/
**---
**
** Created 1998, Epson Research & Development
** Vancouver Design Centre
** Copyright (c) Epson Research and Development, Inc. 1998. All rights reserved.
**
** The HAL API code is configured for the following:
**
** 25.175 MHz ClkI
** 640x480 8 bit dual color STN panel @60Hz
** 50 ns EDO, 32 ms (self) refresh time
** Initial color depth - 8 bpp
**
**---
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "hal.h" /* Structures,
constants and prototypes. */
#include "appcfg.h" /* HAL configu-
ration information. */

/*--*/
void main(void)
{

int ChipId;
int Device;

/*
** Initialize the HAL.
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 85
Vancouver Design Center
** This step sets up the HAL for use but does not access the 1355.
*/
switch (seRegisterDevice(&HalInfo, &Device))
{

case ERR_OK:
break;

case HAL_DEVICE_ERR:
printf("\nERROR: Too many devices

registered.");
exit(1);

default:
printf("\nERROR: Could not regis-

ter SED1355 device.");
exit(1);

}

/*
** Identify that this is indeed an SED1355.
*/
seGetId(Device, &ChipId);
if (ID_SED1355F0A != ChipId)
{

printf("\nERROR: Did not detect SED1355.");
exit(1);

}

/*
** Initialize the SED1355.
** This step will actually program the registers with values taken

from
** the default register table in appcfg.h.
*/
if (ERR_OK != seSetInit(Device))
{

printf("\nERROR: Could not initialize device.");
exit(1);

}

/*
** The default initialization clears the display.
** Draw a 100x100 red rectangle in the upper left corner (0,0)
** of the display.
*/
seDrawRect(Device, 0, 0, 100, 100, 1, TRUE);

/*
** Init the HW cursor. The HAL performs several calculations to
** determine the best location to place the cursor image and
** will use that location from here on.
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 86 Epson Research and Development
Vancouver Design Center
** The background must be set to transparent.
*/
seInitCursor(Device);
seDrawCursorRect(Device, 0, 0, 63, 63, 2, TRUE);

/*
** Set the first user definable color to black and
** the second user definable color to white.
*/
seSetCursorColor(Device, 0, 0);
seSetCursorColor(Device, 1, 0xFFFFFFFF);

/*
** Draw a hollow rectangle around the cursor and move
** the cursor to 101,101.
*/
seDrawCursorRect(Device, 0, 0, 63, 63, 1, FALSE);
seMoveCursor(Device, 101, 101);
exit(0);

}

12.1.2 Sample code without using the S1D13505 HAL API
/*
**===
** INIT1355.C - sample code demonstrating the initialization of the SED1355.
** Beta release 2.0 98-10-29
**
** The code in this example will perform initialization to the following
** specification:
**
** - 640 x 480 dual 16-bit color passive panel.
** - 75 Hz frame rate.
** - 8 BPP (256 colors).
** - 33 MHz input clock.
** - 2 MB of 60 ns EDO memory.
**
** *** This is sample code only! ***
** This means:
** 1) Generic C is used. I assume that pointers can access the
** relevant memory addresses (this is not always the case).
** i.e. using the 1355B0B card on an x86 16 bit platform will require
** changes to use a DOS extender to access memory and registers.
** 2) Register setup is done with discrete writes rather than being
** table driven. This allows for clearer commenting. A real program
** would probably store the register settings in an array and loop
** through the array writing each element to a control register.
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 87
Vancouver Design Center
** 3) The pointer assignment for the register offset does not work on
** x86 16 bit platforms.
**
**---
** Copyright (c) 1998 Epson Research and Development, Inc.
** All Rights Reserved.
**===
*/
/*
** Note that only the upper four bits of the LUT are actually used.
*/
unsigned char LUT8[256*3] =
{
/* Primary and secondary colors */
0x00, 0x00, 0x00, 0x00, 0x00, 0xA0, 0x00, 0xA0, 0x00, 0x00, 0xA0, 0xA0,
0xA0, 0x00, 0x00, 0xA0, 0x00, 0xA0, 0xA0, 0xA0, 0x00, 0xA0, 0xA0, 0xA0,
0x50, 0x50, 0x50, 0x00, 0x00, 0xF0, 0x00, 0xF0, 0x00, 0x00, 0xF0, 0xF0,
0xF0, 0x00, 0x00, 0xF0, 0x00, 0xF0, 0xF0, 0xF0, 0x00, 0xF0, 0xF0, 0xF0,
/* Gray shades */
0x00, 0x00, 0x00, 0x10, 0x10, 0x10, 0x20, 0x20, 0x20, 0x30, 0x30, 0x30,
0x40, 0x40, 0x40, 0x50, 0x50, 0x50, 0x60, 0x60, 0x60, 0x70, 0x70, 0x70,
0x80, 0x80, 0x80, 0x90, 0x90, 0x90, 0xA0, 0xA0, 0xA0, 0xB0, 0xB0, 0xB0,
0xC0, 0xC0, 0xC0, 0xD0, 0xD0, 0xD0, 0xE0, 0xE0, 0xE0, 0xF0, 0xF0, 0xF0,
/* Black to red */
0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x20, 0x00, 0x00, 0x30, 0x00, 0x00,
0x40, 0x00, 0x00, 0x50, 0x00, 0x00, 0x60, 0x00, 0x00, 0x70, 0x00, 0x00,
0x80, 0x00, 0x00, 0x90, 0x00, 0x00, 0xA0, 0x00, 0x00, 0xB0, 0x00, 0x00,
0xC0, 0x00, 0x00, 0xD0, 0x00, 0x00, 0xE0, 0x00, 0x00, 0xF0, 0x00, 0x00,
/* Black to green */
0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x20, 0x00, 0x00, 0x30, 0x00,
0x00, 0x40, 0x00, 0x00, 0x50, 0x00, 0x00, 0x60, 0x00, 0x00, 0x70, 0x00,
0x00, 0x80, 0x00, 0x00, 0x90, 0x00, 0x00, 0xA0, 0x00, 0x00, 0xB0, 0x00,
0x00, 0xC0, 0x00, 0x00, 0xD0, 0x00, 0x00, 0xE0, 0x00, 0x00, 0xF0, 0x00,
/* Black to blue */
0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x20, 0x00, 0x00, 0x30,
0x00, 0x00, 0x40, 0x00, 0x00, 0x50, 0x00, 0x00, 0x60, 0x00, 0x00, 0x70,
0x00, 0x00, 0x80, 0x00, 0x00, 0x90, 0x00, 0x00, 0xA0, 0x00, 0x00, 0xB0,
0x00, 0x00, 0xC0, 0x00, 0x00, 0xD0, 0x00, 0x00, 0xE0, 0x00, 0x00, 0xF0,
/* Blue to cyan (blue and green) */
0x00, 0x00, 0xF0, 0x00, 0x10, 0xF0, 0x00, 0x20, 0xF0, 0x00, 0x30, 0xF0,
0x00, 0x40, 0xF0, 0x00, 0x50, 0xF0, 0x00, 0x60, 0xF0, 0x00, 0x70, 0xF0,
0x00, 0x80, 0xF0, 0x00, 0x90, 0xF0, 0x00, 0xA0, 0xF0, 0x00, 0xB0, 0xF0,
0x00, 0xC0, 0xF0, 0x00, 0xD0, 0xF0, 0x00, 0xE0, 0xF0, 0x00, 0xF0, 0xF0,
/* Cyan (blue and green) to green */
0x00, 0xF0, 0xF0, 0x00, 0xF0, 0xE0, 0x00, 0xF0, 0xD0, 0x00, 0xF0, 0xC0,
0x00, 0xF0, 0xB0, 0x00, 0xF0, 0xA0, 0x00, 0xF0, 0x90, 0x00, 0xF0, 0x80,
0x00, 0xF0, 0x70, 0x00, 0xF0, 0x60, 0x00, 0xF0, 0x50, 0x00, 0xF0, 0x40,
0x00, 0xF0, 0x30, 0x00, 0xF0, 0x20, 0x00, 0xF0, 0x10, 0x00, 0xF0, 0x00,
/* Green to yellow (red and green) */
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 88 Epson Research and Development
Vancouver Design Center
0x00, 0xF0, 0x00, 0x10, 0xF0, 0x00, 0x20, 0xF0, 0x00, 0x30, 0xF0, 0x00,
0x40, 0xF0, 0x00, 0x50, 0xF0, 0x00, 0x60, 0xF0, 0x00, 0x70, 0xF0, 0x00,
0x80, 0xF0, 0x00, 0x90, 0xF0, 0x00, 0xA0, 0xF0, 0x00, 0xB0, 0xF0, 0x00,
0xC0, 0xF0, 0x00, 0xD0, 0xF0, 0x00, 0xE0, 0xF0, 0x00, 0xF0, 0xF0, 0x00,
/* Yellow (red and green) to red */
0xF0, 0xF0, 0x00, 0xF0, 0xE0, 0x00, 0xF0, 0xD0, 0x00, 0xF0, 0xC0, 0x00,
0xF0, 0xB0, 0x00, 0xF0, 0xA0, 0x00, 0xF0, 0x90, 0x00, 0xF0, 0x80, 0x00,
0xF0, 0x70, 0x00, 0xF0, 0x60, 0x00, 0xF0, 0x50, 0x00, 0xF0, 0x40, 0x00,
0xF0, 0x30, 0x00, 0xF0, 0x20, 0x00, 0xF0, 0x10, 0x00, 0xF0, 0x00, 0x00,
/* Red to magenta (blue and red) */
0xF0, 0x00, 0x00, 0xF0, 0x00, 0x10, 0xF0, 0x00, 0x20, 0xF0, 0x00, 0x30,
0xF0, 0x00, 0x40, 0xF0, 0x00, 0x50, 0xF0, 0x00, 0x60, 0xF0, 0x00, 0x70,
0xF0, 0x00, 0x80, 0xF0, 0x00, 0x90, 0xF0, 0x00, 0xA0, 0xF0, 0x00, 0xB0,
0xF0, 0x00, 0xC0, 0xF0, 0x00, 0xD0, 0xF0, 0x00, 0xE0, 0xF0, 0x00, 0xF0,
/* Magenta (blue and red) to blue */
0xF0, 0x00, 0xF0, 0xE0, 0x00, 0xF0, 0xD0, 0x00, 0xF0, 0xC0, 0x00, 0xF0,
0xB0, 0x00, 0xF0, 0xA0, 0x00, 0xF0, 0x90, 0x00, 0xF0, 0x80, 0x00, 0xF0,
0x70, 0x00, 0xF0, 0x60, 0x00, 0xF0, 0x50, 0x00, 0xF0, 0x40, 0x00, 0xF0,
0x30, 0x00, 0xF0, 0x20, 0x00, 0xF0, 0x10, 0x00, 0xF0, 0x00, 0x00, 0xF0,
/* Black to magenta (blue and red) */
0x00, 0x00, 0x00, 0x10, 0x00, 0x10, 0x20, 0x00, 0x20, 0x30, 0x00, 0x30,
0x40, 0x00, 0x40, 0x50, 0x00, 0x50, 0x60, 0x00, 0x60, 0x70, 0x00, 0x70,
0x80, 0x00, 0x80, 0x90, 0x00, 0x90, 0xA0, 0x00, 0xA0, 0xB0, 0x00, 0xB0,
0xC0, 0x00, 0xC0, 0xD0, 0x00, 0xD0, 0xE0, 0x00, 0xE0, 0xF0, 0x00, 0xF0,
/* Black to cyan (blue and green) */
0x00, 0x00, 0x00, 0x00, 0x10, 0x10, 0x00, 0x20, 0x20, 0x00, 0x30, 0x30,
0x00, 0x40, 0x40, 0x00, 0x50, 0x50, 0x00, 0x60, 0x60, 0x00, 0x70, 0x70,
0x00, 0x80, 0x80, 0x00, 0x90, 0x90, 0x00, 0xA0, 0xA0, 0x00, 0xB0, 0xB0,
0x00, 0xC0, 0xC0, 0x00, 0xD0, 0xD0, 0x00, 0xE0, 0xE0, 0x00, 0xF0, 0xF0,
/* Red to white */
0xF0, 0x00, 0x00, 0xF0, 0x10, 0x10, 0xF0, 0x20, 0x20, 0xF0, 0x30, 0x30,
0xF0, 0x40, 0x40, 0xF0, 0x50, 0x50, 0xF0, 0x60, 0x60, 0xF0, 0x70, 0x70,
0xF0, 0x80, 0x80, 0xF0, 0x90, 0x90, 0xF0, 0xA0, 0xA0, 0xF0, 0xB0, 0xB0,
0xF0, 0xC0, 0xC0, 0xF0, 0xD0, 0xD0, 0xF0, 0xE0, 0xE0, 0xF0, 0xF0, 0xF0,
/* Green to white */
0x00, 0xF0, 0x00, 0x10, 0xF0, 0x10, 0x20, 0xF0, 0x20, 0x30, 0xF0, 0x30,
0x40, 0xF0, 0x40, 0x50, 0xF0, 0x50, 0x60, 0xF0, 0x60, 0x70, 0xF0, 0x70,
0x80, 0xF0, 0x80, 0x90, 0xF0, 0x90, 0xA0, 0xF0, 0xA0, 0xB0, 0xF0, 0xB0,
0xC0, 0xF0, 0xC0, 0xD0, 0xF0, 0xD0, 0xE0, 0xF0, 0xE0, 0xF0, 0xF0, 0xF0,
/* Blue to white */
0x00, 0x00, 0xF0, 0x10, 0x10, 0xF0, 0x20, 0x20, 0xF0, 0x30, 0x30, 0xF0,
0x40, 0x40, 0xF0, 0x50, 0x50, 0xF0, 0x60, 0x60, 0xF0, 0x70, 0x70, 0xF0,
0x80, 0x80, 0xF0, 0x90, 0x90, 0xF0, 0xA0, 0xA0, 0xF0, 0xB0, 0xB0, 0xF0,
0xC0, 0xC0, 0xF0, 0xD0, 0xD0, 0xF0, 0xE0, 0xE0, 0xF0, 0xF0, 0xF0, 0xF0
};

/*
** REGISTER_OFFSET points to the starting address of the SED1355 registers
*/
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 89
Vancouver Design Center
#define REGISTER_OFFSET ((unsigned char *) 0x14000000)
/*
** DISP_MEM_OFFSET points to the starting address of the display buffer memory
*/
#define DISP_MEM_OFFSET ((unsigned char *) 0x4000000)
/*
** DISP_MEMORY_SIZE is the size of display buffer memory
*/
#define DISP_MEMORY_SIZE 0x200000
/*
** Calculate the value to put in Ink/Cursor Start Address Select Register
** Offset = (DISP_MEM_SIZE - (X * 8192)
** We want the offset to be just past the end of display memory so:
** (640 * 480) = DISP_MEMORY_SIZE - (X * 8192)
**
** CURSOR_START = (DISP_MEMORY_SIZE - (640 * 480)) / 8192
*/
#define CURSOR_START 218
void main(void)
{
 unsigned char * pRegs = REGISTER_OFFSET;
 unsigned char * pMem;
 unsigned char * pLUT;
 unsigned char * pTmp;
 unsigned char * pCursor;
 long lpCnt;
 int idx;
 int rgb;
 long x, y;
 /*
 ** Initialize the chip.
 */
 /*
 ** Step 1: Enable the host interface.
 **
 ** Register 1B: Miscellaneous Disable - host interface enabled, half frame
 ** buffer enabled.
 */
 (pRegs + 0x1B) = 0x00; / 0000 0000 */
 /*
 ** Step 2: Disable the FIFO
 */
 (pRegs + 0x23) = 0x80; / 1000 0000 */
 /*
 ** Step 3: Set Memory Configuration
 **
 ** Register 1: Memory Configuration - 4 ms refresh, EDO
 */
 (pRegs + 0x01) = 0x30; / 0011 0000 */
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 90 Epson Research and Development
Vancouver Design Center
 /*
 ** Step 4: Set Performance Enhancement 0 register
 */
 (pRegs + 0x22) = 0x24; / 0010 0100 */
 /*
 ** Step 5: Set the rest of the registers in order.
 */
 /*
 ** Register 2: Panel Type - 16-bit, format 1, color, dual, passive.
 */
 (pRegs + 0x02) = 0x26; / 0010 0110 */
 /*
 ** Register 3: Mod Rate
 */
 (pRegs + 0x03) = 0x00; / 0000 0000 */
 /*
 ** Register 4: Horizontal Display Width (HDP) - 640 pixels
 ** (640 / 8) - 1 = 79t = 4Fh
 */
 (pRegs + 0x04) = 0x4f; / 0100 1111 */
 /*
 ** Register 5: Horizontal Non-Display Period (HNDP)
 ** PCLK
 ** Frame Rate = -----------------------------
 ** (HDP + HNDP) * (VDP + VNDP)
 **
 ** 16,500,000
 ** = -----------------------------
 ** (640 + HNDP) * (480 + VNDP)
 **
 ** HNDP and VNDP must be calculated such that the desired frame rate
 ** is achieved.
 */
 (pRegs + 0x05) = 0x1F; / 0001 1111 */
 /*
 ** Register 6: HRTC/FPLINE Start Position - applicable to CRT/TFT only.
 */
 (pRegs + 0x06) = 0x00; / 0000 0000 */
 /*
 ** Register 7: HRTC/FPLINE Pulse Width - applicable to CRT/TFT only.
 */
 (pRegs + 0x07) = 0x00; / 0000 0000 */
 /*
 ** Registers 8-9: Vertical Display Height (VDP) - 480 lines.
 ** 480/2 - 1 = 239t = 0xEF
 */
 (pRegs + 0x08) = 0xEF; / 1110 1111 */
 (pRegs + 0x09) = 0x00; / 0000 0000 */
 /*
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 91
Vancouver Design Center
 ** Register A: Vertical Non-Display Period (VNDP)
 ** This register must be programed with register 5 (HNDP)
 ** to arrive at the frame rate closest to the desired
 ** frame rate.
 */
 (pRegs + 0x0A) = 0x01; / 0000 0001 */
 /*
 ** Register B: VRTC/FPFRAME Start Position - applicable to CRT/TFT only.
 */
 (pRegs + 0x0B) = 0x00; / 0000 0000 */
 /*
 ** Register C: VRTC/FPFRAME Pulse Width - applicable to CRT/TFT only.
 */
 (pRegs + 0x0C) = 0x00; / 0000 0000 */
 /*
 ** Register D: Display Mode - 8 BPP, LCD disabled.
 */
 (pRegs + 0x0D) = 0x0C; / 0000 1100 */
 /*
 ** Registers E-F: Screen 1 Line Compare - unless setting up for
 ** split screen operation use 0x3FF.
 */
 (pRegs + 0x0E) = 0xFF; / 1111 1111 */
 (pRegs + 0x0F) = 0x03; / 0000 0011 */
 /*
 ** Registers 10-12: Screen 1 Display Start Address - start at the
 ** first byte in display memory.
 */
 (pRegs + 0x10) = 0x00; / 0000 0000 */
 (pRegs + 0x11) = 0x00; / 0000 0000 */
 (pRegs + 0x12) = 0x00; / 0000 0000 */
 /*
 ** Register 13-15: Screen 2 Display Start Address - not applicable
 ** unless setting up for split screen operation.
 */
 (pRegs + 0x13) = 0x00; / 0000 0000 */
 (pRegs + 0x14) = 0x00; / 0000 0000 */
 (pRegs + 0x15) = 0x00; / 0000 0000 */
 /*
 ** Register 16-17: Memory Address Offset - this address represents the
 ** starting WORD. At 8BPP our 640 pixel width is 320
 ** WORDS
 */
 (pRegs + 0x16) = 0x40; / 0100 0000 */
 (pRegs + 0x17) = 0x01; / 0000 0001 */
 /*
 ** Register 18: Pixel Panning
 */
 (pRegs + 0x18) = 0x00; / 0000 0000 */
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 92 Epson Research and Development
Vancouver Design Center
 /*
 ** Register 19: Clock Configuration - In this case we must divide
 ** PCLK by 2 to arrive at the best frequency to set
 ** our desired panel frame rate.
 */
 (pRegs + 0x19) = 0x01; / 0000 0001 */
 /*
 ** Register 1A: Power Save Configuration - enable LCD power, CBR refresh,
 ** not suspended.
 */
 (pRegs + 0x1A) = 0x00; / 0000 0000 */
 /*
 ** Register 1C-1D: MD Configuration Readback - these registers are
 ** read only, but it's OK to write a 0 to keep
 ** the register configuration logic simpler.
 */
 (pRegs + 0x1C) = 0x00; / 0000 0000 */
 (pRegs + 0x1D) = 0x00; / 0000 0000 */
 /*
 ** Register 1E-1F: General I/O Pins Configuration
 */
 (pRegs + 0x1E) = 0x00; / 0000 0000 */
 (pRegs + 0x1F) = 0x00; / 0000 0000 */
 /*
 ** Register 20-21: General I/O Pins Control
 */
 (pRegs + 0x20) = 0x00; / 0000 0000 */
 (pRegs + 0x21) = 0x00; / 0000 0000 */
 /*
 ** Registers 24-26: LUT control.
 ** For this example do a typical 8 BPP LUT setup.
 **
 ** Setup the pointer to the LUT data and reset the LUT index register.
 ** Then, loop writing each of the RGB LUT data elements.
 */
 pLUT = LUT8;
 *(pRegs + 0x24) = 0;
 for (idx = 0; idx < 256; idx++)
 {
 for (rgb = 0; rgb < 3; rgb++)
 {
 *(pRegs + 0x26) = *pLUT;
 pLUT++;
 }
 }
 /*
 ** Register 27: Ink/Cursor Control - disable ink/cursor
 */
 (pRegs + 0x27) = 0x00; / 0000 0000 */
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 93
Vancouver Design Center
 /*
 ** Registers 28-29: Cursor X Position
 */
 (pRegs + 0x28) = 0x00; / 0000 0000 */
 (pRegs + 0x29) = 0x00; / 0000 0000 */
 /*
 ** Registers 2A-2B: Cursor Y Position
 */
 (pRegs + 0x2A) = 0x00; / 0000 0000 */
 (pRegs + 0x2B) = 0x00; / 0000 0000 */
 /*
 ** Registers 2C-2D: Ink/Cursor Color 0 - blue
 */
 (pRegs + 0x2C) = 0x1F; / 0001 1111 */
 (pRegs + 0x2D) = 0x00; / 0000 0000 */
 /*
 ** Registers 2E-2F: Ink/Cursor Color 1 - green
 */
 (pRegs + 0x2E) = 0xE0; / 1110 0000 */
 (pRegs + 0x2F) = 0x07; / 0000 0111 */
 /*
 ** Register 30: Ink/Cursor Start Address Select
 */
 (pRegs + 0x30) = 0x00; / 0000 0000 */
 /*
 ** Register 31: Alternate FRM Register
 */
 *(pRegs + 0x31) = 0x00;
 /*
 ** Register 23: Performance Enhancement - display FIFO enabled, optimum
 ** performance. The FIFO threshold is set to 0x00; for
 ** 15/16 bpp modes, set the FIFO threshold
 ** to a higher value, such as 0x1B.
 */
 (pRegs + 0x23) = 0x00; / 0000 0000 */
 /*
 ** Register D: Display Mode - 8 BPP, LCD enable.
 */
 (pRegs + 0x0D) = 0x0D; / 0000 1101 */
 /*
 ** Clear memory by filling 2 MB with 0
 */
 pMem = DISP_MEM_OFFSET;
 for (lpCnt = 0; lpCnt < DISP_MEMORY_SIZE; lpCnt++)
 {
 *pMem = 0;
 pMem++;
 }
 /*
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 94 Epson Research and Development
Vancouver Design Center
 ** Draw a 100x100 red rectangle in the upper left corner (0, 0)
 ** of the display.
 */
 pMem = DISP_MEM_OFFSET;
 for (y = 0; y < 100; y++)
 {
 pTmp = pMem + y * 640L;
 for (x = 0; x < 100; x++)
 {
 *pTmp = 0x0c;
 pTmp++;
 }
 }
 /*
 ** Init the HW cursor. In this example the cursor memory will be located
 ** immediately after display memory. Why here? Because it's an easy
 ** location to calculate and will not interfere with the half frame buffer.
 ** Additionally, the HW cursor can be turned into an ink layer quite
 ** easily from this location.
 */
 *(pRegs + 0x30) = CURSOR_START;
 pTmp = pCursor = pMem + (DISP_MEMORY_SIZE - (CURSOR_START * 8192L));
 /*
 ** Set the contents of the cursor memory such that the cursor
 ** is transparent. To do so, write a 10101010b pattern in each byte.
 ** The cursor is 2 bpp so a 64x64 cursor requires
 ** 64/4 * 64 = 1024 bytes of memory.
 */
 for (lpCnt = 0; lpCnt < 1024; lpCnt++)
 {
 *pTmp = 0xAA;
 pTmp++;
 }
 /*
 ** Set the first user definable cursor color to black and
 ** the second user definable cursor color to white.
 */
 *(pRegs + 0x2C) = 0;
 *(pRegs + 0x2D) = 0;
 *(pRegs + 0x2E) = 0xFF;
 *(pRegs + 0x2F) = 0xFF;
 /*
 ** Draw a hollow rectangle around the cursor.
 */
 pTmp = pCursor;
 for (lpCnt = 0; lpCnt < 16; lpCnt++)
 {
 *pTmp = 0x55;
 pTmp++;
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 95
Vancouver Design Center
 }
 for (lpCnt = 0; lpCnt < 14; lpCnt++)
 {
 *pTmp = 0x6A;
 pTmp += 15;
 *pTmp = 0xA9;
 pTmp++;
 }
 for (lpCnt = 0; lpCnt < 16; lpCnt++)
 {
 *pTmp = 0x55;
 pTmp++;
 }
 /*
 ** Move the cursor to 100, 100.
 */
 /*
 ** First we wait for the next vertical non-display
 ** period before updating the position registers.
 */
 while (*(pRegs + 0x0A) & 0x80); /* wait while in VNDP */
 while (!(*(pRegs + 0x0A) & 0x80)); /* wait while in VDP */
 /*
 ** Now update the position registers.
 */
 (pRegs + 0x28) = 100; / Set Cursor X = 100 */
 *(pRegs + 0x29) = 0x00;
 (pRegs + 0x2A) = 100; / Set Cursor Y = 100 */
 *(pRegs + 0x2B) = 0x00;
 /*
 ** Enable the hardware cursor.
 */
 *(pRegs + 0x27) = 0x40;
}
}

12.1.3 Header Files

The following header files are included as they help to explain some of the structures used
when programming the S1D13505.

The following header file defines the structure used to store the configuration information
contained in all utilities using the S1D13505 HAL API.

/**/
/* 1355 HAL INF (do not remove) */
/* HAL_STRUCT Information generated by 1355CFG.EXE */
/* Copyright (c) 1998 Epson Research and Development Inc. All rights reserved. */
/* */
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 96 Epson Research and Development
Vancouver Design Center
/* Include this file ONCE in your primary source file */
/**/

HAL_STRUCT HalInfo =
{
 "1355 HAL EXE", /* ID string */
 0x1234, /* Detect Endian */
 sizeof(HAL_STRUCT), /* Size */
 0, /* Default Mode */

 {
 { /* LCD */
 0x00, 0x50, 0x16, 0x00, 0x4F, 0x03, 0x00, 0x00,
 0xEF, 0x00, 0x34, 0x00, 0x00, 0x0D, 0xFF, 0x03,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x01,
 0x00, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00
 },

 { /* CRT */
 0x00, 0x50, 0x16, 0x00, 0x4F, 0x13, 0x01, 0x0B,
 0xDF, 0x01, 0x2B, 0x09, 0x01, 0x0E, 0xFF, 0x03,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x01,
 0x00, 0x00, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00
 },

 { /* SIMUL */
 0xFF, 0x50, 0x16, 0x00, 0x4F, 0x13, 0x01, 0x0B,
 0xDF, 0x01, 0x2B, 0x09, 0x01, 0x0F, 0xFF, 0x03,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x01,
 0x00, 0x01, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00
 },

 },

 25175, /* ClkI (kHz) */
 8000, /* BusClk (kHz) */
 0xE00000, /* Register Address */
 0xC00000, /* Display Address */
 60, /* Panel Frame Rate (Hz) */
 60, /* CRT Frame Rate (Hz) */
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 97
Vancouver Design Center
 50, /* Memory speed in ns */
 84, /* Ras to Cas Delay in ns */
 30, /* Ras Access Charge time in ns */
 50, /* RAS Access Charge time in ns */
 16 /* Host CPU bus width in bits */
};

The following header file defines the S1D13505 HAL registers.

/*===
** HAL_REGS.H
** Created 1998, Epson Research & Development
** Vancouver Design Center.
** Copyright(c) Epson Research and Development Inc. 1997, 1998. All rights

 reserved.
===*/

#ifndef __HAL_REGS_H__
#define __HAL_REGS_H__

/*
** 1355 register names
*/

#define REG_REVISION_CODE 0x00
#define REG_MEMORY_CONFIG 0x01
#define REG_PANEL_TYPE 0x02
#define REG_MOD_RATE 0x03
#define REG_HORZ_DISP_WIDTH 0x04
#define REG_HORZ_NONDISP_PERIOD 0x05
#define REG_HRTC_START_POSITION 0x06
#define REG_HRTC_PULSE_WIDTH 0x07
#define REG_VERT_DISP_HEIGHT0 0x08
#define REG_VERT_DISP_HEIGHT1 0x09
#define REG_VERT_NONDISP_PERIOD 0x0A
#define REG_VRTC_START_POSITION 0x0B
#define REG_VRTC_PULSE_WIDTH 0x0C
#define REG_DISPLAY_MODE 0x0D
#define REG_SCRN1_LINE_COMPARE0 0x0E
#define REG_SCRN1_LINE_COMPARE1 0x0F
#define REG_SCRN1_DISP_START_ADDR0 0x10
#define REG_SCRN1_DISP_START_ADDR1 0x11
#define REG_SCRN1_DISP_START_ADDR2 0x12
#define REG_SCRN2_DISP_START_ADDR0 0x13
#define REG_SCRN2_DISP_START_ADDR1 0x14
#define REG_SCRN2_DISP_START_ADDR2 0x15
#define REG_MEM_ADDR_OFFSET0 0x16
#define REG_MEM_ADDR_OFFSET1 0x17
#define REG_PIXEL_PANNING 0x18
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 98 Epson Research and Development
Vancouver Design Center
#define REG_CLOCK_CONFIG 0x19
#define REG_POWER_SAVE_CONFIG 0x1A
#define REG_MISC 0x1B
#define REG_MD_CONFIG_READBACK0 0x1C
#define REG_MD_CONFIG_READBACK1 0x1D
#define REG_GPIO_CONFIG0 0x1E
#define REG_GPIO_CONFIG1 0x1F
#define REG_GPIO_CONTROL0 0x20
#define REG_GPIO_CONTROL1 0x21
#define REG_PERF_ENHANCEMENT0 0x22
#define REG_PERF_ENHANCEMENT1 0x23
#define REG_LUT_ADDR 0x24
#define REG_RESERVED_1 0x25
#define REG_LUT_DATA 0x26
#define REG_INK_CURSOR_CONTROL 0x27
#define REG_CURSOR_X_POSITION0 0x28
#define REG_CURSOR_X_POSITION1 0x29
#define REG_CURSOR_Y_POSITION0 0x2A
#define REG_CURSOR_Y_POSITION1 0x2B
#define REG_INK_CURSOR_COLOR0_0 0x2C
#define REG_INK_CURSOR_COLOR0_1 0x2D
#define REG_INK_CURSOR_COLOR1_0 0x2E
#define REG_INK_CURSOR_COLOR1_1 0x2F
#define REG_INK_CURSOR_START_ADDR 0x30
#define REG_ALTERNATE_FRM 0x31

/*
** WARNING!!! MAX_REG must be the last available register!!!
*/
#define MAX_REG 0x31

#endif /* __HAL_REGS_H__ */

The following header file defines the structures used in the S1D13505 HAL API.

**===
** HAL.H
**---
** Created 1998, Epson Research & Development
** Vancouver Design Center.
** Copyright(c) Epson Research and Development Inc. 1997, 1998. All rights

 reserved.
**===
*/

#ifndef _HAL_H_
#define _HAL_H_
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 99
Vancouver Design Center
#pragma warning(disable:4001) // Disable the 'single line comment' warning.

#include "hal_regs.h"

/*---*/

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;
typedef unsigned int UINT;
typedef int BOOL;

#ifdef INTEL
 typedef BYTE far *LPBYTE;
 typedef WORD far *LPWORD;
 typedef DWORD far *LPDWORD;
#else
 typedef BYTE *LPBYTE;
 typedef WORD *LPWORD;
 typedef DWORD *LPDWORD;
#endif

#ifndef LOBYTE
#define LOBYTE(w) ((BYTE)(w))
#endif

#ifndef HIBYTE
#define HIBYTE(w) ((BYTE)(((UINT)(w) >> 8) & 0xFF))
#endif

#ifndef LOWORD
#define LOWORD(l) ((WORD)(DWORD)(l))
#endif

#ifndef HIWORD
#define HIWORD(l) ((WORD)((((DWORD)(l)) >> 16) & 0xFFFF))
#endif

#ifndef MAKEWORD
#define MAKEWORD(lo, hi) ((WORD)(((WORD)(lo)) | (((WORD)(hi)) << 8)))
#endif

#ifndef MAKELONG
#define MAKELONG(lo, hi) ((long)(((WORD)(lo)) | (((DWORD)((WORD)(hi))) << 16)))
#endif

#ifndef TRUE
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 100 Epson Research and Development
Vancouver Design Center
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#define OFF 0
#define ON 1

#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif

/*---*/

/*
** SIZE_VERSION is the size of the version string (eg. "1.00")
** SIZE_STATUS is the size of the status string (eg. "b" for beta)
** SIZE_REVISION is the size of the status revision string (eg. "00")
*/
#define SIZE_VERSION 5
#define SIZE_STATUS 2
#define SIZE_REVISION 3

#ifdef ENABLE_DPF /* Debug_printf() */

#define DPF(exp) printf(#exp "\n")
#define DPF1(exp) printf(#exp " = %d\n", exp)
#define DPF2(exp1, exp2) printf(#exp1 "=%d " #exp2 "=%d\n", exp1, exp2)
#define DPFL(exp) printf(#exp " = %x\n", exp)

#else

#define DPF(exp) ((void)0)
#define DPF1(exp) ((void)0)
#define DPFL(exp) ((void)0)

#endif

/*---*/

enum
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 101
Vancouver Design Center
{
 ERR_OK = 0, /* No error, call was successful. */
 ERR_FAILED, /* General purpose failure. */

 ERR_UNKNOWN_DEVICE, /* */
 ERR_INVALID_PARAMETER, /* Function was called with invalid parameter. */
 ERR_HAL_BAD_ARG,
 ERR_TOOMANY_DEVS,

 ERR_INVALID_STD_DEVICE
};

/***
 * Definitions for seGetId()
 ***/
enum
{
 ID_UNKNOWN,
 ID_SED1355,
 ID_SED1355F0A
};

#define MAX_DEVICE 10

/*
** SE_RESERVED is for reserved device
*/
#define SE_RESERVED 0

/*
** DetectEndian is used to determine whether the most significant
** and least significant bytes are reversed by the given compiler.
*/
#define ENDIAN 0x1234
#define REV_ENDIAN 0x3412

/***
 * Definitions for Internal calculations.
 ***/

#define MIN_NON_DISP_X 32
#define MAX_NON_DISP_X 256

#define MIN_NON_DISP_Y 2
#define MAX_NON_DISP_Y 64

/***
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 102 Epson Research and Development
Vancouver Design Center
 * Definitions for seSetFont
 ***/

enum
{
 HAL_STDOUT,
 HAL_STDIN,
 HAL_DEVICE_ERR
};

#define FONT_NORMAL 0x00
#define FONT_DOUBLE_WIDTH 0x01
#define FONT_DOUBLE_HEIGHT 0x02

enum
{
 RED,
 GREEN,
 BLUE
};

/***
 * Definitions for seSplitScreen()
 ***/

enum
{
SCREEN1 = 1,
SCREEN2
};

/***
 * Definitions for sePowerSaveMode()
 ***/

#define PWR_CBR_REFRESH 0x00
#define PWR_SELF_REFRESH 0x01
#define PWR_NO_REFRESH 0x02

/***/

enum
{
DISP_MODE_LCD = 0,
DISP_MODE_CRT,
DISP_MODE_SIMULTANEOUS,
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 103
Vancouver Design Center
MAX_DISP_MODE
};

typedef struct tagHalStruct
{
 char szIdString[16];
 WORD wDetectEndian;
 WORD wSize;
 WORD wDefaultMode;

 BYTE Regs[MAX_DISP_MODE][MAX_REG + 1];

 DWORD dwClkI; /* Input Clock Frequency (in kHz) */
 DWORD dwBusClk; /* Bus Clock Frequency (in kHz) */
 DWORD dwRegAddr; /* Starting address of registers */
 DWORD dwDispMem; /* Starting address of display buffer memory */
 WORD wPanelFrameRate; /* Desired panel frame rate */

 WORD wCrtFrameRate; /* Desired CRT rate */
 WORD wMemSpeed; /* Memory speed in ns */
 WORD wTrc; /* Ras to Cas Delay in ns */
 WORD wTrp; /* Ras Precharge time in ns */
 WORD wTrac; /* Ras Access Charge time in ns */
 WORD wHostBusWidth; /* Host CPU bus width in bits */

} HAL_STRUCT;

typedef HAL_STRUCT * PHAL_STRUCT;

#ifdef INTEL
typedef HAL_STRUCT far * LPHAL_STRUCT;
#else
typedef HAL_STRUCT * LPHAL_STRUCT;
#endif

/*===*/
/* FUNCTION PROTO-TYPES */
/*===*/

/*---------------------------- HAL Support --------------------------------*/

int seInitHal(void);
int seGetDetectedBusWidth(int *bits);
int seRegisterDevice(const LPHAL_STRUCT lpHalInfo, int *Device);
int seGetMemSize(int seReserved1, DWORD *val);

#define CLEAR_MEM TRUE
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 104 Epson Research and Development
Vancouver Design Center
#define DONT_CLEAR_MEM FALSE
int seSetDisplayMode(int device, int DisplayMode, int ClearMem);

int seSetInit(int device);

int seGetId(int seReserved1, int *pId);
void seGetHalVersion(const char **pVersion, const char **pStatus, const char **pSta-
tusRevision);

/*---------------------------- Chip Access --------------------------------*/

int seGetReg(int seReserved1, int index, BYTE *pValue);
int seSetReg(int seReserved1, int index, BYTE value);

/*------------------------------- Misc ------------------------------------*/

int seSetBitsPerPixel(int seReserved1, UINT nBitsPerPixel);
int seGetBitsPerPixel(int seReserved1, UINT *pBitsPerPixel);

int seGetBytesPerScanline(int seReserved1, UINT *pBytes);
int seGetScreenSize(int seReserved1, UINT *width, UINT *height);
int seHWSuspend(int seReserved1, BOOL val);
int seSelectBusWidth(int seReserved1, int width);

int seDelay(int seReserved1, DWORD Seconds);

int seGetLastUsableByte(int seReserved1, DWORD *LastByte);
int seDisplayEnable(int seReserved1, BYTE NewState);

int seSplitInit(int seReserved1, DWORD wScrn1Addr, DWORD wScrn2Addr);
int seSplitScreen(int nReserved1, int WhichScreen, long VisibleScanlines);
int seVirtInit(int seReserved1, DWORD xVirt, DWORD *yVirt);
int seVirtMove(int seReserved1, int nWhichScreen, DWORD x, DWORD y);

/*-------------------------- Power Save -----------------------------------*/

int seSetPowerSaveMode(int seReserved1, int PowerSaveMode);

/*------------------------- Memory Access ---------------------------------*/

int seReadDisplayByte(int seReserved1, DWORD offset, BYTE *pByte);
int seReadDisplayWord(int seReserved1, DWORD offset, WORD *pWord);
int seReadDisplayDword(int seReserved1, DWORD offset, DWORD *pDword);

int seWriteDisplayBytes(int seReserved1, DWORD addr, BYTE val, DWORD count);
int seWriteDisplayWords(int seReserved1, DWORD addr, WORD val, DWORD count);
int seWriteDisplayDwords(int seReserved1, DWORD addr, DWORD val, DWORD count);

/*------------------------------- Drawing ---------------------------------*/
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 105
Vancouver Design Center
int seGetInkStartAddr(int seReserved1, DWORD *addr);

int seGetPixel(int seReserved1, long x, long y, DWORD *pVal);

int seSetPixel(int seReserved1, long x, long y, DWORD color);
int seDrawLine(int seReserved1, long x1, long y1, long x2, long y2, DWORD color);
int seDrawRect(int seReserved1, long x1, long y1, long x2, long y2, DWORD color,
BOOL SolidFill);
int seDrawEllipse(int seReserved1, long xc, long yc, long xr, long yr, DWORD color,
BOOL SolidFill);
int seDrawCircle(int seReserved1, long xCenter, long yCenter, long radius, DWORD
color, BOOL SolidFill);

/*------------------------------- Hardware Cursor ------------------------------*/

int seInitCursor(int seReserved1);
int seCursorOff(int seReserved1);
int seGetCursorStartAddr(int seReserved1, DWORD *addr);
int seMoveCursor(int seReserved1, long x, long y);
int seSetCursorColor(int seReserved1, int index, DWORD color);
int seSetCursorPixel(int seReserved1, long x, long y, DWORD color);
int seDrawCursorLine(int seReserved1, long x1, long y1, long x2, long y2, DWORD
color);
int seDrawCursorRect(int seReserved1, long x1, long y1, long x2, long y2, DWORD
color, BOOL SolidFill);
int seDrawCursorEllipse(int seReserved1, long xc, long yc, long xr, long yr, DWORD
color, BOOL SolidFill);
int seDrawCursorCircle(int seReserved1, long xCenter, long yCenter, long radius,
DWORD color, BOOL SolidFill);

/*------------------------------- Hardware Ink Layer ---------------------------*/

int seInitInk(int seReserved1);
int seInkOff(int seReserved1);
int seGetInkStartAddr(int seReserved1, DWORD *addr);
int seSetInkColor(int seReserved1, int index, DWORD color);
int seSetInkPixel(int seReserved1, long x, long y, DWORD color);
int seDrawInkLine(int seReserved1, long x1, long y1, long x2, long y2, DWORD color
);
int seDrawInkRect(int seReserved1, long x1, long y1, long x2, long y2, DWORD color,
BOOL SolidFill);
int seDrawInkEllipse(int seReserved1, long xc, long yc, long xr, long yr, DWORD
color, BOOL SolidFill);
int seDrawInkCircle(int seReserved1, long xCenter, long yCenter, long radius, DWORD
color, BOOL SolidFill);

/*------------------------------ Color ------------------------------------*/

int seSetLut(int seReserved1, BYTE *pLut, int count);
int seGetLut(int seReserved1, BYTE *pLut, int count);
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 106 Epson Research and Development
Vancouver Design Center
int seSetLutEntry(int seReserved1, int index, BYTE *pEntry);
int seGetLutEntry(int seReserved1, int index, BYTE *pEntry);

/*--------------------------- C Like Support ------------------------------*/

int seDrawText(int seReserved1, char *fmt, ...);
int sePutChar(int seReserved1, int ch);
int seGetChar(void);

/*--------------------------- XLIB Support --------------------------------*/

int seGetLinearDispAddr(int seReserved1, DWORD *pDispLogicalAddr);
int InitLinear(int seReserved1);

#endif /* _HAL_H_ */
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

Epson Research and Development Page 107
Vancouver Design Center
Appendix A Supported Panel Values

A.1 Supported Panel Values

The following tables show related register data for different panels. All the examples are
based on 8 bpp and 2M bytes of 50 ns EDO-DRAM.

Note
The following settings may not reflect the ideal settings for your system configuration.
Power, speed, and cost requirements may dictate different starting parameters for your
system (e.g. 320x240@78Hz using 12MHz clock).

Table 12-1: Passive Single Panel @ 320x240 with 40MHz Pixel Clock

Register
Mono 4-Bit

320X240@60Hz

Mono 4-Bit
EL

 320X240@60Hz

Color 8-Bit
320X240@60Hz

Color 8-Bit
Format 2

320X240@60Hz

Notes

REG[02h] 0000 0000 1000 0000 0001 0100 0001 1100 set panel type

REG[03h] 0000 0000 0000 0000 0000 0000 0000 0000 set MOD rate
REG[04h] 0010 0111 0010 0111 0010 0111 0010 0111 set horizontal display width
REG[05h] 0001 0111 0001 0111 0001 0111 0001 0111 set horizontal non-display period

REG[08h] 1110 1111 1110 1111 1110 1111 1110 1111 set vertical display height bits 7-0
REG[09h] 0000 0000 0000 0000 0000 0000 0000 0000 set vertical display height bits 9-8
REG[0Ah] 0011 1110 0011 1110 0011 1110 0011 1110 set vertical non-display period

REG[0Dh] 0000 1101 0000 1101 0000 1101 0000 1101 set 8 bpp and LCD enable
REG[19h] 0000 0011 0000 0011 0000 0011 0000 0011 set MCLK and PCLK divide

REG[1Bh] 0000 0001 0000 0001 0000 0001 0000 0001 disable half frame buffer
REG[24h] 0000 0000 0000 0000 0000 0000 0000 0000 set Look-Up Table address to 0
REG[26h] load LUT load LUT load LUT load LUT load Look-Up Table

Table 12-2: Passive Single Panel @ 640x480 with 40MHz Pixel Clock

Register
Mono 8-Bit

640X480@60Hz

Color 8-Bit
640X480@60Hz

Color 16-Bit
640X480@60Hz

Notes

REG[02h] 0001 0000 0001 0100 0010 0100 set panel type
REG[03h] 0000 0000 0000 0000 0000 0000 set MOD rate

REG[04h] 0100 1111 0100 1111 0100 1111 set horizontal display width
REG[05h] 0000 0011 0000 0011 0000 0011 set horizontal non-display period
REG[08h] 1101 1111 1101 1111 1101 1111 set vertical display height bits 7-0

REG[09h] 0000 0001 0000 0001 0000 0001 set vertical display height bits 9-8
REG[0Ah] 0000 0010 0000 0010 0000 0010 set vertical non-display period
REG[0Dh] 0000 1101 0000 1101 0000 1101 set 8 bpp and LCD enable

REG[19h] 0000 0001 0000 0001 0000 0001 set MCLK and PCLK divide
REG[1Bh] 0000 0001 0000 0001 0000 0001 disable half frame buffer
REG[24h] 0000 0000 0000 0000 0000 0000 set Look-Up Table address to 0

REG[26h] load LUT load LUT load LUT load Look-Up Table
Programming Notes and Examples S1D13505
Issue Date: 01/02/05 X23A-G-003-07

Page 108 Epson Research and Development
Vancouver Design Center
Table 12-3: Passive Dual Panel @ 640x480 with 40MHz Pixel Clock

Register
 Mono 4-Bit EL

640X480@60Hz

Mono 8-Bit
640X480@60Hz

Color 8-Bit
640X480@60Hz

Color 16-Bit
640X480@60Hz

Notes

REG[02h] 1000 0010 0001 0010 0001 0110 0010 0110 set panel type

REG[03h] 0000 0000 0000 0000 0000 0000 0000 0000 set MOD rate

REG[04h] 0100 1111 0100 1111 0100 1111 0100 1111 set horizontal display width

REG[05h] 0000 0101 0000 0101 0000 0101 0000 0101 set horizontal non-display period

REG[08h] 1110 1111 1110 1111 1110 1111 1110 1111 set vertical display height bits 7-0

REG[09h] 0000 0000 0000 0000 0000 0000 0000 0000 set vertical display height bits 9-8

REG[0Ah] 0011 1110 0011 1110 0011 1110 0011 1110 set vertical non-display period

REG[0Dh] 0000 1101 0000 1101 0000 1101 0000 1101 set 8 bpp and LCD enable

REG[19h] 0000 0010 0000 0010 0000 0010 0000 0010 set MCLK and PCLK divide

REG[1Bh] 0000 0000 0000 0000 0000 0000 0000 0000 enable half frame buffer

REG[24h] 0000 0000 0000 0000 0000 0000 0000 0000 set Look-Up Table address to 0

REG[26h] load LUT load LUT load LUT load LUT load Look-Up Table

Table 12-4: TFT Single Panel @ 640x480 with 25.175 MHz Pixel Clock

Register
Color 16-Bit

 640X480@60Hz
Notes

REG[02h] 0010 0101 set panel type

REG[03h] 0000 0000 set MOD rate

REG[04h] 0100 1111 set horizontal display width

REG[05h] 0001 0011 set horizontal non-display period

REG[06h] 0000 0001 set HSYNC start position

REG[07h] 0000 1011 set HSYNC polarity and pulse width

REG[08h] 1101 1111 set vertical display height bits 7-0

REG[09h] 0000 0001 set vertical display height bits 9-8

REG[0Ah] 0010 1011 set vertical non-display period

REG[0Bh] 0000 1001 set VSYNC start position

REG[0Ch] 0000 0001 set VSYNC polarity and pulse width

REG[0Dh] 0000 1101 set 8 bpp and LCD enable

REG[19h] 0000 0000 set MCLK and PCLK divide

REG[1Bh] 0000 0001 disable half frame buffer

REG[24h] 0000 0000 set Look-Up Table address to 0

REG[26h] load LUT load Look-Up Table
S1D13505 Programming Notes and Examples
X23A-G-003-07 Issue Date: 01/02/05

	S1D13505 Embedded RAMDAC LCD/CRT Controller
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Initialization
	Table 2-1: S1D13505 Initialization Sequence
	2.1 Miscellaneous

	3 Memory Models
	3.1 Display Buffer Location
	3.1.1 Memory Organization for One Bit-Per-Pixel (2 Colors/Gray Shades)
	Figure 3-1: Pixel Storage for 1 Bpp (2 Colors/Gray Shades) in One Byte of Display Buffer

	3.1.2 Memory Organization for Two Bit-Per-Pixel (4 Colors/Gray Shades)
	Figure 3-2: Pixel Storage for 2 Bpp (4 Colors/Gray Shades) in One Byte of Display Buffer

	3.1.3 Memory Organization for Four Bit-Per-Pixel (16 Colors/Gray Shades)
	Figure 3-3: Pixel Storage for 4 Bpp (16 Colors/Gray Shades) in One Byte of Display Buffer

	3.1.4 Memory Organization for Eight Bit-Per-Pixel (256 Colors/16 Gray Shades)
	Figure 3-4: Pixel Storage for 8 Bpp (256 Colors/16 Gray Shades) in One Byte of Display Buffer

	3.1.5 Memory Organization for Fifteen Bit-Per-Pixel (32768 Colors/16 Gray Shades)
	Figure 3-5: Pixel Storage for 15 Bpp (32768 Colors/16 Gray Shades) in Two Bytes of Display Buffer

	3.1.6 Memory Organization for Sixteen Bit-Per-Pixel (65536 Colors/16 Gray Shades)
	Figure 3-6: Pixel Storage for 16 Bpp (65536 Colors/16 Gray Shades) in Two Bytes of Display Buffer

	4 Look-Up Table (LUT)
	4.1 Look-Up Table Registers
	4.2 Look-Up Table Organization
	Table 4-1: Look-Up Table Configurations
	Table 4-2: Recommended LUT Values for 1 Bpp Color Mode
	Table 4-3: Example LUT Values for 2 Bpp Color Mode
	Table 4-4: Suggested LUT Values to Simulate VGA Default 16 Color Palette
	Table 4-5: Suggested LUT Values to Simulate VGA Default 256 Color Palette
	Table 4-6: Recommended LUT Values for 1 Bpp Gray Shade
	Table 4-7: Suggested Values for 2 Bpp Gray Shade
	Table 4-8: Suggested LUT Values for 4 Bpp Gray Shade

	5 Advanced Techniques
	5.1 Virtual Display
	Figure 5-1: Viewport Inside a Virtual Display
	5.1.1 Registers
	Figure 5-2: Memory Address Offset Registers

	5.1.2 Examples

	5.2 Panning and Scrolling
	5.2.1 Registers
	Figure 5-3: Screen 1 Start Address Registers
	Table 5-1: Number of Pixels Panned Using Start Address
	Figure 5-4: Pixel Panning Register
	Table 5-2: Active Pixel Pan Bits

	5.2.2 Examples

	5.3 Split Screen
	Figure 5-5: 320x240 Single Panel For Split Screen
	5.3.1 Registers
	Figure 5-6: Screen 1 Line Compare
	Figure 5-7: Screen 2 Display Start Address

	5.3.2 Examples

	6 LCD Power Sequencing and Power Save Modes
	6.1 LCD Power Sequencing
	6.1.1 Registers
	6.1.2 LCD Power Disable

	6.2 Software Power Save
	6.2.1 Registers
	Table 6-1: Suspend Refresh Selection

	6.3 Hardware Power Save

	7 Hardware Cursor/Ink Layer
	7.1 Introduction
	7.2 Registers
	Table 7-1: Ink/Cursor Mode
	Table 7-2: Cursor/Ink Start Address Encoding

	7.3 Limitations
	7.3.1 Updating Hardware Cursor Addresses
	7.3.2 Reg[29h] And Reg[2Bh]
	7.3.3 Reg [30h]
	7.3.4 No Top/Left Clipping on Hardware Cursor

	7.4 Examples

	8 SwivelView
	8.1 Introduction To SwivelView
	8.2 S1D13505 SwivelView
	8.3 Registers
	8.4 Limitations
	8.5 Examples

	9 CRT Considerations
	9.1 Introduction
	9.1.1 CRT Only
	9.1.2 Simultaneous Display

	10 Identifying the S1D13505
	11 Hardware Abstraction Layer (HAL)
	11.1 Introduction
	11.2 Contents of the HAL_STRUCT
	11.3 Using the HAL library
	11.4 API for 13505HAL
	Table 11-1: HAL Functions

	11.5 Initialization
	11.5.1 General HAL Support
	11.5.2 Advanced HAL Functions
	11.5.3 Register / Memory Access
	11.5.4 Color Manipulation
	11.5.5 Drawing
	11.5.6 Hardware Cursor
	11.5.7 Ink Layer
	11.5.8 Power Save

	11.6 Porting LIBSE to a new target platform
	Figure 11-1: Components needed to build 13505 HAL application
	11.6.1 Building the LIBSE library for SH3 target example
	11.6.2 Building the HAL library for the target example
	11.6.3 Building a complete application for the target example

	12 Sample Code
	12.1 Introduction
	12.1.1 Sample code using the S1D13505 HAL API
	12.1.2 Sample code without using the S1D13505 HAL API
	12.1.3 Header Files
	Table 12-1: Passive Single Panel @ 320x240 with 40MHz Pixel Clock
	Table 12-2: Passive Single Panel @ 640x480 with 40MHz Pixel Clock
	Table 12-3: Passive Dual Panel @ 640x480 with 40MHz Pixel Clock
	Table 12-4: TFT Single Panel @ 640x480 with 25.175 MHz Pixel Clock

