Spartan-3 Generation
FPGA User Guide

Extended Spartan-3A,
Spartan-3E, and Spartan-3
FPGA Families

UG331 (v1.8) June 13, 2011

SXILINX

& XILINX®

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS 1S" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising
under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same.
Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not
reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and
conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2006—2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zyng, and other designated brands included
herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision
12/05/06 1.0 Initial release.
02/26/07 1.1 Added Spartan-3AN platform.
04/02/07 1.2 Added Spartan-3A DSP platform.
02/14/08 1.3 Updated for latest package offerings. Updated and corrected descriptions and figures
throughout. Updated links for new xilinx.com navigation.
06/25/08 1.4 Added and updated links to design files. Updated banking rules in I/O section. Added

reference to XAPP459 in “Using Large-Swing Signals”.

01/21/09 1.5 Updated document to refer to Extended Spartan-3A family. Corrected column headers
CLKA and CLKB in Table 4-14 on page 181. Clarified DCM “Output Alignment” on
page 131. Added section “Spartan-3A and Spartan-3A DSP FPGA Dual-Range
VCCAUX” on page 353.

Spartan-3 Generation FPGA User Guide www.xilinx.com UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

Date

Version

Revision

12/03/09

1.6

Updated “Extended Spartan-3A Family Features,” page 32. Updated “I/O Capabilities,”
page 38. Updated “Global Clock Resources” and Figure 2-1 on page 46 and “Additional
Information,” page 62 to note that local clocking is not recommended. Added Figure 2-6
and described CLKO to CLK1 switchover in “BUFGMUX Multiplexing Details,” page
54. Updated “Using Clock Buffers/Multiplexers in a Design,” page 55 and added
Figure 2-7. Updated “XST Synthesis of Clock Buffers,” page 56. Added Table 2-8 with
clock quadrant locations. Clarified “Digital Frequency Synthesizer (DFS)”and “Phase
Shift (PS),” page 70. Updated “Output Availability Depends on DLL Frequency Mode,”
page 118. Updated “Fine Phase Shifting,” page 119. Revised Figure 4-1 to show parity
integers on the data paths. Updated “Carry and Floorplanning,” page 301. Added
“Clamp Diodes,” page 334. Removed references to older software versions in
“Specifying an I/O Standard with the IOSTANDARD Attribute,” page 341,
“LVCMOS/LVTTL Slew Rate Control and Drive Strength,” page 343, and “Differential
I/0 Standards,” page 349. Clarified BSDL termination in “BLVDS Output Termination,”
page 351. Removed references to older software versions in “IOBs Organized into
Banks,” page 354. Corrected V¢ value for MINI_LVDS_33/Input with DIFF_TERM
inTable 10-20. Revised Viggnote in Table 10-20, Table 10-21, and Table 10-22 to state that
VgzEgr is not used for the differential 1/0 standards described in the table. Removed
references to older software versions in“Floorplanning,” page 411 and “Constraints
Editor,” page 421. Updated “Differences in Packages Between Spartan-3 Generation
Families,” page 447. Added footnote in Table 17-1 to indicate that the CP132 and CPG132
packages are being discontinued. Added recommended power-down sequence to “Hot
Swap,” page 471. Updated “Application State Retained during Suspend Mode,” page
486. Updated “Extended Spartan-3A Family FPGA: Turn Off VCCO,” page 495.
Updated the FG900/FGG900 package drawing in Figure 17-12.

08/19/10

1.7

Updated values for FG400 in upper half of Table 3-18. Updated note under “Address
Input”. Added “Timing Parameters” section. Added “Note relevant to Figure 10-1”.
Added last sentence to paragraph immediately following Figure 10-15. Added last
sentence to second paragraph under “ODDR2”. Added "to Vcp” to last sentence under
“ESD Protection”. Added “Parasitic Leakage” section. Added last paragraph to “Supply
Sequencing”.

06/13/11

1.8

Added text, where applicable, indicating that the original Spartan-3 FPGA family is not
recommended for new designs. Updated links for new xilinx.com navigation. Updated
values for maximum user I/O and maximum differential I/O pairs for device
XC3S50AN in Table 1-4. Updated values for available user 1/Os and differential I/O
pairs in Table 1-11. Removed section on calculating jitter for cascaded DCMs from
Chapter 3. Added first paragraph to “Cascaded DCM Design Recommendations”.
Added third sentence to Note under “Address Input”. Added second note to “Notes
relevant to Figure 10-1”. Updated I/O value for device XC3S50AN in Table 10-1. Added
information to description of “IBUFDS”. Updated description of “Dynamic
Combinatorial Delay in the Extended Spartan-3A Family” (also added the word
”combinatorial” to section title). Added second paragraph to “Spartan-3A and Spartan-
3A DSP FPGA Dual-Range VCCAUX”. Deleted Table 14-1, Spartan-3 Generation IP
Cores Support. Updated the FG676 /FGG676 package drawing in Figure 17-11. Updated
VN max recommended values for Spartan-3AN FPGA and Spartan-3A /3A DSP
FPGAfamilies in Table 18-1. Expanded last sentence under “No Internal Charge Pumps
or Free-Running Oscillators”. Corrected parameter names TSUSPEND_GTS and
TSUSPEND_GWE in Table 19-2. Removed the fourth and sixth paragraphs under
“Differential I/O Standards”.

UG331 (v1.8) June 13, 2011

www.xilinx.com Spartan-3 Generation FPGA User Guide

http://www.xilinx.com

Spartan-3 Generation FPGA User Guide www.xilinx.com UG331 (v1.8) June 13, 2011

http://www.xilinx.com

Table of Contents

Revision History. 2

Preface: About This Guide

Guide Contents. 23
Additional ReSoUTICes 24
CONVeNtIONSo 24
Typographical. 24
Online DOCUIMENTot e e e e e 25

Section 1: Designing with Spartan-3 Generation FPGAsS

Chapter 1. Overview

Introduction 29
Spartan-3 Generation Families 30
Extended Spartan-3A Family Features.......... 32

Spartan-3AN Platform Additional Features 33

Spartan-3A DSP Platform Additional Features........... 34
Spartan-3 Generation Resources 34
Architectural Overview 36
Configuration 37
I/O Capabilities. 38
Package Marking 42
Ordering Information. 43

Chapter 2: Using Global Clock Resources

SUMMAATY . . . 45
Introduction 45
Global Clock Resource Differences between Spartan-3 Generation Families.................. 45
Global Clock ReSOUICES.o e e e e 46
Clocking Infrastructure 46
Clock Inputs.o 48
Extended Spartan-3A Family Clock Inputs 48
Spartan-3E FPGA Clock Inputs 50
Spartan-3 FPGA Clock Inputs 51
Clock Inputs and DCMSo 51
Differential Clocks Using TwoInputs i 51
Using Dedicated Clock InputsinaDesign i i i 52
IBUFG . . .o e 52
IBUFGDS . . . o e 52

Clock Buffers/Multiplexers 53
BUFGMUX Multiplexing Details............. 54
Spartan-3 Generation FPGA User Guide www.xilinx.com 5

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

Chapter : XX"JNX@

Using Clock Buffers/MultiplexersinaDesign 55
BUFGMUX and BUEGMUX L. . ..ottt ettt e e e ettt et e e ettt e e e et 55

BUER G . . .ot e 55

BUFGCE and BUFGCE 1ottt e e ettt e e e e e et e e et i 56

XST Synthesis of Clock Buffers 56
BUFGMUX Connection Details 57
BUFGMUX INPULS . ..o e 57
BUFGMUX Outputs e 59
Spartan-3 Global Clock Buffers 59
Quadrant Clock Routing 59
Choosing Top/Bottom and Left-/Right-Half Global Buffers 61
Spartan-3 FPGA Global Clock Routing 61
Other Information 61
Clock Power Consumption.t 61
Clock Setup and Hold Timing o e 62
SUMMATY . .. 62
Additional Information. oo 62

Chapter 3: Using Digital Clock Managers (DCMs)

SUMMAATY 65
Introductiono 65
Document OVerVICWo 66
Compatibility and Comparison with Other Xilinx FPGA Families 67
DCM Locations and Clock Distribution Network Interface 68
DCM Functional Overview 69
Delay-Locked Loop (DLL) i e 70
Digital Frequency Synthesizer (DFS) 70
Phase SHift (PS)ottt ettt e e e e e e e e e 70
Status Logic. . ..o 71
DCM Primitive 71
YOl . . 72
ConNECtiON POTES . . .ottt 72
Attributes, Properties, or Constraints i i 76
DCM Clock Requirements 80
Input Clock Frequency Range e 80
Output Clock Frequency Range. 81
Input Clock and Clock Feedback Variation................ i 81
Cycle-to-Cycle Jitter. . . . oo e 82

Period JItter . . . oottt e 82

DLL Feedback Delay Variance. i 83

Spread Spectrum Clocks o 83
Optimal DCM Clock and External Feedback Inputs 84
Spartan-3E FPGA DCM Clock Inputso e e i 84
Extended Spartan-3A Family FPGADCM ClockInputs. i 87
LOCKED Output Behavior. 90
Using the LOCKED Signal e 91
Spartan-3A FPGA DCM Digital Frequency Synthesizer Requires Additional Lock Circuitry 92
RST Input Behavior. 92
6 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Clocking Wizard. 93
Invoking Clocking Wizard 93
From Windows Start BULtOnot 93

From within Project Navigator 94

General Setup 95
Advanced Options 97
Clock Buffers. 98
Clock Frequency Synthesizer........ 99
Generating HDL Output. 100
VHDL and Verilog Instantiation 101
Language Templates within Project Navigator i 101
Eliminating Clock Skew 102
Whatis Clock SkeW? 102
Clock Skew: The Performance Thief 103
Make It Go Away! 103
Predicting the Future by Closely Examining thePast ... 104
Locked onTarget 105

A Stable, Monotonic Clock Input. o oo 105
Feedback from a Reliable Source............... . 106
Removing Skew from an Internal Clock. i 106
Removing Skew from an External Clock 107
Reset DCM After Configuration i i i i 107

Why ReSet? 108

Whatis a Delay-Locked Loop? 109
Delay-Locked Loop (DLL). . . oottt e e e e e 109
Phase-Locked Loop (PLL)o oottt e e e 110
Implementationo . 110

DL Vs, PLL. . oo e e 110

Skew Adjustment. 110
System SYNCRIONOUS oo\ttt ettt e et e e 110

SoUrce SYNCAIONOUS vttt ettt e e ettt e et e 111

Timing COmMPAriSONS oottt 112

Clock Conditioning. 112
Spartan-3E and Extended Spartan-3A Family FPGA Output Clock Conditioning 113
Spartan-3 FPGA Output Clock Conditioning o .. 113
Phase Shifting — Delaying Clock Outputs by a Fraction of a Period 114
Half-Period Phase Shifted Outputs............. . 115
Half-Period Phase Shift Outputs Reduce Duty-Cycle Distortion. 116
Dual-Data Rate (DDR) Clocking Example. i 116
Quadrant Phase Shifted Outputs........... 117
Output Availability Depends on DLL Frequency Mode i, 118
Spartan-3 FPGA: Optional 50/50 Duty Cycle Correction 118

Four Phases, Delayed Clock Edges, Phased Pulses i 119

Fine Phase Shifting. 119
Fixed Fine Phase Shifting 120
Spartan-3 Family Fixed Fine Phase Shift Range. i 120
Minimum Phase Shift Size. 122

Other Design Considerations. i 122

Clocking Wizard i 122
Variable Fine Phase Shifting. 123
Important Differences Between Spartan-3 Generation FPGA Families 123
Spartan-3E and Extended Spartan-3A Family FPGA Variable Phase Shift Operations. 124
OPeration.t 125
Spartan-3 Generation FPGA User Guide www.xilinx.com 7

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter : XX"JNX@

Variable Fine Phase Shift Range i i i 126
Spartan-3 FPGA Family Variable Phase Shift Range............. 126
Spartan-3E and Extended Spartan-3A Family Variable Phase-Shift Range. 127

CONIOlS . . ot 127

Clocking Wizardo e 129

Example Applications 129

Clock Multiplication, Clock Division, and Frequency Synthesis 129
Output ALGNMENt.o e 131
Frequency Synthesis Applications 131
Input and Output Clock Frequency Restrictions 132
Clock Doubler (CLK2X, CLK2XT80) . . .« vttt ettt e e e e e e e e e e e e e e e e 133
Clock Divider (CLKDYV) . .ottt e 134
CLKDV Clock Conditioning oottt ittt it 135

CLKDYV Jitter Depends on Frequency Mode and Integer or Non-Integer Value 136

Clocking Wizardo 136
Frequency Synthesizer (CLKFX, CLKEX180). e 136
Clocking Wizardo 138

Clock Forwarding, Mirroring, Rebuffering 139
Clock Jitter or Phase NOiSe. 140
What is CloCK JItter? . ..ottt e e e e e e e e e e e e e e e 140
What Causes ClocK JItter?ottt e e e e e e e e e e 141
Understanding Clock Jitter Specifications i 141
Cycle-to-Cycle Jitter. . . . oot 141

Period JItter . . . oottt e 142
UnitInterval (UL).ot e e e e e e e e e e 142
Calculating Total Jitter 143
Adding Input Jitter to DLL Output Jitter. o 143
Cascaded DCM Design Recommendations. i 144

Jitter Effect on System Performance 144
Example. . ..o 145
Recommended Design Practices to Minimize Clock Jitter. 145
Properly Design the Power Distribution System. i 145

Properly Design the Printed Circuit Board i 145

Obey Simultaneous Switching Output (SSO) Recommendations 145
Optionally Place Virtual Ground Pins Around DCM Input and Output Connections 146

Veceaux Considerations for Improving Jitter Performance o o oo 146
Adjusting FACTORY_JF Setting (Spartan-3 FPGA FamilyOnly) 147
Miscellaneous Advanced Topics 147
Bitstream Generation Settings 147
Setting Bitstream Generation Options in Project Navigator oo, 148

Setting Bitstream Generation Options via Command Lineor Script........... 148

Setting Configuration Logic to Wait for DCM LOCKED Outputoviuiiiiiiiin... 148

Reset DCM During Partial Reconfiguration or During Full Reconfiguration via JTAG 150
Momentarily Stopping CLKIN 150
Related Materials and References i 151

Chapter 4: Using Block RAM

SUMMATY 153
Introduction 153
Block RAM Differences between Spartan-3 Generation Families 156
8 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Block RAM Location and Surrounding Neighborhood. 157
Block RAM/Multiplier Routing Interaction 158
Data FlOWS 158
Signals 158
Data Inputsand Outputs 159
Data Input Bus — DI[#:0] (DIA[#:0], DIB[#:0]).« ottt i 159
Data Output Bus — DO[#:0] (DOA[#:0], DOB[#:0]). . . .« o oottt 159
Parity Inputsand Outputs ... 160
Data Input Parity Bus — DIP[#:0] (DIPA[#:0], DIPB[#:0])ot ot 160
Data Output Parity Bus — DOP[#:0] (DOPA[#:0], DOPB[#:0])coiniiiiiii i 160
AddressInput. 162
Address Bus — ADDR[#:0] (ADDRA[#:0], ADDRBI#0]) -+ .+ .« e eeeee e e e e 162
Control Inputs 162
Clock — CLK (CLKA, CLKB) .+« e v et et e e e e e e e e e e e e e e 162
Enable — EN (ENA, ENB)ttt e e e e e e e e e e e e 162
Write Enable — WE (WEA, WEB) . . .« . oottt e e e e et e et e et 162
Output Register Enable - REGCE (REGCEA, REGCEB) Spartan-3ADSPFPGAOnly 164
Output Latch Synchronous Set/Reset — SSR(SSRA,SSRB)o 164
Output Latch/Register Synchronous/Asynchronous Set/Reset

-RST (RSTA, RSTB) - Spartan-3ADSPFPGAOnly 164
Global Set/Reset — GSR . . . ottt e e e e e 165
Inverting Control PINSot 165
Unused INPULSot 165
Attributes 165
NUMDbEr Of POTtS . . oot e e e 166
CORE Generator SYSteIM oo oottt ettt e e 166
VHDL or Verilog Instantiation i 167
Memory Organization/Aspect Ratio 167
CORE Generator System — MemoOTy SiZe.o v ittt e i e 167
VHDL or Verilog Instantiation i 168
Address and Data Mapping Between Two Ports. i i 168
Content Initialization o e 169
CORE Generator System — Load Init File. 169
VHDL or Verilog Instantiation — INIT_xx, INITP_XX.o oo 169
Data Output Latch Initialization 170
CORE Generator System — Global Init Value. i 170
VHDL or Verilog Instantiation —INIT (INIT_AandINIT_B) 171
Data Output Latch Synchronous Set/Reset Value 171
CORE Generator System — Init Value (SINIT) 171
VHDL or Verilog Instantiation — SRVAL (SRVAL_Aand SRVAL B) it 171
Read Behavior During Simultaneous Write — WRITE_MODE 171
WRITE_FIRST or Transparent Mode (Default) i 172
READ_FIRST or Read-Before-Write Modeottt e e 173
NO_CHANGE MoOde. .\ttt e ettt e e e e e e e e et e e e e e e 174
CORE Generator System — Write Mode. o 175
VHDL or Verilog Instantiation —WRITE_MODE i 175
Location Constraints (LOC)ttt 175
Block RAM Operation 176
RAM Contents Initialized During Configuration 177

Global Set/Reset Initializes Data Output Latches Immediately After Configuration
Or Global Resett e e e 177
Enable Input Activates or Disables RAM 177
Synchronous Set/Reset Initializes Data Output Latches............... oo 178
Spartan-3 Generation FPGA User Guide www.xilinx.com 9

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter : XX"JNX@

Simultaneous Write and Synchronous Set/Reset Operations 178
Read Operations Occur on Every Clock Edge When Enableis Asserted 178
Write Operations Always Have Simultaneous Read Operation, Data Output Latches Affected 178
General Characteristics 178
Functional Compatibility with Other Xilinx FPGA Families 179
Dual-Port RAM Conflicts and Resolution i, 179
Timing Violation Conflicts 179
Simultaneous Writes to Both Ports with Different Data Conflicts 180
Write Mode Conflicts on Output Latches. o oo o i 181
Conflict ResolUtion 181
Block RAM Design Entry 181
Xilinx CORE Generator System 181
VHDL and Verilog Instantiation 182
Inferring Block RAMo 182
Instantiation Templates. 182
Initialization in VHDL or Verilog Codes. i i 183

Block RAM Applications 183
Creating Larger RAM Structures. i 183
Block RAM as Read-Only Memory (ROM) e 183

FIE OIS et e 183
Storage for Embedded Processors. 184
Updating Block RAM/ROM Content by Directly Modifying Device Bitstream 184
Two Independent Single-Port RAMs Using One Block RAM........... 185

A 256x72 Single-Port RAM Using One Block RAM o i i i i 186
Circular Buffers, Shift Registers, and Delay Lines 187
Fast Complex State Machines and Microsequencers, 189
Fast, Long Counters Using RAM. e 190
Four-Port MEmMOTY 192
Content-Addressable Memory (CAM) e 192
Implementing Logic Functions Using Block RAM i 192
Fuzzy Pattern Matching Circuit Example 193

Mapping Logic into Block RAM Using MAP —bp Option i 193
Waveform Storage, Function Tables, Direct Digital Synthesis (DDS) Using Block RAM............... 194
Related Materials and References 195
ConClUSION 195
Appendix A: VHDL Instantiation Example.............. 196
Appendix B: Verilog Instantiation Example L 199

Chapter 5: Using Configurable Logic Blocks (CLBS)

CLB OVeIVIOW . . . o e 201
CLB ALTaYo 201
CLB Differences between Spartan-3 Generation Families............... 202
SLaCS . . 203
Slice Location Designations i 205
Slice OVeIVICW 205
Logic Cells. 206
Slice Details 206
Main Logic Paths 208
Look-Up Tables. 208
10 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Wide Multiplexers. 209
Carry and Arithmetic Logic 209
Storage Elements 209

Initialization 211

Timing Parameters. 211
Distributed RAM 212
Shift Registers. 212
Related Materials. 212

Chapter 6: Using Look-Up Tables as Distributed RAM

SUMMAATY 213
Introduction 213
Single-Port and Dual-Port RAMSs 213
Data FlOW . oottt ettt e e e e e 213

Wrrite Operations i 214
Read Operation i 214
Read During Write.o oo e 214
Characteristics 215
Distributed RAM inthe CLB. e 215
Distributed RAM Differences between Spartan-3 Generation Families 216
Compatibility with Other Xilinx FPGA Families................. 217
Library Primitives 218
Signal Ports. 219
Clock — WK .o e e e 219
Enable — WE ..o 219
Address — A0, A1, A2, A3 (A4, A5, A6, A7) . oo e e 219
Dual-Port Read Address — DPRAO, DPRA1, DPRA2, DPRA3 i 219
Data In — D .o e 219
Data Out — O, SPO, and DPO 219
Inverting Control PINs. o 220
Global Set/Reset — GSRot 220
Global Write Enable — GWE e e 220

AR DUeS e 220
Content Initialization — INTT e e 220
Placement Location — LOC e 221
Distributed RAM Design Entry 223
Xilinx CORE Generator System 223
VHDL and Verilog 224
Inferring Distributed RAMo 224
Instantiation Templates. 225

Verilog Instantiation Template Example. 226

Wider Distributed RAM ModUulesttt e ettt et e e e e 227
Initialization in VHDL or Verilog Codes. i i 227
ConClUSION 227
Related Materials and References i 227
Spartan-3 Generation FPGA User Guide www.xilinx.com 11

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter : XX"JNX@

Chapter 7: Using Look-Up Tables as Shift Registers (SRL16)

SUMMATIY 229
Shift Register Differences between Spartan-3 Generation Families 229
Introduction 229
Shift Register Architecture.......... 230
LUT StrUCHUTE . . ottt e et e e e e et e e e e e e e 230
Dynamic Length Adjustment i i i 230

Logic Cell Structure 230
Registered OULPULttt e 231

SlICE SUIUCHULE . . o ittt e e e e e e e 231
CLB StrUCHUTE . . . ot ittt et e e e e e e e et e e e 232
Library Primitives 234
Initialization in VHDL and VerilogCode i 235
Port Signals 235
CloCK — CLK . o ottt e e et e e e e e e e e e 235

Data TN — . .ottt e e 235

Clock Enable — CE (optional)ot 235

Address — A3, A2, AL, AD ..o e 235

Data Out — Q . oottt e e e e 236

Data Out — Q15 (optional)ottt 236

Inverting Control PINS oot 236

GO R . et 236

AT DULES. . . oo 236
Content Initialization — INIT ittt et ettt e ettt e et e et e e 236
Location Constraints e e 236
Shift Register Operations 237
Data FlOoW ..ottt e e 237

Shift Operation e e 238

Dynamic Read Operation i i e 238

Static Read Operation 239
CRaracteriStiCS . oot ittt et e e e 239
Shift Register Inference...... 239
VHDL Inference Codeottt e e e e e 240
Verilog Inference Code 240
Shift Register Submodules. 241
Fully Synchronous Shift Registers. 242
Static-Length Shift Registers. 242
VHDL and Verilog Instantiation o 243
VHDL and Verilog Templates.o e i 243

CORE Generator System. 245
Applications. 246
Delay LINes 246
Linear Feedback Shift Registers............... 246
Gold Code Generatorottt e e e e 247
FIEOS . ot 248
COUNEETS . oottt e e e e 248
Related Materials and References i 249
CoNCIUSION 249
12 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Chapter 8: Using Dedicated Multiplexers

SUMMATIY 251
Introduction 251
Dedicated Multiplexer Differences between Spartan-3 Generation Families 251
Advantages of Dedicated Multiplexers i 252
CLB Multiplexer RESOUICES o e 253
BoMU X . 253
FIMU X o 255
Naming CONVENHONS. . . . oo .ottt ettt ettt et et et e e e e e e 255
Dedicated Local Routing. o 256
Mux Select Inputs. 257
Implementation Examples 257
Wide-Input Multiplexers 257
Wide-Input Functions 259
Timing Parameters. 262
Programmable Polarity 262
Floorplanning Multiplexers e 262
Related Uses of Multiplexers.......... 263
Multiplexers and Three-State Buffers 263
Using Memory in Place of Multiplexers............ 263
Other Multiplexers. 263
Designing with Multiplexers. 264
INference 264
Verilog INErenceottt 265

VHDL INFEIENCE. . . . ottt ettt et et ettt et e e e e e e e e 265

Library Primitives 265
Enable Signals in MUHPIEXErsttt e 266
Modeling Local Output TIMING.ottt e e e e 267
Submodules 267
Port Signals o 268
DataIn — DAT A I ..o e 268

Control In —SELECT L.ot 268

Data Out — DATA_O . ..o e 268
Applications 268
VHDL and Verilog Instantiation 268
VHDL and Verilog Submodules 269

CORE Generator System. 272
Related Materials 274
SUMMATIY 274

Chapter 9: Using Carry and Arithmetic Logic

SUMMATY 275
Introduction 275
Carry and Arithmetic Logic Differences between Spartan-3 Generation Families............. 275
Look-Ahead Carry Addition 276
Resource Details. 277
MUXCY 279

Carry Chain Bypass and Initialization 279

XORC Y . L 279
Spartan-3 Generation FPGA User Guide www.xilinx.com 13

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter : XX"JNX@

Carry Logic Connections 279
Connections Within @ SLICEottt e e e e 279
Connections between Slices and CLBSot e 280
Multiplication Resources 283
Componentand Pin Names 284
Performance 286
Specifications. 290
Designing with the Carry and ArithmeticLogic 292
Library Elements Using Carry o 292
PrImItIVES. « o v ottt e 293

XOR Y oottt e 294
MU LT AN . . e e e e e 295
Emulating Virtex-Il FPGA ORCY COmMpPONents.ttt ii it ia i 296

1Y 7 Vs o 1= 296

Using the CORE Generator System. 297
AT . . o 297
AcCCUMULATOT . . . o 298
Comparator. 298
Multiplier 298
Logic Gates 299
Carry and Synthesis Constraints 299
MUX_STYLE COonstraintot e e e e e e e e e e 299
MULT_STYLE Constraintot e e e e e e e e e 300
Carry and Relative Location Constraints 300
Carry and Floorplanning. 301
Applications. 302
WIAE Gates . ..ot 302
SUM Of PrOdUCES . . .ottt e e e e e e e e e e e 304
ComParatorso o 304
AdeOTS . . .o 305
COUNERTS .« v vttt et e e e e e 306
Multipliers. 308
Optimizing Carry-Based Multipliers. 309
MULT_AND vs. MULT I8X I8 . . . oottt et e e e e e e e e e e e e e e e e e e s 310
MULT_AND vs. CLBLOZIC. .+« v ottt ettt e ettt et i 310

Other Types of MUItIpLiers i i i et 311
CoNCIUSION . . .o 311
Related Materials and References 311

Chapter 10: Using I/O Resources

TOB OVerview 313
I/0O Differences between Spartan-3 Generation Families................ 316
Number of Resources per Device 316
Input-Only PINs.o 316

Package Footprint Compatibility........... 317
Summary of Differences i 317

Design Entry 318
Library COmMpOnentst e 318
Registered I/O.o 320
Differential I/ O . . . oo e 320

14 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

IBU . .o e e 320
IBUEG . i e e e e 321
IBUEDS .« .o e e e 321
OBUE .« .t 321
OBUET . . .t e e e e e e 321
TOBUE . e e e e e 322
DDR and Adjustable Delay I/O Components.ttt 322
HDL ENtry . . oot et e e e 322
Architectural Details. 323
Input Delay Functions. 323
Programmable Delay. 324
Dynamic Combinatorial Delay in the Extended Spartan-3A Family............... 325
Storage Element Functions 326
Double-Data-Rate Transmissionoo ittt e 328
Register Cascade Feature. i 329

D DR . e e 329

O DR . . . e 331
Pull-Up and Pull-Down Resistors 332
FPGA Pull-Up Resistor Values i i i 333
Keeper Circuit. 333
JTAG Boundary-Scan Capability i 334
SelectlO Signal Standards 334
Overview of I/O Standards i 334
Clamp DIodesot 334
LVTTL —Low-Voltage TTLo et 336
LVCMOS — Low-Voltage CMOSt e e e e e 336

PCI — Peripheral Component Interface 336

GTL — Gunning Transceiver Logic Terminated i 336
GTL+ — Gunning Transceiver Logic Plus. o 337
HSTL — High-Speed Transceiver Logic e i 337
SSTL3 — Stub Series Terminated Logic for 3.3V 337
SSTL2 — Stub Series Terminated Logic for 2.5V 337
SSTL18 — Stub Series Terminated Logic for 1.8V 337
LVDS — Low Voltage Differential Signal 337
BLVDS — Bus LVDS . . .o e e e e 337
LVPECL — Low Voltage Positive Emitter Coupled Logic 337
LDT — HyperTransport (formerly known as Lightning Data Transport). 338
mini-LVDS. L 338
LVDS Extended — Extended Mode LVDS i 338
RSDS — Reduced Swing Differential Signaling. i 338
TMDS — Transition Minimized Differential Signaling i i, 338
PPDS — Point-to-Point Differential Signaling. 338

I/0 Standard Differences between Spartan-3 Generation Families....................... 338
Specifying an I/O Standard with the IOSTANDARD Attribute 341
TIMIng ANalLysis. oot 342
LVCMOS/LVTTL Slew Rate Control and Drive Strength 343
Simultaneously Switching Outputs. i 345
HSTL/SSTL Vigg Reference Voltage 346
Single-Ended I/O Termination Techniques. i i 347
Differential I/O Standards 349
On-Chip Differential Termination. i i i 349

DCI Digitally Controlled Impedance. i e i 352
Spartan-3 Generation FPGA User Guide www.xilinx.com 15

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter : XX"JNX@

Supply Voltages forthe IOBs 353
Spartan-3A and Spartan-3A DSP FPGA Dual-Range VecauUX -+« - v oo v v veveeieiiiiiiiiiiiiiiiian 353
ESD Protection 353
IOBs Organizedinto Banks 354
Single-Ended I/0 Standard Bank Compatibility. i 354
Differential I/O Standard Bank Compatibility 358
I/OBanking Rules. 361
Using Large-Swing Signals. 361
Voltage Translators 362
Open-Drain Interfacingot 362
Voltage Clamps Using Internal Diodes i i i 363
Parasitic Leakage 363
I/O and Input-Only Pin Behavior During Power-On, Configuration, and User Mode 370
Behavior of Unused I/0 Pins After Configuration i 371

Related Materials and References 371

Chapter 11: Using Embedded Multipliers

SUMMATY 373
Introduction 373
Embedded Multiplier Resource Differences between Spartan-3 Generation Families 374
Two’s-Complement Signed Multiplier.......... 374
Location Constraints e 375
Multiplier/Block RAM Routing Interaction i 376
Optional Pipeline Registers 376
Timing Specification 377
Expanding Multipliers..... 378
Cascading Multipliers 378
Examples 379
Two Multipliers in a Single Primitive....... 381
Design Entry 382
MULT_STYLE Constraint. e e 384
Using the CORE Generator System. i 385
System Generator. 386
MAC COTES .. oo 386
Spartan-3 Family Library Primitives........ 387
Data Flow ..o 388
Multipliers in the Spartan-3 Generation Architecture o L. 388
Alternative Applications to Multiplication 389
Shifter. .. 389
Magnitude Return 390
Two’s-Complement Return 390
Complex Multiplication 391
Time Sharing in Matrix Multiplication............ 391
Floating-Point Multiplication.......... 391
Related Materials and References 392
Conclusion 392
Appendix A: Two's-Complement Multiplication 393
16 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Chapter 12: Using Interconnect

OV eIVIeW . . . 395
Interconnect Differences between Spartan-3 Generation Families................................. 395
Switch Matrix 395
Long Lines. . ..o o 397
Hex LInes. 397
Double LINeso 398
Direct CONNECtiONS.ottt 398
Viewing Interconnect Details with FPGA Editor.................... 398
Global Controls. 399
STARTUP_SPARTANS Primitives e 399
SUMMATY . .. 400

Section 2: Design Software

Chapter 13: Using ISE Design Tools

SUMMAATY 403
Introduction 403
Design Flow 403
Design Entry and Synthesis 405
Hierarchical DESIGI. oot 406
Schematic ENtry.ot 407

HDL Entry and Synthesisottt 407
CONSITAINES. & ¢ vt vttt ettt e e et e e e e e e e 408

Design Implementation. e 408
Translating. oot 409

MaPPING . o ottt et 410

Placing and ROULINGottt 411
Bitstream Generation. v v vttt e ettt e e e e e e e 411

Design Verification 411
SIMUIAION « & ¢ v v ettt et e 412

Static Timing Analysis. o 413
In-Circuit Verificationttt e et e e e e e 414

ISE Development Environment 414
Introduction to ISE TOOIS oottt e 414
Design ENtryo 414
SYNENESIS . . . o 414
SIMUIATION .« .« o o ettt e et e e e e e e e e 414
Implementation 414

Device Downloadttt e e e 415

ISE VerSIONS . .ottt ittt e e e e e e e e 415
Project Navigator 415
Project Navigator Main Window. 416

ProJect . oo 416

SOUTCES. + v vttt ettt e et e e e e e e e e e e e 417

Source Hierarchy o 417

ISE TOO0IS . o vttt ettt e e e e e e e 417
Engineering Capture System (ECS) o i 417

HDL Editor . . oottt e e e e e e e e e 417

Xilinx Synthesis Technology (XST)t i 417
Spartan-3 Generation FPGA User Guide www.xilinx.com 17

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter : XX"JNX@

HDL AdVISOT. . .« ottt e e e e e 418
Partner TOOLS oot 418
Intellectual Property (IP)ot 418
CORE Generator SYSteImottt ettt e 418
System Generator for DSP 419
Embedded Development Kit and Platform Studio il 419
Clocking Wizard oo 419
Data2ZMEM TO00Lo 419
Automatic Implementation TOOIS i 419
Incremental DeSign oot 420
Modular Design.o 420
Constraints EQItor 421
PlanAhead TOOL. oot 421
FPGA EdItoro 421
Interactive Timing Analyzer i 421
ISE SIMUIAtor. . . . oo 422
iMPACT Configuration TooL.o o 422
ChipScope Pro ANalyZerottt 422
Power Analysis TOOIS 422
Related Materials and References 423
Conclusion 423

Chapter 14: Using IP Cores

SUMMAATY 425
The CORE Generator System i, 425
Xilinx IP Solutions and the IP Center........... i 425
LogiCORE Products.o e e e e e 426
AllianceCORE Products e 426
Candidate Core Products e 427
Design Fileso 427
Xilinx Alliance Program Partner Services i 427
SIGNOMNCE . . oo 427
Spartan-3 Generation IP Cores 427
Related Materials and References 427

Chapter 15: Embedded Processing and Control Solutions

Introduction 429
PicoBlaze Application Development Support i 433
MicroBlaze Application Development Support........ 433
Embedded Development Kit (EDK) 433
Xilinx Platform Studio (XPS)ot ettt ettt e e e e e e e 433

GNU Software Development TOOIS.ottt e 433
Hardware/Software Development TOOISo.ii i i i i 433

Board Support Packages (BSPS).ottt 433
Operating Systems 433
Processor Peripheral IP Functions. e 434
Processor Peripherals. i 434

Serial I/O. o ot 434

Memory INterfaces. oot 434
Networking INterfaces.ottt e 434

18 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

In-Circuit Hardware Debugger Support 435
Related Materials and References i 435

Section 3: PCB Design Considerations

Chapter 16: Packages and Pinouts

SUMMATIY 439
Differences in Pinouts Between Spartan-3 Generation FPGAs 439
Pin Types. 441
PinLabeling 442
Differential Pair Labeling 442
Pinout Files o o 443
Pinout Tables. 443
Footprint Diagrams i 444

PartGeno 445

ISE Development System Pin Assignment Reports. 445
PlanAhead Design Analysis Tool 445
Packages. 446
Pb-Free Packages i 446
Differences in Packages Between Spartan-3 Generation Families 447
Selecting the Right Package Option 447
Package Thermal Characteristics. 447
Related Materials and References i 448

Chapter 17: Package Drawings

SUMMATIY . .. 451
VQ100/VQG100 Very Thin QFP Package (pk012)ttt 453
CP132/CPG132 Chip Scale BGA Package (pk500) 454
TQ144/TQG144 Thin QFP Package (pk009) i, 455
PQ208/PQG208 QFP Package (PKO07).ooee et 456
FT256/FTG256 Fine-Pitch Thin BGA Package (pk053).. 457
FG320/FGG320 Fine-Pitch BGA Package (pk071) i .. 458
FG400/FGG400 Fine-Pitch BGA Package (pk083) .. 459
FG456/FGG456 Fine-Pitch BGA Package (pk034) i .. 460
FG484/FGG484 Fine-Pitch BGA Package (pkO081) .. 461
CS484/CSG484 Chip-Scale BGA Package (pk223)........ i 462
FG676/FGG676 Fine-Pitch BGA Package (pk035) .. 463
FG900/FGG900 Fine-Pitch BGA Package (pk038) 464
FG1156/FGG1156 Fine-Pitch BGA Package (pk039) .. 465

Chapter 18: Powering Spartan-3 Generation FPGAs

Introduction 467
Differences between Spartan-3 Generation Families........................ 467
Voltage Supplies 468
VIREF -+« e v e oo e e e e e e e 469
Spartan-3 Generation FPGA User Guide www.xilinx.com 19

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter : XX"JNX@

Power Estimation 469
Voltage Regulators 469
Power-On Behavior. 470
Supply Sequencing e 470
Surplus ICCINT lf VCCINT iS Apphed before VCCAUX .. 471
Ramp Rate 471
Hot SWap . .. 471
Configuration Data Retention, Brown-Out 472
Saving Power. 472
Saving Clock Routing Power 473
Power-Off Mode.o e 474
Suspend Mode 475
Board Design and Signal Integrity 475
Simultaneously Switching Outputs. 475
Power Distribution System Design and Decoupling/Bypass Capacitors........................... 476
No Internal Charge Pumps or Free-Running Oscillators. 476
Large-Swing Signals. 476
Related Documents 476

Chapter 19: Power Management Solutions

OV O VI W 477
Extended Spartan-3A Family Suspend Mode il 478
Suspend Features and Benefits 479
Design Preparation for Suspend Mode. 479
Entering Suspend Mode 480
Exiting Suspend Mode 482
PROG_B Programming Pin Always Overrides Suspend Mode. oo, 483
Suspend Mode Timing Example 483
Enable the Suspend Feature 484
Via User Constraints File (UCFE)ottt e e e ettt e 484

VA BItGeI .« o o ettt et e e e e 485
Define the I/O Behavior During Suspend Mode 485
Single-Ended I/OStandards 485
Differential I/O Standards. it e 485
SUSPEND CONSETaintottt ettt e et e e e e et e e e e e e ettt et e et et e 486
Application State Retained during SuspendModel 486
Suspend Mode Wake-Up Timing Controls i i 487
Wake-Up Timing Clock Source (swW_clK). i 487
Switch Outputs from Suspend to Normal Behavior (sw_gts_cycle) 488
Release Write Protect on Clocked Elements (sw_gwe_cycle), 488
Dedicated Configuration Pins Unaffected During Suspend Mode 489
SUSPEND Pin . . .o e e e e e e e e e e 489
CharaCteriStiCS « . v v vttt et e et e e e e e e e e e 489
SUSPEND Input Glitch Filter. o i 489
Effect on FPGA Configuration. i e i 490

Tie SUSPEND to GND if not Using Suspend Mode i 490

AW AKE Pin ..o 490
General Behavior (Suspend Feature Disabled) i i 490
AWAKE Pin Behavior when Suspend Feature Enabled 490
Controlling Wake-Up from an External Source.t 491
JTAG Operations Allowed During Suspend Mode, 491
20 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Post-Configuration CRC Limitations When Using Suspend Mode 492
Suspend Mode Bitstream Generator Options i 493
FPGA Voltage Requirements During Suspend Mode 493
Supply Requirements During Suspend Mode. i 494
Hibernate. 494
Forcing FPGA to Quiescent Current Levels. 494
Entering Hibernate State. 494
Extended Spartan-3A Family FPGA: Turn Off Veco oo v oo 495
Spartan-3E and Spartan-3 FPGAs: Maintain V¢ on I/O Banks Connected
to Powered External Devicesottt e 495
Exiting Hibernate 496
Design Considerationst 497

Chapter 20: Using IBIS Models

SUMMATY 499
Introduction 499
IBIS Advantages over SPICE. 499
IBIS Background 500
Xilinx Support of IBIS 501
IBISI/Vand dV/dt Curveso 501
Ramp and dV/dt Curves 502
IBISWIiter. 502
References. 502

Chapter 21: Using Boundary-Scan and BSDL Files

SUMMATY . .. 503
Boundary-Scan Overview 503
IEEE Standards 503
Boundary-Scan Functions. 504
Boundary-Scan Tools 505
BSDL Files 505
BSDL File Compositiono 506
BSDL File Verificationo o e 508
Using BSDLAnno for Post-Configuration Boundary-Scan Behavior............................... 508
Software Support. 509
IM P ACT . 509
SVE Files ..o 509

J Drive Engine for IEEE 1532 Programming ittt 510
Using the BSCAN_SPARTANBAMaACIO 510
Related Materials and References i 511
Spartan-3 Generation FPGA User Guide www.xilinx.com 21

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter : XX"JNX@

22 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

S XILINX®
Preface

About This Guide

This user guide provides guidance on how customers can use the architectural features of
each platform in the Spartan®-3 generation: the Extended Spartan-3A family, which
includes the Spartan-3A, Spartan-3AN, and Spartan-3A DSP platforms, and the Spartan-3
and Spartan-3E families. By combining documentation for these families, similarities and
differences are easier to learn, and less material needs to be duplicated in multiple sources.
For an overview of how these platforms compare, see “Section 1: Designing with Spartan-
3 Generation FPGAs”.

This user guide includes much of the information previously included in Module 2
(Functional Description) of the Spartan FPGA data sheets and in device application notes.
The data sheets should still be referenced for the platform-specific DC and Switching
Characteristics (located in Module 3) and the pinout information (located in Module 4). All
features of the Spartan-3E and Extended Spartan-3A family are described in this user
guide, but some differences in the Spartan-3 family, such as DCI or the clocking structure,
are discussed in Module 2 of the Spartan-3 FPGA data sheet or in the device application
notes.

Information on the configuration features of the Spartan-3 generation FPGAs is located in
UG332, the Spartan-3 Generation Configuration User Guide. Information on using the internal
SPI flash of the Spartan-3AN FPGAs is located in UG333, Spartan-3AN FPGA In-System
Flash User Guide. Together with the device specifications in the data sheets, these user
guides provide complete documentation on the Spartan-3 generation architecture.

Check for updates on xilinx.com at:
http://www.xilinx.com/support/documentation/spartan-3a.htm. To get an automatic
notification of any updates to this document, click the “Subscribe to Alerts” link on the top
of the page.

Guide Contents

This user guide contains the following chapters:

® “Section 1: Designing with Spartan-3 Generation FPGAs”
e Chapter 1, “Overview”
¢ Chapter 2, “Using Global Clock Resources”
¢ Chapter 3, “Using Digital Clock Managers (DCMs)”
e Chapter 4, “Using Block RAM”
* Chapter 5, “Using Configurable Logic Blocks (CLBs)”
e Chapter 6, “Using Look-Up Tables as Distributed RAM”
e Chapter 7, “Using Look-Up Tables as Shift Registers (SRL16)”
* Chapter 8, “Using Dedicated Multiplexers”

Spartan-3 Generation FPGA User Guide www.xilinx.com 23
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.xilinx.com/support/documentation/spartan-3a.htm

Chapter : XX"JNX@

¢ Chapter 9, “Using Carry and Arithmetic Logic”

e Chapter 10, “Using I/O Resources”

¢ Chapter 11, “Using Embedded Multipliers”

e Chapter 12, “Using Interconnect”
® “Section 2: Design Software”

¢ Chapter 13, “Using ISE Design Tools”

¢ Chapter 14, “Using IP Cores”

e Chapter 15, “Embedded Processing and Control Solutions”
® “Section 3: PCB Design Considerations”

e Chapter 16, “Packages and Pinouts”

e Chapter 17, “Package Drawings”

¢ Chapter 18, “Powering Spartan-3 Generation FPGAs”

e Chapter 19, “Power Management Solutions”

e Chapter 20, “Using IBIS Models”

¢ Chapter 21, “Using Boundary-Scan and BSDL Files”

Additional Resources

To find additional documentation, see the Xilinx website at:

http:/ /www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http:/ /www.xilinx.com/support.

Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:
Convention Meaning or Use Example
Messages, prompts, and
Courier font program files that the system speed grade: - 100
displays
Courier bol d Literal commands that you enter ngdbui | d design_name

in a syntactical statement

Commands that you select from

File — Open
Helvetica bold amenu
Keyboard shortcuts Ctrl+C
24 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support
http://www.xilinx.com

SXILINX®

Conventions

Convention

Meaning or Use

Example

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbui | d design_name

References to other manuals

See the Development System
Reference Guide for more
information.

Emphasis in text

If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7: 0] , they are
required.

ngdbui | d [option_nane]
desi gn_nane

Braces { }

A list of items from which you
must choose one or more

| owpwr ={on| of f}

Vertical bar |

Separates items in a list of
choices

| owpwr ={on| of f}

Vertical ellipsis

Repetitive material that has
been omitted

| OB #1: Name = QOUT’
| OB #2: Name = CLKIN

Horizontal ellipsis ...

Repetitive material that has
been omitted

al | ow bl ock block_name loc1
loc2... locn;

Online Document

The following conventions are used in this document:

Convention Meaning or Use Example
See the section “Additional
Cross-reference link toalocation | Resources” for details.
Blue text

in the current document

Refer to “Title Formats” in
Chapter 1 for details.

Blue, underlined text

Hyperlink to a website (URL)

Go to http:/ /www.xilinx.com
for the latest speed files.

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

www.xilinx.com

25

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter : XX"JNX@

26 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

&7 XILINX®

Section 1:
FPGAs

Designing with Spartan-3 Generation

“Overview”

“Using Global Clock Resources”

“Using Digital Clock Managers (DCMs)”
“Using Block RAM”

“Using Configurable Logic Blocks (CLBs)”
“Using Look-Up Tables as Distributed RAM”
“Using Look-Up Tables as Shift Registers (SRL16)”
“Using Dedicated Multiplexers”

“Using Carry and Arithmetic Logic”

“Using I/0 Resources”

“Using Embedded Multipliers”

“Using Interconnect”

Spartan-3 Generation FPGA User Guide www.xilinx.com 27
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

Chapter : XX"JNX@

28 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

&7 XILINX®

Chapter 1

Overview

This chapter provides an overview of the Spartan®-3 generation platforms. Refer to the
links in Table 1-1 for more information.

Table 1-1: Spartan-3 Generation Platforms

Family Platform Product Information Technical Documentation
Spartan-3A DSP FPGAs | www.xilinx.com/spartan3adsp | www.xilinx.com/support/documentation/spartan-3a_dsp.htm
S}E));tretzglgi Spartan-3AN FPGAs | www.xilinx.com/spartan3an www.xilinx.com/support/documentation/spartan-3an.htm
Spartan-3A FPGAs www.xilinx.com/spartan3a www.xilinx.com/support/documentation/spartan-3a.htm
Spartan-3E Spartan-3E FPGAs www.xilinx.com/support/documentation/spartan-3e.htm
Spartan-3 Spartan-3 FPGAs www.xilinx.com/support/documentation/spartan-3.htm

Introduction

The Spartan-3 generation of FPGAs includes the Extended Spartan-3A family
(Spartan-3A, Spartan-3AN, and Spartan-3A DSP platforms), along with the earlier
Spartan-3 and Spartan-3E families. These families of Field Programmable Gate Arrays
(FPGAs) are specifically designed to meet the needs of high volume, cost-sensitive
electronic applications, such as consumer products. The Spartan-3 generation includes 25
devices offering densities ranging from 50,000 to 5 million system gates, as shown in
Table 1-5 through Table 1-7.

The Spartan-3 platform was the industry’s first 90 nm FPGA, delivering more functionality
and bandwidth per dollar than was previously possible, setting new standards in the
programmable logic industry. The Spartan-3E platform builds on the success of the earlier
Spartan-3 platform by adding new features that improve system performance and reduce
the cost of configuration. The Extended Spartan-3A family builds on the success of the
earlier Spartan-3E platform by further enhancing configuration and reducing power to
provide the lowest total cost. The Spartan-3AN platform provides the additional benefits
of non-volatility and large amounts of on-board user flash. The Spartan-3A DSP platform
extends the density range and adds resources often required in digital signal processing
(DSP) applications.

Because of their exceptionally low cost, Spartan-3 generation FPGAs are ideally suited to a
wide range of consumer electronics applications, including broadband access, home
networking, display/projection, and digital television equipment.

The Spartan-3 generation FPGAs provide a superior alternative to mask-programmed
ASICs. FPGAs avoid the high initial cost, the lengthy development cycles, and the inherent
inflexibility of conventional ASICs. Also, FPGA programmability permits design upgrades
in the field with no hardware replacement necessary, an impossibility with ASICs.

Spartan-3 Generation FPGA User Guide www.xilinx.com 29
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/spartan3adsp
http://www.xilinx.com//support/documentation/spartan-3a_dsp.htm
http://www.xilinx.com/spartan3an
http://www.xilinx.com
http://www.xilinx.com/support/documentation/spartan-3an.htm
http://www.xilinx.com/spartan3a
http://www.xilinx.com/support/documentation/spartan-3a.htm
http://www.xilinx.com/support/documentation/spartan-3e.htm
http://www.xilinx.com/support/documentation/spartan-3.htm

Chapter 1: Overview

SXILINX®

Spartan-3 Generation Families

Extended Spartan-3A family:

e Lowest total cost

Spartan-3A Platform

- Ideal for bridging, differential signaling, and memory interfacing

Spartan-3A DSP Platform

- Higher density option in Extended Spartan-3A family

- DSP48A resources for digital signal processing (DSP) applications

Spartan-3AN Platform

- Non-volatile

- Ideal for space-constrained applications

Spartan-3E family

Spartan-3 family

¢ Not recommended for new designs

Table 1-2: Spartan-3 Generation Platform Selection

Spartan-3 Generation Platform
Application/Function Spartan-3 | Spartan-3E | Spartan-3A |Spartan-3AN | Spartan-3A DSP
FPGAs(FPGAs FPGAs FPGAs FPGAs
Basic Design Characteristics
More than 1.5M system gates + +
500 or less 1/0 pins + + ++ o+ +
More than 500 I/O pins +
Embedded Processing
32-bit MicroBlaze Processor + + ++ ++ ++
8-bit PicoBlaze Controller + + + + +
DDR SDRAM Memory Interfaces
DDR SDRAM + + ++ ++ ++
DDR2 SDRAM + + ++ ++ ++
Differential I/O
LVDS + ++ +++ +++ +++
RSDS + ++ +++ +++ +++
miniLVDS + ++ ++ ++
TMDS/PPDS + + +
PCI®/PCI Express® Interface
33 MHz PCI Interface + + ++ ++ ++
66 MHz PCI Interface + ++ ++ ++
PCI Express PIPE Interface + + + + +

30

www.xilinx.com

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

2:)(||_|NX® Spartan-3 Generation Families

Table 1-2: Spartan-3 Generation Platform Selection (Cont’'d)

Spartan-3 Generation Platform
Application/Function Spartan-3 | Spartan-3E | Spartan-3A |Spartan-3AN | Spartan-3A DSP
FPGAs(®) FPGAs FPGAs FPGAs FPGAs

Power Management + + +
I/O Capabilities

Hot Swap + + ++ ++ ++
High Output Drive Current + ++ ++ ++
Programmable Input Delay + ++ +++ +++ +++
3.3V-only Applications + + ++ ++ ++
Clocking Resources

Digital Clock Managers (DCMs) + ++ ++ ++ ++
Low-Skew Global Clocks + ++ ++ ++ ++
FPGA Configuration

Platform Flash PROM + + + + +
SPI Flash Configuration + + + +
Parallel Flash Configuration + + + +
MultiBoot + + + +
Low-Cost Design Protection + ++ +++ ++
Non-Volatile +

Integrated User Flash +
Digital Signal Processing (DSP)

18x18 Hardware Multipliers + ++ ++ ++ +++
DSP48A +
Block RAM Registers + + ++ ++ +++

Notes:

1. The original Spartan-3 FPGA family is not recommended for new designs.
2. + =supported, ++ = better, +++ = best.

Spartan-3 Generation FPGA User Guide www.xilinx.com 31
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 1: Overview

SXILINX®

Extended Spartan-3A Family Features

Very low cost, high-performance logic solution for high-volume consumer-oriented
applications

Proven advanced 90-nanometer process technology

Dual-range Vccaux supply at 2.5V or 3.3V simplifies the power supply design and
eliminates one power rail

Suspend mode reduces system power consumption

Retains all design state and FPGA configuration data
Activated with SUSPEND pin

FPGA drops to minimal quiescent power

I/Os have user-controlled behavior

Quick wake-up time

AWAKE pin indicates present status

3.3V +£10% supply compatibility

4.6V maximum input voltage

Hot-swap compliance

FPGA I/0 can be driven externally before Vcq powers up without damage to
the device and without disturbing the external bus

FPGA does not drive out before or during power-up sequence except for
dedicated pins

Multi-voltage, multi-standard SelectlO™ interface pins

Up to 519 1/O pins or 227 differential signal pairs

LVCMOS, LVTTL, HSTL, and SSTL single-ended signal standards
3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling

Up to 24 mA output drive

622+ Mb/s data transfer rate per I/O

True LVDS, RSDS, mini-LVDS, PPDS, HSTL/SSTL differential I/O
Double Data Rate (DDR) support with clock alignment
DDR/DDR2 SDRAM support up to 400 Mb/s

Programmable input delays for finer timing control

Abundant, flexible logic resources

Densities up to 53,712 logic cells

Optional SRL16 shift register or distributed RAM support

Efficient wide multiplexers, wide logic

Fast look-ahead carry logic

Dedicated 18 x 18 multipliers with optional pipeline for higher performance
IEEE 1149.1/1532 JTAG programming/debug port

Hierarchical SelectRAM™ memory architecture

Up to 2,268 Kbits of fast block RAM with byte write enables for efficient use in
processor applications

Up to 373 Kbits of efficient distributed RAM

32

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Extended Spartan-3A Family Features

Up to eight Digital Clock Managers (DCMs)

® Clock skew elimination (delay locked loop)

¢ Frequency synthesis, multiplication, division

e High-resolution phase shifting

e Wide frequency range (5 MHz to over 300 MHz)

Eight global clocks, plus abundant low-skew routing

e Eight additional clocks per each half of the device

e Additional clock inputs for pinout flexibility and differential clocks
Configuration interface to low-cost Xilinx Platform Flash with JTAG
Configuration interface to industry-standard PROMs

e Low-cost, space-saving SPI serial Flash PROM

* x8 or x8/x16 parallel NOR Flash PROM

Configuration watchdog timer automatically recovers from configuration errors
Unique ID (Device DNA) in each device useful for copy protection algorithms
* Device DNA authentication restricts copying

MultiBoot automatic reconfiguration between two files

Complete Xilinx ISE® and WebPACK™ development system support
Low-cost Starter Kit development systems and advanced demo boards
32-bit MicroBlaze™ and 8-bit PicoBlaze™ embedded processor cores
Fully compliant 32-/64-bit 66 MHz PCI support

PCI Express PIPE endpoint and other IP cores

Supported by major EDA partners
Low-cost QFP and BGA packaging options

¢ Common footprints support easy density migration within each platform (except
designs using the FI256 package)

e Pb-free (RoHS) packaging options

Automotive XA platform variants

Spartan-3AN Platform Additional Features

Integrated robust configuration memory

® Saves board space

e Improves ease-of-use

e Simplifies design

® Reduces support issues

Plentiful amounts of non-volatile memory available to the user
¢ Up to 11+ Mb available

e MultiBoot support

¢ Embedded processing and code shadowing

e Scratchpad memory

Robust 100K Flash memory program/erase cycles per page

20 years Flash memory data retention

Spartan-3 Generation FPGA User Guide www.xilinx.com 33

UG331 (v1.8) June 13, 2011

http://www.xilinx.com/applications/automotive/index.htm
http://www.xilinx.com/microblaze
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/ise
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://www.xilinx.com/picoblaze
http://www.xilinx.com/pci
http://www.xilinx.com/products/ipcenter/DO-DI-PCIEXP.htm
http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 1: Overview

SXILINX®

Security features provide bitstream anti-cloning protection
® Buried configuration interface enhances Device DNA authentication

¢ Flash memory sector protection and lockdown

Spartan-3A DSP Platform Additional Features

Optimized for low-cost DSP systems

¢ High logic capacity, 33K to 47K look-up tables (LUTs)
¢ Increased block RAM of 85 to 126 blocks and 1.5 to 2.3 Mbits of memory
High-performance DSP48A blocks

* Based on Virtex®-4 FPGA DSP block architecture

¢ Full multiply-accumulate functionality

¢ Integrated 48-bit post adder

¢ Integrated 18-bit pre-adder for symmetric FIR filters
¢ Independent routing

e 250 MHz operation

Improved block RAM

¢ Internal output register

e 250 MHz operation

Spartan-3 Generation Resources

Table 1-3 through Table 1-7 show the number of resources available in each member of the
Spartan-3A DSP, Spartan-3AN, Spartan-3A, Spartan-3E, and Spartan-3 platforms.

Note: By convention, 1K bits is equivalent to 1,024 bits.
Table 1-3: Summary of Spartan-3A DSP FPGA Attributes

CLB Array
Equivalent (One CLB = Four Slices) N Block . Maximum
Device | YSMI | ogic Distributed| "o\t | pspagas | DCMs |MXIMUM | higteential
Gates Cell Total Total | RAM Bits Bit User 1/O /O Pai
€S | Rows |Columns) s ars
CLBs | Slices
XC3SD1800A | 1800K 37,440 88 48 4,160 | 16,640 260K 1,512K 84 8 519 227
XC3SD3400A | 3400K 53,712 104 58 5,968 | 23,872 373K 2,268K 126 8 469 213
Table 1-4: Summary of Spartan-3AN FPGA Attributes
Equivalent _ Block . . Maximum
Device System Logic CLBs | Slices Dlstrlbu_ted RAM Dedl_ca_ted DCMs Maximum Differential In—Syste_m
Gates RAM Bits . Multipliers User I/O . Flash bits
Cells Bits I/0 Pairs
XC3S50AN 50K 1,584 176 704 11K 54K 3 2 144 64 M
XC35200AN 200K 4,032 448 1,792 28K 288K 16 4 195 90 4AM
XC35400AN 400K 8,064 896 3,584 56K 360K 20 4 311 142 4M
XC3S700AN 700K 13,248 1472 5,888 92K 360K 20 8 372 165 8M
XC3S1400AN | 1400K 25,344 2816 11,264 176K 576K 32 8 502 227 16M
34 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Spartan-3 Generation Resources

Table 1-5: Summary of Spartan-3A FPGA Attributes

CLB Array)
. System | Equivalent (One CLB = Four Slices) Distributed| B9k | pedicated Maximum | Maximum
Device . . RAM - DCMs Differential
Gates |Logic Cells | | | RAM Bits . Multipliers User 1/O .
Total Total Bits 1/O Pairs
Rows |Columns .
CLBs | Slices
XC3S50A 50K 1,584 16 12 176 704 11K 54K 3 2 144 64
XC3S200A 200K 4,032 32 16 448 1,792 28K 288K 16 4 248 112
XC3S400A 400K 8,064 40 24 896 3,584 56K 360K 20 4 311 142
XC3S700A 700K 13,248 48 32 1472 5,888 92K 360K 20 8 372 165
XC3S1400A | 1400K 25,344 72 40 2816 11,264 176K 576K 32 8 502 227
Table 1-6: Summary of Spartan-3E FPGA Attributes
CLB Array)
. System | Equivalent (One CLB = Four Slices) Distributed Block Dedicated Maximum MaX|mum
Device) . RAM - DCMs Differential
Gates |Logic Cells RAM Bits . Multipliers User I/O .
Total | Total Bits I/0 Pairs
Rows |Columns -
CLBs | Slices
XC3S100E 100K 2,160 22 16 240 960 15K 72K 4 2 108 40
XC3S250E 250K 5,508 34 26 612 2,448 38K 216K 12 4 172 68
XC3S500E 500K 10,476 46 34 1,164 | 4,656 73K 360K 20 4 232 92
XC3S1200E | 1200K 19,512 60 46 2,168 8,672 136K 504K 28 8 304 124
XC3S1600E | 1600K 33,192 76 58 3,688 | 14,752 231K 648K 36 8 376 156
Table 1-7: Summary of Spartan-3 FPGA Attributes
CLB Array)
. System | Equivalent (One CLB = Four Slices) Distributed | Block | Dedicated Maximum | Maximum
Device) .) - DCMs Differential
Gates |Logic Cells RAM Bits |RAM Bits| Multipliers User I/O .
Total Total 1/O Pairs
Rows |Columns .
CLBs | Slices
XC3S50 50K 1,728 16 12 192 768 12K 72K 4 2 124 56
XC3S200 200K 4,320 24 20 480 1,920 30K 216K 12 4 173 76
XC35400 400K 8,064 32 28 896 3,584 56K 288K 16 4 264 116
XC3S1000 | 1000K 17,280 48 40 1,920 7,680 120K 432K 24 4 391 175
XC3S1500 | 1500K 29,952 64 52 3,328 | 13,312 208K 576K 32 4 487 221
XC3S2000 | 2000K 46,080 80 64 5120 | 20,480 320K 720K 40 4 565 270
XC354000 | 4000K 62,208 96 72 6,912 | 27,648 432K 1,728K 96 4 633 300
XC3S5000 | 5000K 74,880 104 80 8,320 33,280 520K 1,872K 104 4 633 300
Spartan-3 Generation FPGA User Guide www.xilinx.com 35

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 1: Overview

SXILINX®

Architectural Overview

The Spartan-3 generation architecture consists of five fundamental programmable
functional elements:

¢ Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that
implement logic plus storage elements used as flip-flops or latches. CLBs perform a
wide variety of logical functions as well as store data.

¢ Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the
internal logic of the device. IOBs support bidirectional data flow plus 3-state
operation. Supports a variety of signal standards, including several high-performance
differential standards. Double Data-Rate (DDR) registers are included.

* Block RAM provides data storage in the form of 18-Kbit dual-port blocks.

¢ Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate the
product. The Spartan-3A DSP platform includes special DSP multiply-accumulate
blocks.

e Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital solutions
for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 1-1, using the Spartan-3A FPGA array as
an example. A dual ring of staggered IOBs surrounds a regular array of CLBs in the
Spartan-3 and Extended Spartan-3A family. The Spartan-3E family has a single ring of
inline IOBs. Each block RAM column consists of several 18-Kbit RAM blocks. Each block
RAM is associated with a dedicated multiplier. The DCMs are positioned with two at the
top and two at the bottom of the device, plus additional DCMs on the sides for the larger
devices.

The Spartan-3 generation features a rich network of traces that interconnect all five
functional elements, transmitting signals among them. Each functional element has an
associated switch matrix that permits multiple connections to the routing.

36

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Configuration

Ao LLLTLLTIT] voes JIPTTLEILITLITIT]
!

[1L
[1L
[1L
[0

DCM

Block RAM

Multiplier

&
00
00
00

S e OO MmO

II
// o :
II . :
—
el
R S
g
..l cLBs | 2]
0 E !
m DCM : .
ol |7 HEE
o
E
om
IOBs DS312-1_01_032606
Figure 1-1: Spartan-3A Platform Architecture

Configuration

Spartan-3 generation FPGAs are programmed by loading configuration data into robust,
reprogrammable, static CMOS configuration latches (CCLs) that collectively control all
functional elements and routing resources. The FPGA’s configuration data is stored
externally in a PROM or some other non-volatile medium, either on or off the board. The
Spartan-3AN platform contains its own internal SPI flash configuration memory. After
applying power, the configuration data is written to the FPGA using one of several
different modes:

e Master Serial from a Xilinx Platform Flash PROM
® Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash
* Spartan-3E and Extended Spartan-3A family FPGAs only

¢ Byte Peripheral Interface (BPI) from an industry-standard x8 or x8/x16 parallel NOR
Flash

* Spartan-3E and Extended Spartan-3A family FPGAs only
e Slave Serial, typically downloaded from a processor
¢ Slave Parallel, typically downloaded from a processor

¢ Boundary Scan (JTAG), typically downloaded from a processor or system tester

Spartan-3 Generation FPGA User Guide www.xilinx.com 37

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 1: Overview

SXILINX®

I/O Capabilities

The Spartan-3 generation SelectlO interface supports many popular single-ended and
differential standards, as shown in Table 1-8 and Table 1-9. Table 1-10 through Table 1-14
show the number of user I/Os as well as the number of differential I/O pairs available for
each device/package combination for the Extended Spartan-3A family, Spartan-3E, and
Spartan-3 families, respectively. Some of the user I/Os are unidirectional input-only pins
as indicated in the tables. See “LVCMOS/LVTTL Slew Rate Control and Drive Strength”
for specific drive strengths supported.

Table 1-8: Single-Ended I/O Standards

Spartan-3 Spartan-3E Extended Spartan-3A
Standard | Veco | Class | “ppgag FPGAS FPGAS
1.2v - up to 6 mA 2mA up to 6 mA
1.5V - upto12mA | upto6mA up to 12mA
LVCMOS 1.8V - uptol6mA | upto8mA up to 16 mA
2.5V - up to 24 mA | up to 12 mA up to 24 mA
3.3V - up to 24 mA | up to 16 mA up to 24 mA
LVTTL 3.3V - up to 24 mA | up to 16 mA up to 24 mA
3.0V - v v ol
PCI33
3.3V - v v ol
3.0V - v v
PClI66
3.3V - v v
I v v v
1.8V
i} v ol
I \/ \/ v
SSTL 2.5V
| V v
I v
3.3V
I v
I V ol
1.5V
I V ol
HSTL I V V ol
1.8V | V ol
I V V ol
- i N
GTL
- Plus \
DCI option - - \

38

www.xilinx.com

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

I/O Capabilities

Table 1-9: Differential I/0O Standards
Spartan-3 Spartan-3E Extended Spartan-3A
Standard Veco FPGAs FPGAS Family FPGAs
2.5V N v v
LVDS
3.3V v
BLVDS 25V N v
25V v
MINI_LVDS
3.3V v
25V N RN v
LVPECL
3.3V v
25V N v v
RSDS
3.3V v
25V
TMDS
3.3V v
25V
PPDS
3.3V
LDT 25V N
LVDSEXT 25V N
DIFF_SSTL - N
DIFF_HSTL - N
DIFF_TERM -

Table 1-10: Spartan-3A FPGA DSP Available User I/Os and Differential (Diff) /0O Pairs

CS484 FG676
Device CSGas4 FeceTe
User Diff User Diff
309 140 519 227
XC3SD1800A (56) (78) (110) (131)
309 140 469 213
XC3SD3400A (56) (78) (60) (117)
Notes:

1. The number in bold indicates the maximum number of I/O and input-only pins. The number in italics
indicates the number of input-only pins. The differential (Diff) input-only pin count includes both
differential pairs on input-only pins and differential pairs on I/O pins within I/O banks that are
restricted to differential inputs.

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

www.xilinx.com

39

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 1: Overview i:)("JNX®

Table 1-11: Spartan-3AN Available User I/Os and Differential (Diff) I/O Pairs

TQ144 FT256 FG400 FG484 FG676
Device TQG144 FTG256 FGG400 FGG484 FGG676
User Diff User Diff User Diff User Diff User Diff
XCISS0AN » | oo | o | e
XC35200AN P
XC3S400AN il
XC3S700AN
XC3S1400AN
Notes:

1. The number in bold indicates the maximum number of I/O and input—onéy ins. The number in italics indicates the number of
input-only pins. The differential (Diff) input-only pin count includes both difterential pairs on input-only pins and differential pairs
on I/0 pins within I/O banks that are restricted to differential inputs.

40 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

£ XILINX®

I/O Capabilities

Table 1-12: Spartan-3A FPGA Available User I/0Os and Differential (Diff) I/O Pairs
VQ100 TQ144 FT256 FG320 FG400 FG484 FG676
Device VQG100 TQG144 FTG256 FGG320 FGG400 FGG484 FGG676
User Diff User Diff User Diff User Diff User Diff User Diff User | Diff
68 60 108 50 144 64
X A
3550 a3 | ey | @ | ey | 32| 32
68 60 195 90 248 112
XC3S2008 1 g3) | (29 35 | (500 | (56) | (64)
195 90 251 112 311 142
XC354004 35 | 500 | 59 | 64 | 63 | 78
161 74 311 142 372 165
XC35700A (13) | (36) ©3) | 78 | 6o | 93
161 74 375 165 502 227
XC351400A (13) | (36) (87) | (93) | (94) | (131)
Notes:

ins. The number in ifalics indicates the number of

1. The number in bold indicates the maximum number of I/O and input-on J
erential pairs on input-only pins and differential pairs

input-only pins. The differential (Diff) input-only pin count includes both
on I/O pins within I/O banks that are restncte to differential inputs.

Table 1-13: Spartan-3E FPGA Available User I/Os and Differential (Diff) I/O Pairs
VQ100 CP132 TQ144 PQ208 FT256 FG320 FG400 FG484
Device VQG100 CPG132 TQG144 PQG208 FTG256 FGG320 FGG400 FGG484
User | Diff | User | Diff | User | Diff
66 30 83 35 | 108 | 40
XGSI0E o) o) | @ | 28 | @
66 30 92 41 | 108 | 40
XCSBE ol o @ ey | @
66 30 92 41
XGSSE 7 L o) | @ | @
XC3S1200E
XC351600E

Notes:

1. The number in bold indicates the maximum number of I/O and input-only pins. The number in italics indicates the number of
input-only pins.

Spartan-3 Generation FPGA User Guide 41

UG331 (v1.8) June 13, 2011

www.xilinx.com

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 1: Overview XX"JNX@

Table 1-14: Spartan-3 FPGA Available User I/Os and Differential (Diff) I/O Pairs

VQ100 TQ144 PQ208 FT256 FG320 FG456 FG676 FG900

Device VQG100 TQG144 PQG208 FTG256 FGG320 FGG456 FGG676 FGG900
User | Diff | User | Diff | User | Diff | User | Diff | User | Diff | User | Diff | User | Diff | User | Diff

XC3550 63 29 97 46 124 56 - - - - - - - - - -

XC35200 63 29 97 46 141 62 173 76 - - - - - - - -

XC35400 - - 97 46 141 62 173 76 221 | 100 | 264 | 116 - - - -

XC351000 = = = = - - 173 76 221 100 333 149 391 175 - -

XC351500 - - - - - - - - 221 | 100 | 333 | 149 | 487 | 221 - -
XC352000 - - - - - - - - - - 333 | 149 | 489 | 221 | 565 | 270
XC354000 - - - - - - - - - - - - 489 | 221 | 633 | 300
XC3S55000 - - - - - - - - - - - - 489 | 221 | 633 | 300

Package Marking

Figure 1-2 provides a top marking example for a Spartan-3A FPGA in the quad-flat
packages. Figure 1-3 shows the top marking for a Spartan-3A FPGA in a BGA package. The
markings for the BGA packages are nearly identical to those for the quad-flat packages,
except that the marking is rotated with respect to the ball Al indicator.

On Spartan-3E and Extended Spartan-3A family FPGAs, the “5C” and “41 ” part
combinations can be dual marked as “5C/ 41 .

Mask Revision Code

= = Fabrication Code
= = Process Technology
Device Type = =
Package = = Date Code
Speed Grade E ; Lot Code
Temperature Range 5 =
Pin P1 DS529-1_03_ 080406

Figure 1-2: Spartan-3A FPGA QFP Package Marking Example

) — Mask Revision Code

BGA Ball A1 (o XXlLlNX®

| | — Fabrication Code

SPARTA Process Code
Device Type XC3S5
Package FT256 AGQ0625 Date Code
D1234567A
ac AN Lot Code
Speed Grade 4 |
Temperature Range Y,

DS529-1_02_021206

Figure 1-3: Spartan-3A FPGA BGA Package Marking Example

42 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Ordering Information

Ordering Information

Spartan-3 generation FPGAs are available in both standard and Pb-free packaging options
for most device/package combinations. The Pb-free packages include a ‘G’ character in the
ordering code. The automotive device part numbers begin with XA instead of XC, and the
automotive temperature ranges include both the I Industrial range and the Q Automotive
range between -40C and +125C.

Figure 1-4 shows an example of the part ordering code. The Industrial Temperature Range
is available exclusively for the Standard (-4) Speed Grade. See Table 1-10 through

Table 1-14 for specific part/package combinations, and see the XA data sheets for specific
automotive ordering codes available.

Example: XC3S50A -4 FT G 256 C
Device Type T— Temperature Range:
C = Commercial (T, = 0°C to 85°C)
Speed Grade I = Industrial (T; = -40°C to 100°C)
-4: Standard Performance Q = Automotive (T, = -40°C to 125°C)
-5: High Performance (Commercial only) Number of Pins

Package Type Pb-free

UG331-c1_04_122208

Figure 1-4: Spartan-3A FPGA Ordering Example

Spartan-3 Generation FPGA User Guide www.xilinx.com 43
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/automotive_xa_devices.htm
http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 1: Overview XX"JNX@

44 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

&7 XILINX®

Chapter 2

Using Global Clock Resources

Summary

Introduction

This chapter describes how to take advantage of the Spartan®-3 generation global clock
resources, including the dedicated clock inputs, buffers, and routing. The clocking
infrastructure provides a series of low-capacitance, low-skew interconnect lines well-
suited to carrying high-frequency signals throughout the FPGA, minimizing clock skew
and improving performance, and should be used for all clock signals. Third-party
synthesis tools, and Xilinx synthesis and implementation tools, automatically use these
resources for high-fanout clock signals.

This chapter focuses on the global clock resources found in all Spartan-3 generation
platforms, and the quadrant clock resources found in the Spartan-3E and Extended
Spartan-3A families. The clock routing can be used in conjunction with the DCMs, which
are discussed in more detail in Chapter 3, “Using Digital Clock Managers (DCMs).” For
information on the special clock inputs used for configuration (CCLK) and Boundary-Scan
(TCK), see UG332, Spartan-3 Generation Configuration User Guide.

Each Spartan-3 generation FPGA offers eight high-speed, low-skew global clock resources
to optimize performance. These resources are used automatically by the Xilinx tools. Even
if the clock rate is relatively slow, it is still important to use the global routing resources to
eliminate any potential for timing hazards. It is important to understand how to define and
best take advantage of these resources.

Global Clock Resource Differences between Spartan-3 Generation

Families

The Spartan-3E and Extended Spartan-3A family of FPGAs have identical global clock
resources, with eight global clock inputs and an additional eight clocks on the left and right
sides of the device. The original Spartan-3 family offers only the eight global clock inputs.
Although the clock resources and routing are similar, there will be timing differences
between each platform and between different densities within a platform. This chapter
focuses on the architecture of the Spartan-3E and Extended Spartan-3 families. The
Spartan-3 family offers a simpler set of dedicated clock inputs and routing — for details, see
the Spartan-3 FPGA Family Data Sheet.

Spartan-3 Generation FPGA User Guide www.xilinx.com 45
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf

Chapter 2: Using Global Clock Resources XX"JNX@

Global Clock Resources

The global clock resources consist of three connected components: GCLK Global Clock
input pads, BUFGMUX Global Clock Multiplexers, and Global Clock routing. See
Figure 2-1.

-« | GCLK BUFGMUX

Pad > Clocks

Global

l > Routin P>
| Dpom 9

Double
-~ :

Lines

UG331_c2_01_100209
Figure 2-1: Overall View of Clock Connections

The primary clock path is shown with bold lines, with a dedicated clock pad (GCLK)
driving a global clock buffer (BUFGMUX) that connects through global routing resources
to clock inputs on flip-flops and other clocked elements. The GCLK pads can be used as
general-purpose I/0O, and include the LHCLK and RHCLK inputs described later. A DCM
can be inserted into the path between the clock pad and clock buffer to manipulate the
clock, or the DCM can acquire the clock signal from general-purpose resources. The
BUFGMUX can multiplex between two clock sources or be used as a simple BUFG clock
buffer. The clock buffer can only drive the clock routing resources, which in turn can only
drive clock inputs. However, clock inputs on flip-flops can also come from general-
purpose routing, although their use is not recommended due to higher skew.

Clocking Infrastructure

The detailed Spartan-3E and Extended Spartan-3A family clocking infrastructure is shown
in Figure 2-2.

46

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Global Clock Resources

4

GCLKll GCLK10

) GCLK7. | GCLK®

Global Clock Inputs

GCLK9 GCLKB

GCLK5 GCLK4 4

BUFp%’\rAUX Clock Line
\ X1Y10 X1Y11 | X2Y10 X2Y11 in Quadrant
BUFGMUX DCM 4 * * * * 4 DCM /
g - Top, Left +> H G E E 474 Top, Right .
oR-| = HE 5 55
R Top Left / Top Right A
o' Lo W
| Quadrant (TL Quadrant (TR) SR
ol 5 8 4 QR 3
E R~ G G o
2) o 2V n
2 c 2 ¢
8 & 8
DCM) g DCM (1)
Left, Bottom 8 -~ Eo 8 Right, Bottom
& 4
2 V
y 2)
o2l [~ Fl-3 LZx
22 s - - - - 3MEs
= =y
ISR : ;
23 e X1 2T
3] _l:g: > [CS [——
S8 Q:'E ; Note 3 . . Note 4 . . E':é —'Jg,-?’i—i
o Left Spine 8 & Horizontal ¥ Spine 8 = — 8 Right Spine 50
=X J .2 o
F‘: gi&_ é:DB Note 3 Note 4 Eﬂ:? _:&é %
= . A5
3 %@_ N - > - > x| _2E
[SN’A'n —I-I‘ Z o0
I c 555"
2y) 1/) % o) /1/ 2y
8 o |2 < 8
LethCTlc\)/I @ =) DCM
p j Right, Top
4 4
2 V
A - - - - 2¥
< s, —B B % A2
ol 5 S [-Xe
I ' v X
[' ' o
m Bottom Left 8 4 - Bottom Right 5| g2
I XA Quadrant (BL) V Quadrant (BR) A N
N
4
i D C B A]
DCM T TT |/ TT T1 DCM
Bottom, Left X1Y0 X1Y1 X2Y0 X2Y1 Bottom, Right
P
CLK3[GCLK2 | “GCLK1|GCLKQ |.
G(:'L'K'l's'é'cikii " GCLKi3 BELK12
Global Clock Inputs UG331_c4_02_011209
Notes:

1. The diagram presents electrical connectivity. The diagram locations do not necessarily match the physical location on the device,
although the coordinate locations shown are correct.

ENEE SN

Number of DCMs and locations of these DCM varies for different device densities. See Table 2-1.

See Figure 2-13a, which shows how the eight clock lines are multiplexed on the left-hand side of the device.
See Figure 2-13b, which shows how the eight clock lines are multiplexed on the right-hand side of the device.
For best direct clock inputs to a particular clock buffer, not a DCM, see Table 2-7.
For best direct clock inputs to a particular DCM, not a BUFGMUX, see Chapter 3, “Using Digital Clock Managers (DCMs).”

Figure 2-2: Spartan-3E and Extended Spartan-3A Family Internal Quadrant-Based Clock Structure

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

www.xilinx.com

47

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 2: Using Global Clock Resources XX"JNX@

Table 2-1: Spartan-3E and Extended Spartan-3A Family DCM Location Designations

Top, Top, Right, Right, Bottom, Bottom, Left, Left,
Left Right Bottom Top Right Left Top Bottom

Spartan-3A DSP FPGAs

XC3SD1800A X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1
XC3SD3400A X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1
Spartan-3A/3AN FPGAs

XC3S50A /AN X0Y0 X1YO0 N/A N/A N/A N/A N/A N/A
XC3S5200A /AN X0Y1 X1Y1 N/A N/A X1Y0 X0YO0 N/A N/A
XC3S400A /AN X0Y1 X1Y1 N/A N/A X1Y0 X0YO0 N/A N/A
XC3S700A /AN X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1
XC3S1400A /AN X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1

Spartan-3E FPGAs

XC3S100E N/A X0Y1 N/A N/A X0YO N/A N/A N/A

XC35250E X0Y1 X1Y1 N/A N/A X1Y0 X0YO0 N/A N/A

XC3S500E X0Y1 X1Y1 N/A N/A X1Y0 X0YO0 N/A N/A

XC3S1200E X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1

XC3S1600E X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1
Clock Inputs

Clock pins accept external clock signals and connect directly to DCMs and BUFGMUX
elements. Clock pins can also be used as general-purpose 1/Os. Each Spartan-3E and
Extended Spartan-3A family FPGA has:

¢ 16 Global Clock inputs (GCLKO through GCLK15) located along the top and bottom
edges of the FPGA

e 8 Right-Half Clock inputs (RHCLKO through RHCLK?) located along the right edge
e 8 Left-Half Clock inputs (LHCLKO through LHCLK?) located along the left edge

Clock input pins are used automatically when external signals drive clock buffers. The
user can specify a particular pin using a LOC constraint in order to force a clock onto the
left or right regional clocks, or to force a clock into a particular clock buffer and then into a
desired clock routing resource. Table 2-2, page 49 through Table 2-4, page 51 show the
clock inputs for each package with the Extended Spartan-3A family, Spartan-3E, and
Spartan-3 families, respectively.

Extended Spartan-3A Family Clock Inputs

The Extended Spartan-3A family clock inputs are all on bidirectional I/O pins, and none
are shared with configuration functions. The VQ100 package offers only 23 global clock
inputs. The XC3S50A /AN in the TQQ144 package has only six global clock inputs on the
bottom edge, with GCLK12 and GCLK13 not available in the package.

48 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Clock Inputs
Table 2-2: Global Clock Input Pads for Extended Spartan-3A Family FPGAs
Pad Bank | VQ100 | TQl44 FT256 FG320 FG400 | Cs484 FG484 FG676

GCLKO 2 P43 P57 N9 U10 Y11 U12 AA12 Y14
GCLK1 2 P44 P59 P9 T10 Vil V12 AB12 AAl4
GCLK2 2 N/A P58 R9 Vil ull AB13 V12 AF14
GCLK3 2 N/A P60 T9 U1l V12 AA14 U12 AE14
GCLK4 0 P83 P124 C10 B10 D11 E12 C12 K14
GCLK5 0 P84 P126 D9 C9 Ell F11 E12 J14
GCLK6 0 P85 P125 C9 A10 A10 A9 Al12 B14
GCLK7 0 P86 P127 A9 B9 C10 B9 All Al4
GCLKS 0 P88 P129 C8 A8 D10 F10 B11 F13
GCLK9 0 P89 P131 D8 B7 E10 El1l Cc11 G13
GCLK10 0 N/A P130 A8 B8 A9 A8 D11 B13
GCLK11 0 P90 P132 B8 C8 A8 B8 E1l C13
GCLK12 2 N/A N/A R7 Us W9 Y11 Ul AA13
GCLK13 2 N/A N/A T7 V8 Y9 Y10 Vil Y13
GCLK14 2 P40 P54 P8 U9 V10 AA12 W12 AF13
GCLK15 2 P41 P55 T8 V9 W10 AB12 Y12 AE13
LHCLKO 3 P9 P12 G2 H3 J1 L6 L5 N6
LHCLK1 3 P10 P13 H1 J3 K2 M5 L3 N7
LHCLK2 3 P12 P15 H3]2 K3 K1 K1 P1
LHCLK3 3 P13 P16 13 J1 L3 L1 L1 P2
LHCLK4 3 N/A P18 J2 J4 K4 L3 M1 P4
LHCLK5 3 N/A P20 J1 K5 L5 M2 M2 P3
LHCLK®6 3 P15 P19 K3 K2 L1 M6 M3 N9
LHCLK?7 3 P16 P21 K1 K3 M1 N7 M4 P10
RHCLKO 1 P59 P83 K15 L18 M19 N18 M22 P21
RHCLK1 1 P60 P85 K14 K17 M20 M17 L22 P20
RHCLK2 1 P61 P87 K16 K18 L19 N21 L21 P26
RHCLK3 1 P62 P88 J16 J17 L18 M20 L20 P25
RHCLK4 1 N/A P90 J14 J16 K18 L21 M18 P23
RHCLKS5 1 N/A P92 H14 K15 L17 L20 M20 N24
RHCLK6 1 P64 Pa1 H15 H18 K20 M18 K20 P18
RHCLK? 1 P65 P93 H16 H17 J20 L17 K19 N19

Notes:

1. N/A in XC3S50A.

Spartan-3 Generation FPGA User Guide www.xilinx.com 49

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 2: Using Global Clock Resources

SXILINX®

Spartan-3E FPGA Clock Inputs

In the Spartan-3E family, avoid using global clock input GCLK1 as it is always shared with
the M2 mode select pin. Global clock inputs GCLKO0, GCLK2, GCLK3, GCLK12, GCLK13,
GCLK14, and GCLK15 have shared functionality in some configuration modes, and all the
RHCLK inputs share functionality with address lines for BPI mode. Make sure there is no
conflict between the pin’s use during and after configuration.

Also in the Spartan-3E family, some clock pad pins are input-only pins as indicated in the
“Pinout Descriptions” section of the data sheet. These might be more useful as clock inputs
because using them does not take away the use of an I/O pin.

Table 2-3: Global Clock Input Pads for Spartan-3E FPGAs
Pad Bank VQ100 CP132 TQ144 PQ208 FT256 FG320 FG400 FG484

GCLKO 2 P38 Mé6 P56 P80 T9 U10 P11 R12
GCLK1 2 P39 N6 P57 P81 R9 T10 P12 P12
GCLK2 2 P40 P6 P58 P82 P9 R10 V10 Y12
GCLK3 2 P41 P7 P59 P83 N9 P10 Vi1 W12
GCLK4 0 P83 A10 P122 P177 E9 D10 F11 F12
GCLK5 0 P84 C9 P123 P178 F9 E10 G11 E12
GCLK6 0 P85 B9 P125 P180 A10 B10 E11 B12
GCLK?7 0 P86 A9 P126 P181 A9 A10 E10 C12
GCLKS 0 P88 B8 P128 P183 A8 B8 H10 H12
GCLK9 0 P89 C8 P129 P184 B8 B9 G10 H11
GCLK10 0 P90 A7 P130 P185 C8 9 A10 c1
GCLK11 0 P91 B7 P131 P186 D8 D9 A9 B11
GCLK12 2 P32 M4 P50 P74 M8 N9 W9 Vil
GCLK13 2 P33 N4 P51 P75 L8 M9 W10 U1l
GCLK14 2 P35 M5 P53 P77 N8 U9 R10 R11
GCLK15 2 P36 N5 P54 P78 P8 \'% P10 T11
LHCLKO 3 P9 F3 P14 P22 H5 J5 K3 M5
LHCLK1 3 P10 F2 P15 P23 Hé6 J4 K2 L5

LHCLK2 3 P11 F1 P16 P24 H3 J1 K7 L8

LHCLK3 3 P12 Gl P17 P25 H4 J2 L7 M8
LHCLK4 3 P15 G3 P20 P28 J2 K3 M1 M1
LHCLK5 3 P16 H1 P21 P29 J3 K4 L1 N1

LHCLK6 3 P17 H2 P22 P30 J5 Ké6 M31 M3
LHCLK? 3 P18 H3 P23 P31 J4 K5 L3 M4
RHCLKO 1 P60 K14 P85 P126 K16 K13 M1é6 N22
RHCLK1 1 P61 J12 P86 P127 J16 K12 L16 M22
RHCLK2 1 P62 J13 P87 P128 J14 K15 L15 M15
RHCLK3 1 P63 J14 P88 P129 J13 K14 L14 M16

50 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Clock Inputs

Table 2-3: Global Clock Input Pads for Spartan-3E FPGAs (Cont’d)

Pad Bank VQ100 CP132 TQ144 PQ208 FT256 FG320 FG400 FG484
RHCLK4 1 P65 H13 P91 P132 H15 J17 K13 L20
RHCLK5 1 P66 Hi12 P92 P133 Hi14 J16 K14 L21
RHCLK6 1 P67 Gl4 P93 P134 Hi12 J15 K20 L18
RHCLK? 1 P68 G13 P94 P135 H11 J14 J20 L19

Spartan-3 FPGA Clock Inputs

Spartan-3 devices have eight Global Clock input pads called GCLKO through GCLK?.
GCLKO through GCLKS3 are placed at the center of the die’s bottom edge. GCLK4 through
GCLKY are placed at the center of the die’s top edge. Any of the eight Global Clock inputs
can connect to any resource on the die. There are no restrictions by quadrant, and no
differentiation of primary and secondary clocks, simplifying I/O and logic placement. In
the Spartan-3 family, none of the clock inputs share functionality with configuration pins,
and all are on I/0O pins.

The pin locations for the global clock input pads are shown in Table 2-4.
Table 2-4: Global Clock Input Pads for Spartan-3 FPGAs

Pad Bank | VQ100 | CP132 | TQ144 | PQ208 | FT256 | FG320 | FG456 | FG676 | FG900 |FG1156(2)
GCLKO 4 P38 M7 P55 P79 T9 P10 AB12 AF14 | AKle6 AP18
GCLK1 4 P39 P8 P56 P80 R9 N10 AAl12 | AEl4 AJ16 AN18
GCLK2 5 P36 P6 P52 P76 N8 P9 Y11 AD13 | AHI15 AM17
GCLK3 5 P37 pP7 P53 P77 P8 N9 AA1l AE13 AJ15 AN17
GCLK4 1 P87 A9 P124 P180 D9 F10 C12 Cl14 C16 C18
GCLK5 1 P88 A8 P125 P181 9 E10 B12 B14 B16 B18
GCLK6 0 P89 C8 P128 P183 A8 F9 All Al3 Al5 Al17
GCLK7 0 P90 A7 P127 P184 B8 E9 B11 B13 B15 B17

Notes:

1. The CP(G)132 package is discontinued. See http:/ /www.xilinx.com/support/documentation/customer_notices/xcn08011.pdf for
details.

2. The FG(G)1156 package is discontinued. See http://www.xilinx.com/support/documentation/customer_notices/xcn07022.pdf
for details.

Clock Inputs and DCMs

Clock inputs optionally connect directly to DCMs using dedicated connections. For more
information on the clock inputs that best feed a specific DCM within a given device in each
family, see Chapter 3, “Using Digital Clock Managers (DCMs).”

Differential Clocks Using Two Inputs

A differential clock input requires two global clock inputs. The P and N inputs follow the
same configuration as for standard inputs on those pins. The clock inputs that get paired
together are consecutive pins in clock number, an even clock number and the next higher

Spartan-3 Generation FPGA User Guide www.xilinx.com 51
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/customer_notices/xcn07022.pdf
http://www.xilinx.com/support/documentation/customer_notices/xcn08011.pdf
http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 2: Using Global Clock Resources XX"JNX@

odd value. For example, GCLKO and GCLK1 are a differential pair as are LHCLK6 and
LHCLK?.

In the Spartan-3E and Extended Spartan-3A families, two clock inputs are available for
each clock buffer, allowing up to twelve differential global clock inputs. In the Spartan-3
family, only four differential clock inputs are allowed.

Using Dedicated Clock Inputs in a Design

All clock input pins, including the LHCLK and RHCLK pins, are represented in a design
by the IBUFG component. In general, an IBUFG is inferred by the synthesis tool on any
top-level clock port. If it is desired to have more control over this process, an IBUFG can be
instantiated. The I port should be connected directly to the top-level port and the O port
should be connected to a DCM, BUFG, or general logic. Most synthesis tools can infer the
BUFG automatically when connecting an IBUFG to the clock resources of the FPGA.

IBUFG

IBUFG (see Figure 2-3) represents the dedicated input buffers for driving the BUFGMUX
or its alternatives, or the DCM.

IBUFG

I O]

UG331_c4_03_080906

Figure 2-3: IBUFG Component

IBUFGDS

IBUFGDS (see Figure 2-4) is a dedicated differential signaling input buffer for connection
to the clock buffer (BUFG) or DCM. In IBUFGDS, a design level interface signal is
represented as two distinct ports (I and IB), one called the master and the other called the
slave. The master and the slave are opposite phases of the same logical signal (for example,
MYNET and MYNETB).

52

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Clock Buffers/Multiplexers

B ©
UGS31_ca_04_080906
Inputs Outputs

| 1B O
0 0 -
0 1 0
1 0 1
1 1 -

Notes:
1. The dash (-) means no change.

Figure 2-4: IBUFGDS Component and Truth Table
The default IBUFGDS I/0 standard is LVDS_25.

Clock Buffers/Multiplexers

Clock buffers/multiplexers either drive clock input signals directly onto a clock line
(BUFG) or optionally provide a multiplexer to switch between two unrelated, possibly
asynchronous clock signals (BUFGMUX).

Each BUFGMUX element, shown in Figure 2-5, is a 2-to-1 multiplexer. The select line, S,
chooses which of the two inputs, 10 or I1, drives the BUFGMUX output signal, O, as
described in Table 2-5. As specified in each data sheet’s “DC and Switching
Characteristics” section, the S input has a setup time requirement. It also has
programmable polarity.

BUFGMUX

10 —

11—

S

UG331_c4_05_080906

Figure 2-5: BUFGMUX Clock Multiplexer

Table 2-5: BUFGMUX Select Mechanism

S Input O Output
0 I0 Input
1 I1 Input
Spartan-3 Generation FPGA User Guide www.xilinx.com 53

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 2: Using Global Clock Resources XX"JNX@

BUFGMUX Multiplexing Details

The BUFGMUX not only multiplexes two clock signals but does it in a way that eliminates
any timing hazards. This allows switching from one clock source to a completely
asynchronous clock source without glitches. The element guarantees that when the select
line S is toggled to choose the other clock source, the output remains in the inactive state
until the next active clock edge on either input. The output can be either High or Low when
disabled (when toggling between clock inputs). The default is Low. A cross-coupled
register pair ensures the BUFGMUX output does not inadvertently generate a clock edge.

When the S input changes, the BUFGMUX does not drive the new input to the output until
the previous clock input is Low and the new clock input has a High-to-Low transition. By
not toggling on the first Low-to-High transition of the input, the output clock pulse is
never shorter than the shortest input clock pulse.

Table 2-6: BUFGMUX Functionality

Inputs Outputs
10 11 S O
10 X 0 10
X 11 1 11
X X T 0
X X 2 0

The S input selects clock input 10 when Low and I1 when High, but also has built-in
programmable polarity, equivalent to swapping I0 and I1. Programmable polarity on the
clock signal is available at each flip-flop, which can be rising-edge or falling-edge
triggered, avoiding having to generate and propagate two separate clock signals.

If only one clock input is needed the second clock input and select lines do not need to be
used.

The BUFGMUX is initialized with 10 selected at power-up and after the assertion of the
Global Set/Reset (GSR). Simulation should also start with S = 0 at time 0. If S = 1 at time O,
the output is unknown until the next falling edge of I1.

The select line can change at almost any time, independent of the clock states or transitions.
The only exception is a short setup time prior to a Low-to-High transition on the selected
clock input, which can result in an undefined runt pulse output.

Figure 2-6 shows a switchover from CLKO to CLK1.

Wait for Low

UG331_c2_02_111909

Figure 2-6: BUFGMUX Waveform Diagram

54 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Clock Buffers/Multiplexers

¢ The current clock is CLKO.
e Sisactivated High.
¢ If CLKO is currently High, the multiplexer waits for CLKO to go Low.

* Once CLKO is Low, the multiplexer output stays Low until CLK1 transitions High to
Low.

e When CLK1 transitions from High to Low, the output switches to CLK1.

¢ No glitches or short pulses can appear on the output.

Using Clock Buffers/Multiplexers in a Design

Most synthesis tools infer clock buffers on the highest fanout clock nets, especially if they
have inputs in the top-level design. If there are more clocks than buffers, the most-utilized
clocks get priority for the buffers. The library components are used to specify the buffers
explicitly or to use the multiplexer functionality.

BUFGMUX and BUFGMUX_1

BUFGMUX and BUFGMUX_1 are distinguished by which state the output assumes when
it switches between clocks in response to a change in its select input. BUFGMUX assumes
output state 0 and BUFGMUX_1 assumes output state 1.

BUFG

The BUFGMUX is the physical clock buffer in the device, but it can be used as a simple
single-input clock buffer. The BUFG clock buffer primitive (see Figure 2-7) drives a single
clock signal onto the clock network and is essentially the same element as a BUFGMUX,
just without the clock select mechanism. BUFG is the generic primitive for clock buffers
across multiple architectures.

BUFG
I 0]

UG331_c4_06_080906

Figure 2-7: BUFG Component
The BUFG is built from the BUFGMUX as shown in Figure 2-8.

10

11

"= UG331_c4_07_011008

Figure 2-8: BUFG Built from BUFGMUX

The dedicated zero on the select line is actually implemented with a dedicated VCC source
and using the programmable polarity on the S input.

Spartan-3 Generation FPGA User Guide www.xilinx.com 55
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 2: Using Global Clock Resources XX"JNX@

BUFGCE and BUFGCE_1

The BUFGCE primitive creates an enabled clock buffer using the BUFGMUX select
mechanism. BUFGCE is a global clock buffer with a single gated input. Its O output is "0"
when clock enable (CE) is Low (inactive). When clock enable (CE) is High, the I input is
transferred to the O output.

BUFGCE
CE
I 0]
UG331_c4_08_080906
Inputs Outputs
| CE O
X 0 0
I 1 I

Figure 2-9: BUFGCE Component and Truth Table

The BUFGCE is built from the BUFGMUX by multiplexing a fixed value for one input. The
default value is Low when disabled. The BUFGCE_1 primitive is similar with VCC
connected to I1, making the output High when disabled. It also uses the BUFGMUX_1
primitive to guarantee there are no glitches during the transition between inputs.

Figure 2-10 shows the equivalent functionality, although the library component truly is a
primitive. The CE inversion is built into the BUFGMUX functionality. The "0" source can be
fed from any convenient unused LUT.

BUFGMUX
. 10
@) (@) .
XGND 11
. DO CE_IN S
INV
GND — UG331_c4_09_080906

Figure 2-10: Equivalent Functionality of BUFGCE

XST Synthesis of Clock Buffers

XST automatically infers clock buffers on the highest fanout clock nets up to the device or
user limits, but synthesis constraints can be used to control the usage of clock buffers.

BUFFER_TYPE selects the type of buffer to be inserted on the input port. The default is
BUFGP, which is equivalent to a BUFG.

NET “signal _nane” buffer_type={bufgdll|ibufg|bufgp|ibuf|bufr|none};

The BUFFER_TYPE parameter can be used on a generic input to make sure that the global
clock buffer is used (= BUFGP). It can also be set to NONE to prevent the automatic usage
of a global clock buffer. This replaces the older constraint CLOCK_BUFFER, which should
not be used in new designs.

56

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

BUFGMUX Connection Details

If a common clock enable is used for all loads on a clock net, the BUFGCE = YES constraint
can be used to move the high-fanout clock enable to a single line on a BUFGCE:

NET “primary_cl ock_signal” bufgce={yes|no|true|false};

CLOCK_SIGNAL is a synthesis constraint. In the case where a clock signal goes through
combinatorial logic before being connected to the clock input of a flip-flop, XST cannot
identify what input pin is the real clock pin. This constraint can be used to define the clock

pin:
NET “primary_cl ock_signal” cl ock_signal ={yes|no|true|fal se};

BUFGMUX Connection Details

BUFGMUX Inputs

The 10 and I1 inputs to a BUFGMUX element originate from clock input pins, DCMs, or
Double-Line interconnect, as shown in Figure 2-11. As shown in Figure 2-2, page 47, there
are 24 BUFGMUX elements distributed around the four edges of the device. Clock signals
from the four BUFGMUX elements at the top edge and the four at the bottom edge are
truly global and connect to all clocking quadrants. The eight left-edge BUFGMUX
elements only connect to the two clock quadrants in the left half of the device. Similarly, the
eight right-edge BUFGMUX elements only connect to the right half of the device.

Left-/Right-Half BUFGMUX Top/Bottom (Global) BUFGMUX
CLK Switch CLK Switch
Matrix Matrix BUFGMUX

BUFGMUX

LHCLK or
RHCLK input

Double Line

DCM output*

1st GCLK pin
1st DCM output
Double Line
2nd DCM output
2nd GCLK pin

*(Only devices with
left/right DCMs) UG331_c4_10_080906

Figure 2-11: Spartan-3E and Extended Spartan-3A Family Clock Switch Matrix for
BUFGMUX Pair Connectivity

BUFGMUX elements are organized in pairs and share 10 and I1 connections with adjacent
BUFGMUX elements from a common clock switch matrix as shown in Figure 2-11. For
example, the input on 10 of one BUFGMUX is also a shared input to I1 of the adjacent
BUFGMUX.

The clock switch matrix for the left- and right-edge BUFGMUX elements receive signals
from any of the three following sources: an LHCLK or RHCLK pin as appropriate, a
Double-Line interconnect, or a DCM in the larger devices. These devices include the

Spartan-3 Generation FPGA User Guide www.xilinx.com 57
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 2: Using Global Clock Resources

SXILINX®

XC351200E and XC3S1600E devices in the Spartan-3E family, and the XC35700A /AN,
XC351400A /AN, XC3SD1800A, and XC3SD3400A devices in the Extended Spartan-3A

family.

By contrast, the clock switch matrixes on the top and bottom edges receive signals from
any of the five following sources: two GCLK pins, two DCM outputs, or one Double-Line

interconnect.

Table 2-7 indicates permissible connections between clock inputs and BUFGMUX

elements. The I0 input provides the best input path to a clock buffer. The I1 input provides
the secondary input for the clock multiplexer function.

Table 2-7: Spartan-3E and Extended Spartan-3A Family Connections from Clock Inputs to BUFGMUX
Elements and Associated Quadrant Clock

Quadrant Left-Half BUFGMUX Top or Bottom BUFGMUX Right-Half BUFGMUX
Clock
Line |Location®| 10 Input | 11 Input |Location® 10 Input I1 Input Location®| 10 Input | I1 Input
Extended Extended
Spartan-3A FPGAs: Spartan-3A FPGAs:
X0Y9 | LHCLK? | LHCLK6 | X1Y10 | GCLK6or GCLK10 | GCLK? or GCLK11 X3Y9 | RHCLK3 | RHCLK2
Spartan-3E FPGAs: Spartan-3E FPGAs:
GCLK7? or GCLK11 GCLK6 or GCLK10
Extended Extended
Spartan-3A FPGAs: Spartan-3A FPGAs:
X0Y8 LHCLK6 | LHCLK?7 | X1Y11 GCLK? or GCLK11 GCLK6 or GCLK10 X3Y8 RHCLK?2 | RHCLK3
Spartan-3E FPGAs: Spartan-3E FPGAs:
GCLK6 or GCLK10 GCLK7 or GCLK11
Extended Extended
Spartan-3A FPGAs: Spartan-3A FPGAs:
X0Y7 LHCLK5 | LHCLK4 X2Y10 GCLK4 or GCLKS8 GCLKS5 or GCLK9 X3Y7 RHCLK1 | RHCLKO
Spartan-3E FPGAs: Spartan-3E FPGAs:
GCLKS5 or GCLK9 GCLK4 or GCLK8
Extended Extended
Spartan-3A FPGAs: Spartan-3A FPGAs:
E X0Y6 LHCLK4 | LHCLK5 X2Y11 GCLKS5 or GCLK9 GCLK4 or GCLK8 X3Y6 RHCLKO | RHCLK1
Spartan-3E FPGAs: Spartan-3E FPGAs:
GCLK4 or GCLK8 GCLKS5 or GCLK9
D X0Y5 LHCLK3 | LHCLK2 X1Y0 GCLKS3 or GCLK15 GCLK2 or GCLK14 X3Y5 RHCLK?7 | RHCLK6
C X0Y4 LHCLK2 | LHCLK3 X1Y1 GCLK2 or GCLK14 GCLKS3 or GCLK15 X3Y4 RHCLK6 | RHCLK?
B X0Y3 LHCLK1 | LHCLKO X2Y0 GCLK1 or GCLK13 GCLKO or GCLK12 X3Y3 RHCLK5 | RHCLK4
A X0Y2 LHCLKO | LHCLK1 X2Y1 GCLKO or GCLK12 GCLK1 or GCLK13 X3Y2 RHCLK4 | RHCLK5

1. See “Quadrant Clock Routing,” page 59 for connectivity details for the eight quadrant clocks.

2. See Figure 2-2 for specific BUFGMUX locations, and Figure 2-13 for information on how BUFGMUX elements drive onto a specific clock line

within a quadrant.

58

www.xilinx.com

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Quadrant Clock Routing

The four BUFGMUX elements on the top edge are paired together and share inputs from
the eight global clock inputs along the top edge. Each BUFGMUX pair connects to four of
the eight global clock inputs, as shown in Figure 2-2, page 47. This optionally allows
differential inputs to the global clock inputs without wasting a BUFGMUX element.

The connections for the bottom-edge BUFGMUX elements are similar to the top-edge
connections (see Figure 2-11). On the left and right edges, only two clock inputs feed each
pair of BUFGMUX elements.

BUFGMUX Outputs

The BUFGMUX drives the global clock routing, which in turn connects to clock inputs on
device resources. The BUFGMUX can also connect to a DCM, typically used for internal
feedback to the DCM CLKEFB input, as shown in Figure 2-12.

Global i Global
Buffer Input Dl,aléﬂacg:ffk Clock Buffer
IBUFG BUFG

[0 I 0] Low-Skew
GCLK CLKIN Output — Global Clock
Network
DCM
|/ CLKFB

Figure 2-12: Using a DCM to Eliminate Clock Skew

UG331_c4_11_080906

For more details on using the DCMs, see Chapter 3, “Using Digital Clock Managers
(DCMs).”

Spartan-3 Global Clock Buffers

The Spartan-3 family has only eight global clock buffers. Four BUFGMUX elements are
placed at the center of the die’s bottom edge, just above the GCLKO - GCLK3 inputs. The
remaining four BUFGMUX elements are placed at the center of the die’s top edge, just
below the GCLK4 - GCLKY inputs. Each pair of BUFGMUX elements shares two sources;
each source feeds the I0 input of one BUFGMUX and the I1 input of the adjacent
BUFGMUX. Thus two completely independent pairs of clock inputs to be multiplexed
could be on the same side of the die but not on the adjacent BUFGMUX elements. For more
details, see the Spartan-3 FPGA data sheet.

Quadrant Clock Routing

The clock routing within the Spartan-3E and Extended Spartan-3A family is quadrant-
based, as shown in Figure 2-2, page 47. Each clock quadrant supports eight total clock
signals, labeled A through H in Table 2-7 and Figure 2-13. The clock source for an
individual clock line originates either from a global BUFGMUX element along the top and
bottom edges or from a BUFGMUX element along the associated left/right edge, as shown
in Figure 2-13. The clock lines feed the synchronous resource elements (CLBs, IOBs, block
RAM, multipliers, and DCMs) within the quadrant. Those resources have programmable
polarity on the clock input.

Spartan-3 Generation FPGA User Guide www.xilinx.com 59
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 2: Using Global Clock Resources

SXILINX®

BUFGMUX Output

X1Y10 (Global)
X0Y9 (Left Half)

X1Y11 (Global)
X0Y8 (Left Half)

X2Y10 (Global)
X0Y7 (Left Half)

X2Y11 (Global)
X0Y6 (Left Half)

X1YO (Global)
X0Y5 (Left Half)

X1Y1 (Global)
X0Y4 (Left Half)

X2YO (Global)
X0Y3 (Left Half)

X2Y1 (Global)
X0Y2 (Left Half)

a. Left (TL and BL Quadrants) Half of Die

Clock Line

BUFGMUX Output

X1Y10 (Global)
X3Y9 (Right Half)

X1Y11 (Global)
X3Y8 (Right Half)

X2Y10 (Global)
X3Y7 (Right Half)

X2Y11 (Global)
X3Y6 (Right Half)

X1YO (Global)
X3Y5 (Right Half)

X1Y1 (Global)
X3Y4 (Right Half)

X2YO (Global)
X3Y3 (Right Half)

X2Y1 (Global)
X3Y2 (Right Half)

b. Right (TR and BR Quadrants) Half of Die

Figure 2-13: Spartan-3E and Extended Spartan-3A Family Clock Sources for the Eight Clock Lines within
a Clock Quadrant

The four quadrants of the device are:
e Top Right (TR)

* Bottom Right (BR)
¢ Bottom Left (BL)

e Top Left (TL)

The quadrant clock notation (TR, BR, BL, TL) is separate from that used for similar IOB
placement constraints.

The outputs of the top or bottom BUFGMUX elements connect to two vertical spines, each
comprising four vertical clock lines as shown in Figure 2-2, page 47. At the center of the
die, these clock signals connect to the eight-line horizontal clock spine. By bringing the
clock to the center of the device and then radiating outward, the skew is minimized across
the device.

Outputs of the left and right BUFGMUX elements are routed onto the left or right

horizontal spines, each comprising eight horizontal clock lines.

Each of the eight clock signals in a clock quadrant derives either from a global clock signal
or a half clock signal. In other words, there are up to 24 total potential clock inputs to the
FPGA, eight of which can connect to clocked elements in a single clock quadrant.

Figure 2-13 shows how the clock lines in each quadrant are selected from associated
BUFGMUX sources. For example, if quadrant clock A in the bottom left (BL) quadrant
originates from BUFGMUX_X2Y1, then the clock signal from BUFGMUX_X0Y2 is

60

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Other Information

unavailable in the bottom left quadrant. However, the top left (TL) quadrant clock A can
still solely use the output from either BUFGMUX_X2Y1 or BUFGMUX_X0Y?2 as the source.

To estimate the quadrant location for a particular I/O, see the footprint diagrams in the
device data sheets. For exact quadrant locations, use the PlanAhead floorplanning tool. In
the QFP packages the quadrant borders fall in the middle of each side of the package, at a
GND pin. The clock inputs fall on the quadrant boundaries, as shown in Table 2-8.

Table 2-8: Clock Quadrant Locations

Clock Pins Quadrant

GCLK][3:0] BR

GCLK][7:4] TR
GCLKJ11:8] TL
GCLK][15:12] BL
RHCLK]3:0] BR
RHCLK]7:4] TR
LHCLK]3:0] TL
LHCLK][7:4] BL

Choosing Top/Bottom and Left-/Right-Half Global Buffers

The software generally use the top /bottom global buffers as the first choice for high-fanout
clock signals. If there are more than eight clocks in a design, the left-/right-half buffers can
be used. Floorplanning is recommended for designs requiring more than eight clocks,
since the loads on the left-/right-half buffers must be restricted to one half of the device, or
restricted to one quadrant to allow the most freedom for the global input using the same
routing resource.

Spartan-3 FPGA Global Clock Routing

The Spartan-3 FPGA BUFGMUX drives the vertical global clock spine belonging to the
same side of the die — top or bottom — as the BUFGMUX element in use. The two spines
— top and bottom — each comprise four vertical clock lines, each running from one of the
BUFGMUX elements on the same side towards the center of the die. At the center of the
die, clock signals reach the eight-line horizontal spine, which spans the width of the die. In
turn, the horizontal spine branches out into a subsidiary clock interconnect that accesses
the CLBs, IOBs, block RAM, and multipliers. For more details, see the Spartan-3 Family
Data Sheet.

Other Information

Clock Power Consumption

Dynamic power dissipation can be reduced through optimization of the clocks used in a
design.

To minimize the dynamic power dissipation of the clock network, the Xilinx development
software automatically disables all clock segments not in use. To take full advantage of

Spartan-3 Generation FPGA User Guide www.xilinx.com 61
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 2: Using Global Clock Resources XX"JNX@

this, concentrate logic in the fewest possible clock column regions. Use floorplanning to
reduce the number of clock columns in use. To further reduce clock power, reduce the
number of rows that the clock is driving.

Using a slower clock also reduces power. The DCM can be used to divide clocks, or slow
clocks can be further divided using registers. A design can be organized according to
required clock frequency and then each part clocked at the lowest possible frequency.

Stopping a clock eliminates the power consumed by the clock routing and by the elements
it drives. If possible, stop the clock externally where it enters the FPGA. If you can not stop
the clock externally, then disable it inside the FPGA by using the BUFGMUX or BUFGCE.
Gating a clock through internal CLB logic is not recommended because it introduces route-
dependent skew and makes the design sensitive to lot-to-lot variations, and might require
manual routing.

The alternative is to use the clock enables to disable the clock loads. This is useful when the
clock is still needed in some locations, but it does not reduce the clock distribution power.

Clock Setup and Hold Timing

Summary

See the data sheets for detailed clock timing information. Delay parameters are provided
for both pin-to-pin paths through the device and individual component delays. All delay
parameters that begin or end at a device pin are defined for the LVCMOS25 1/0 standard,
which is the default. Outputs are defined for 12 mA drive, which is the default, and Fast
slew rate (Slow is the default). Parameters are adjusted by the timing report tools for other
I/0 standards. For pin-to-pin setup times, which are calculated as the data delay minus
the clock delay, the clock pin "adder" is actually subtracted from the result. For hold times,
the data pin "adder" is subtracted. A negative hold time means that the data can be
released before the clock edge. This is often considered simply as a zero hold time, allowing
the clock and data to change at the same time. The previous data gets clocked before the
new data arrives.

Delay parameters for an input flip-flop are affected by the IFD_DELAY_VALUE setting.
The default is AUTO, which selects a specific value according to the density of the device.
For exact timing for your design, see the timing reports provided by the ISE® development
tools.

Global clock inputs, buffers, and routing are automatically used for a design’s highest
fanout clock signals. Implementation reports should be checked to verify the usage of
clock buffers where desired. The user can specify the details of global clock usage in order
to take advantage of special features such as multiplexing and clock enables, or to
maximize the number of clocks using global resources in a design.

Additional Information

For other types of routing resources, see Chapter 12, “Using Interconnect.”
For more details on the DCMs, see Chapter 3, “Using Digital Clock Managers (DCMs).”

This chapter focuses on the Spartan-3E and Extended Spartan-3A family architectures. For
details on Spartan-3 FPGA clocks, see DS099, Spartan-3 FPGA Family Data Sheet.

For more information on input delay elements and IOSTANDARD options, see
Chapter 10, “Using I/O Resources.”

62

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com

XX"JNX@ Summary

For information on the clocked resources in the FPGA, such as the CLB flip-flops and the
block RAM, see the appropriate chapters elsewhere in this user guide.

For information on setting clock performance constraints, see the ISE Constraints Guide on
the Xilinx website.

Spartan-3 Generation FPGA User Guide www.xilinx.com 63
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 2: Using Global Clock Resources XX"JNX@

64 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

&7 XILINX®

Chapter 3

Using Digital Clock Managers (DCMs)

Summary

Introduction

Digital Clock Managers (DCMs) provide advanced clocking capabilities to

Spartan®-3 generation FPGA applications (Spartan-3, Spartan-3E, and Extended
Spartan-3A families). Primarily, DCMs eliminate clock skew, thereby improving system
performance. Similarly, a DCM optionally phase shifts the clock output to delay the
incoming clock by a fraction of the clock period. DCMs optionally multiply or divide the
incoming clock frequency to synthesize a new clock frequency. The DCMs integrate
directly with the FPGA’s global low-skew clock distribution network.

DCMs integrate advanced clocking capabilities directly into the FPGA'’s global clock
distribution network. Consequently, DCMs solve a variety of common clocking issues,
especially in high-performance, high-frequency applications:

Eliminate Clock Skew, either within the device or to external components, to
improve overall system performance and to eliminate clock distribution delays.

Phase Shift a clock signal, either by a fixed fraction of a clock period or by
incremental amounts.

Multiply or Divide an Incoming Clock Frequency or synthesize a completely new
frequency by a mixture of clock multiplication and division.

Condition a Clock, ensuring a clean output clock with a 50% duty cycle.

Mirror, Forward, or Rebuffer a Clock Signal, often to deskew and convert the
incoming clock signal to a different I/O standard—for example, forwarding and
converting an incoming LVTTL clock to LVDS.

Any or all the above functions, simultaneously.

Table 3-1: Digital Clock Manager Features and Capabilities

Feature Description DCM Signals

Digital Clock Managers (DCMs) per Device Two to eight DCMs, depending on All

array size. See Figure 3-1, page 68.

Clock Input Sources

* Global buffer input pad CLKIN
¢ Global buffer output

® General-purpose I/O (no deskew)
¢ Internal logic (no deskew)

Frequency Synthesizer Output Multiply CLKIN by the fraction (M/D) | ¢ CLKEX
where M = {2..32}, D = {1..32} e CLKFX180
Spartan-3 Generation FPGA User Guide www.xilinx.com 65

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

Table 3-1: Digital Clock Manager Features and Capabilities (Cont’d)
Feature Description DCM Signals
Clock Divider Output Divide CLKIN by 1.5,2,2.5,3,3.5,4,4.5, | CLKDV
5,55,6,65,7,75,8,9,10,11,12,13, 14,
15, or 16
Clock Doubler Output Multiply CLKIN frequency by 2 ¢ CLK2X
¢ CLK2X180
Clock Conditioning, Duty-Cycle Correction Always provided on most outputs. All
Optional on Spartan-3 FPGA outputs
CLKO, CLK90, CLK180, and CLK270.
Quadrant Phase Shift Outputs 0° (no phase shift), ¢ CLKO
90° (Y4 period), e CLK90
180° (1/2 period), e CLK180
o (3 :
270° (% period) « CLK270
Half-Period Phase Shift Outputs Output pairs with 0° and 180° phase ¢ CLKO,
shift, ideal for DDR applications CLK180
¢ CLK2X,
CLK2X180
¢ CLKFX,
CLKFX180
Number of DCM Clock Outputs Connected to General- Uptoall 9 All
Purpose Interconnect
Number of DCM Clock Outputs Connected to Global Any 4 of 9 All
Clock Network
Number of Clock Outputs Connected to Output Pins Uptoall9 All

Document Overview

This chapter covers an assortment of topics related to Digital Clock Managers, not all of
which are relevant to every specific FPGA application.

The “DCM Functional Overview” section provides a brief introduction to the DCM and its
functions. Similarly the “DCM Primitive” section describes all the connection ports and

attributes or constraints associated with a DCM. Likewise the “Clocking Wizard” and the
“VHDL and Verilog Instantiation” sections demonstrate the various methods to specify a

DCM design.

The “DCM Clock Requirements” and the “Input and Output Clock Frequency

Restrictions” sections explain the frequency requirements on the DCM clock input and the
various DCM clock outputs. Similarly, the “Clock Jitter or Phase Noise” section highlights
the effect jitter has on output clock quality.

Finally, the “Eliminating Clock Skew”, “Clock Conditioning”,

7

Phase Shifting — Delaying

Clock Outputs by a Fraction of a Period”, “Clock Multiplication, Clock Division, and
Frequency Synthesis”, and “Clock Forwarding, Mirroring, Rebuffering” sections illustrate
various applications using the DCM block.

66 www.xilinx.com

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Compatibility and Comparison with Other Xilinx FPGA Families

Compatibility and Comparison with Other Xilinx FPGA Families

Spartan-3E and Extended Spartan-3A family FPGAs include a fourth-generation DCM
design, incorporating a variety of enhancements and improvements over previous FPGA
families. The Spartan-3 FPGA DCM, a third-generation design, is nearly functionally
identical to the DCM units found in Virtex®-II and Virtex-II Pro FPGA families.

The DCM feature is nearly identical between all Spartan-3 generation families. Table 3-2
summarizes the primary DCM differences between families. Mid- and large-density
Spartan-3E and Extended Spartan-3A family FPGAs have additional DCMs along the left
and right sides of the FPGA. The Spartan-3E and Extended Spartan-3A family DCMs
automatically determine their operating range and, unlike Spartan-3 FPGAs, are not
limited to either a Low or High operating frequency range. Furthermore, Spartan-3E and
Extended Spartan-3A family DCMs support a broader range of input frequencies. There
are also important differences in the way that Spartan-3E and Extended Spartan-3A family
FPGAs implement Variable Phase Shift operations, further described in “Important
Differences Between Spartan-3 Generation FPGA Families,” page 123.

Table 3-2:

DCM Differences between Spartan-3 Generation FPGASs

Spartan-3 Spartan-3E Extended Spartan-3A
FPGAs FPGAs Family FPGAs
Design primitive DCM DCM_SP DCM_SP
DCMs per device 2 to 4 global 2 to 4 global plus 2 to 4 global plus
(Figure 3-1, page 68) & 0 to 4 side DCMs 0 to 4 side DCMs
DLL minimum input 18 MHz 5 MHz 5 MHz
clock frequency
Distinct DLL
erating frequenc Twor One One
oP & 1req y Low and High
ranges
Distinct DFS operating Two:
frequency range Low and High One One
DFS input clock 1to 280 MHz, 0.2 to 333 MHz 0.2 to 333 MHz
frequency range
Variable Phase Shift 1/ 256th of DCM_DELAY STEP, DCM_DELAY_STEP,
increment or CLKIN Period | between 20 to 40 ps between 15 to 35 ps
decrement unit (degrees) (time) (time)
DCM Spartan-3A /3A DSP
Vecaux voltage 25V 25V FPGA: 2.5V or 3.3V
supply Spartan-3AN: 3.3V

The Spartan-3 FPGA DCM is a significant enhancement over the Spartan-1I/Spartan-1IE
FPGA DLL function. A Spartan-3 FPGA DCM provides all the capabilities of the
Spartan-1I/Spartan-IIE FPGA DLL with new capabilities, such as the Frequency
Synthesizer and phase shifting functions. The Spartan-3 FPGA Frequency Synthesizer
multiplies an input clock by up to a factor of 32. The Spartan-II/IIE FPGA DLL has limited
frequency multiplication capabilities—namely, an input clock can be doubled. Similarly,
the Spartan-3 FPGA DCM has a wider divider range compared to Spartan-IIE FPGA DLLs.

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

www.xilinx.com

67

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

SXILINX®

Chapter 3: Using Digital Clock Managers (DCMs)

DCM Locations and Clock Distribution Network Interface

Figure 3-1 shows the number and relative location of DCMs on various

Spartan-3 generation FPGAs. The smallest FPGA in each family has two DCMs, although
the physical location varies between families. All larger Spartan-3 FPGAs and the middle-
sized members of the Spartan-3E and Extended Spartan-3A families have four DCM
blocks. The larger members of the Spartan-3E and Extended Spartan-3A families have
eight total DCMs. The two DCMs at the top and the two at the bottom connect into the
FPGA’s global clock network. The DCMs along the left and right edges connect to the clock
network on their respective half of the FPGA.

Spartan-3E Spartan-3A Spartan-3
DCMs FPGAs FPGAs FPGAs
g
XC3S100E XC3S50A XC3S50

g

J [
— All Oth
XC3S250E XC3S200A Spartan.3
XC3S500E XC3S400A Family
FPGAS

H XC3S700A

XC3S1200E XC3S1400A
8 XC3S1600E H XC3SD1800A
XC3SD3400A

UG331_c3_03_011008

Number and Location of DCMs on Spartan-3 Generation FPGAs

g

Global DCM: Connects
to global clock network.

Left-Half DCM: Connects
to clock network on left
half of the FPGA.

Right-Half DCM: Connects
to clock network on right
half of the FPGA.

=] =] [o]

Figure 3-1:

The DCM blocks have dedicated connections to the global buffer inputs and global buffer
multiplexers on the same edge of the device, either top or bottom. They are an integral part
of the FPGA's global clocking infrastructure. DCMs are an optional element in the clock
distribution network and are available when required by the application. In Figure 3-2a, a
clock input feeds directly into the low-skew, high-fanout global clock network via a global
input buffer and global clock buffer.

If the application requires some or all of the DCM’s advanced clocking features, the DCM
tits neatly between the global buffer input and the buffer itself, as shown in Figure 3-2b.

68 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ DCM Functional Overview

Global Buffer Input Global Clock Buffer
IBUFG BUFG
| 0 | | o Low-Skew
GCLK p Global Clock
Network

X462_02a_062403

a. Global Buffer Inputs and Clock Buffers Drive a Low-Skew Global Network in the FPGA

Global Digital Clock Global
Buffer Input Il\%llztlia grc Clock Buffer

IBUFG g BUFG

| ') | 0 Low-Skew
GCLK CLKIN Output — Global Clock

Network
DCM_SP
CLKFB

UG332_c3_02_113006

b. A Digital Clock Manager (DCM) Inserts Directly into the Global Clock Path

Figure 3-2: DCMs are an Integral Part of the FPGA's Global Clock Network

DCM Functional Overview

The single entity that is generically called a Digital Clock Manager (DCM) consists of four

distinct functional units as depicted in the simplified diagram shown in Figure 3-3 and

described below. These units operate independently or in tandem.

| ____________ =
| DCM 1
| |
PSINCDEC i Phase I
PSEN | Shifter —— PSDONE
PSCLK i I
| |
' I Clock
I cLko oc
CLKIN : ° . Distribution
I o 9 = i CLK90 Delay
R kS & +—= CLK180
CLKEB 12 > = +—= CLK270
i 2 < S+ CLK2X
s a o t—= CLK2X180
| —= CLKDV
| |
| DFS —:—» CLKFX
| DLL | CLKFX180
|
RST | Status —l—>| . LOCKED
: Logic -~ STATUS [7:0]
e |
DS099-2_07_021408
Figure 3-3: DCM Functional Block Diagram
Spartan-3 Generation FPGA User Guide www.xilinx.com 69

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Delay-Locked Loop (DLL)

The Delay-Locked Loop (DLL) unit provides an on-chip digital deskew circuit that
effectively generates clock output signals with a net zero delay. The deskew circuit
compensates for the delay on the clock routing network by monitoring an output clock,
from either the DCM’s CLKO or the CLK2X outputs. The DLL unit effectively eliminates
the delay from the external clock input port to the individual clock loads within the device.
The well-buffered global network minimizes the clock skew on the network caused by
loading differences.

The input signals to the DLL unit are CLKIN and CLKFB. The output signals from the DLL
are CLKO, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.

The DLL unit generates the outputs for the Clock Doubler (CLK2X, CLK2X180), the Clock
Divider (CLKDV) and the Quadrant Phase Shifted Outputs functions.

Digital Frequency Synthesizer (DFS)

The Digital Frequency Synthesizer (DFS) provides a wide and flexible range of output
frequencies based on the ratio of two user-defined integers, a Multiplier
(CLKEX_MULTIPLY) and a Divisor (CLKFX_DIVIDE). The output frequency is derived
from the input clock (CLKIN) by simultaneous frequency division and multiplication. The
DFS feature can be used in conjunction with, or separately from, the DLL feature of the
DCM. If the DLL is not used, the DFS output clocks will not be de-skewed because the DLL
is required to provide the de-skew feedback clock.

The DFS unit generates the Frequency Synthesizer (CLKFX, CLKFX180) outputs.

Phase Shift (PS)

The Phase Shift (PS) unit controls the phase relations of the DCM’s clock outputs to the
CLKIN input.

The Phase Shift unit shifts the phase of all nine DCM clock output signals by a fixed
fraction of the input clock period. The fixed phase shift value is set at design time and
loaded into the DCM during FPGA configuration. If the DLL is not used, the DFS output
clocks will not be de-skewed because the DLL is required to provide the deskew feedback
clock.

The Phase Shift unit also provides a digital interface for the FPGA application to
dynamically advance or retard the current shift value, called Variable Phase Shift. As
shown in Table 3-3, the Spartan-3 FPGA Variable Phase Shift changes by 1/256th of the
CLKIN clock period. On Spartan-3E and Extended Spartan-3A families, the Variable Phase
Shift changes by one DCM_DELAY_STEP, which has a fixed range as defined in the
corresponding data sheet.

Table 3-3: Variable Phase Shift Differences

FPGA Family Smallest Phase Shift Unit
Spartan-3 FPGA 1/256t of the CLKIN clock period, but not less than 30 to 60 ps
Spartan-3E FPGA DCM_DELAY_STEP, which ranges between 20 to 40 ps per step
Extended Spartan-3A DCM_DELAY_STEP, which ranges between 15 to 35 ps per step
FPGA
70 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ DCM Primitive

The input signals to the Phase Shift unit are PSINCDEC, PSEN, and PSCLK. The output
signals are PSDONE and the STATUS|0] signal.

Status Logic

The Status Logic indicates the current state of the DCM via the LOCKED and STATUS|0]
(Extended Spartan-3A family FPGAs only), STATUS[1], and STATUS|2] output signals.
The LOCKED output signal indicates whether the DCM outputs are in phase with the
CLKIN input. The STATUS output signals indicate the state of the DLL and PS operations.

The RST input signal resets the DCM logic and returns it to its post-configuration state.
Likewise, a reset forces the DCM to reacquire and lock to the CLKIN input.

DCM Primitive

The DCM design primitive, shown in Figure 3-4, represents all the sub-features within the
Digital Clock Manager. The name of the DCM primitive differs slightly between
Spartan-3 generation FPGA families, as shown in Table 3-4. Spartan-3 FPGAs support the
DCM primitive, while Spartan-3E and Extended Spartan-3A family FPGAs support the
more advanced DCM_SP primitive. The Xilinx ISE® software automatically maps a
Spartan-3 FPGA DCM primitive to the appropriate equivalent in a Spartan-3E or
Extended Spartan-3A family FPGA design.

Table 3-4: Digital Clock Manager Primitive by Spartan-3 Generation FPGA Family

FPGA Family Primitive
Spartan-3E FPGA
DCM_SP
Extended Spartan-3A family FPGA
Spartan-3 FPGA DCM
The DCM’s Connection Ports and Attributes, Properties, or Constraints are summarized
below.
Spartan-3 Generation FPGA User Guide www.xilinx.com 71

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

Symbol

Connection Ports

Spartan-3 FPGA: DCM
Spartan-3E/3A/3AN/3A DSP FPGAs: DCM_SP

— CLKIN CLKO}—
—— CLKFB CLK9O|—
CLK180f}—

CLK270}—

CLK2X}|—

CLK2X180}—

CLKDV|—

CLKFX|—

— IRsT CLKFX180|—
— PSEN STATUS[7:0]
—(PSINCDEC LOCKED}|—
—— PSCLK PSDONE |—

UG331_c3_01_011008

Figure 3-4: DCM Design Primitive

Table 3-6 lists the various connection ports to the Digital Clock Manager. Each port

connection has a brief description, which includes the signal direction, and which DCM
function units require the connection. Table 3-5 provides the abbreviated name for each
function unit used in Table 3-6.

Table 3-5: Functional Unit Abbreviations for Table 3-6

Abbreviation

Functional Unit

DLL Delay-Locked Loop
PS Phase Shifter
DFS Digital Frequency Synthesizer

72

www.xilinx.com

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

DCM Primitive

Table 3-6:

DCM Connection Ports

Port

Direction

Description

Functional Unit

DLL

PS

DFS

CLKIN

Clock
Input

Clock input to DCM. Always required. The CLKIN frequency and
jitter must fall within the limits specified in the data sheet. On
Spartan-3 FPGAs, the frequency limits are further defined by the
DLL_FREQUENCY_MODE and DFS_FREQUENCY_MODE
attributes.

v

v

v

CLKFB

Input

Clock feedback input to DCM. The feedback input is required
unless the Digital Frequency Synthesis outputs, CLKFX or
CLKFX180, are used stand-alone. The source of the CLKFB input
must be the CLKO or CLK2X output from the DCM and the
CLK_FEEDBACK must be set to 1X or 2X accordingly. The
feedback point ideally includes the delay added by the clock
distribution network, either internally or externally. See
“Feedback from a Reliable Source.”

Optional

RST

Input

Asynchronous reset input. Resets the DCM logic to its post-
configuration state. Causes DCM to reacquire and relock to the
CLKIN input. Invertible within DCM block. Non-inverted
behavior shown below. See “RST Input Behavior.”

0 No effect.

1 Reset DCM block. Hold RST pulse High for at least
three valid CLKIN cycles.

PSEN

Input

Variable Phase Shift enable. Invertible within DCM block. Non-
inverted behavior shown below. See “Variable Fine Phase
Shifting,” page 123.

0 Disable Variable Phase Shifter. Ignore inputs to phase
shifter.

1 Enable Variable Phase Shifter operations on next
rising PSCLK clock edge.

PSINCDEC

Input

Increment/decrement Variable Phase Shift. Invertible within
DCM block. Non-inverted behavior shown below. See “Variable
Fine Phase Shifting,” page 123.

0 Decrement phase shift value on next enabled, rising
PSCLK clock edge.

1 Increment phase shift value on next enabled, rising
PSCLK clock edge.

PSCLK

Clock
Input

Clock input to Variable Phase Shifter, clocked on rising edge.
Invertible within DCM block. See “Variable Fine Phase Shifting,”
page 123.

Spartan-3 Generation FPGA User Guide www.xilinx.com
UG331 (v1.8) June 13, 2011

73

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Table 3-6: DCM Connection Ports (Cont’'d)

Functional Unit
Port Direction Description

DLL PS DFS

CLKO Clock | Same frequency as CLKIN, 0° phase shift (i.e., not phase shifted). v
Output | Always conditioned to a 50% duty cycle on

Extended Spartan-3A family FPGAs or on Spartan-3 FPGAs
when the DUTY_CYCLE_CORRECTION attribute is TRUE.
Either CLKO or CLK2X is required as a feedback source for DLL
functions. See “Half-Period Phase Shifted Outputs,” and
“Quadrant Phase Shifted Outputs.”

CLK90 Clock | Same frequency as CLKIN, 90° phase shifted (quarter period). v
Output | Not available if the DLL_FREQUENCY_MODE attribute is
HIGH. Always conditioned to a 50% duty cycle on

Extended Spartan-3A family FPGAs or on Spartan-3 FPGAs
when the DUTY_CYCLE_CORRECTION attribute is TRUE. See
“Quadrant Phase Shifted Outputs.”

CLK180 Clock | Same frequency as CLKIN, 180° phase shifted (half period). v
Output | Always conditioned to a 50% duty cycle on

Extended Spartan-3A family FPGAs or on Spartan-3 FPGAs
when the DUTY_CYCLE_CORRECTION attribute is TRUE. See
“Half-Period Phase Shifted Outputs,” and “Quadrant Phase
Shifted Outputs.”

CLK270 Clock | Same frequency as CLKIN, 270° phase shifted (three-quarters v
Output | period). Notavailable if the DLL_FREQUENCY_MODE attribute
is HIGH. Always conditioned to a 50% duty cycle on

Extended Spartan-3A family FPGAs or on Spartan-3 FPGAs
when the DUTY_CYCLE_CORRECTION attribute is TRUE. See
“Quadrant Phase Shifted Outputs.”

CLK2X Clock | Double-frequency clock output, 0° phase shift. Not availableif the | v
Output | DLL_FREQUENCY_MODE attribute is HIGH. When available,
the CLK2X output always has a 50% duty cycle. Either CLKO or
CLK2X is required as a feedback source for DLL functions. Clock
Doubler (CLK2X, CLK2X180) output. See “Half-Period Phase
Shifted Outputs.”

CLK2X180 Clock | Double-frequency clock output, 180° phase shifted. Not available | v
Output | if the DLL_FREQUENCY_MODE attribute is HIGH. When
available, the CLK2X180 output always has a 50% duty cycle.
Clock Doubler (CLK2X, CLK2X180) output. See “Half-Period
Phase Shifted Outputs.”

CLKDV Clock | Divided clock output, controlled by the CLKDV_DIVIDE v
Output | attribute. The CLKDV output has a 50% duty cycle unless the
DLL_FREQUENCY_MODE attribute is HIGH and the
CLKDV_DIVIDE attribute is a non-integer value. The locking
time is longer when CLKDV_DIVIDE has a non-integer value.
See the Clock Divider (CLKDV) output.

F - Fcrin
CLKDV ™ CcILKDV_DIVIDE

74 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ DCM Primitive

Table 3-6: DCM Connection Ports (Cont’'d)

Functional Unit
Port Direction Description

DLL PS DFS

CLKFX Clock | Synthesized clock output, controlled by the CLKEX_MULTIPLY v
Output | and CLKEX_DIVIDE attributes. Always has a 50% duty cycle. If
the CLKFX or CLKFX180 clock outputs are used standalone, then
no clock feedback is required. See “Frequency Synthesizer
(CLKFX, CLKFX180),” and “Half-Period Phase Shifted Outputs.”

r _F . CLKFX_MULTIPLY
CLKFX = “CLKIN ° C[KFX DIVIDE

CLKFX180 Clock | Synthesized clock output CLKFX, phase shifted by 180° (appears v
Output | to be an inverted version of CLKFX). Always has a 50% duty
cycle. If only CLKFX or CLKFX180 clock outputs are used on the
DCM, then no feedback loop is required. See “Frequency
Synthesizer (CLKFX, CLKFX180),” and “Half-Period Phase
Shifted Outputs.”

STATUS[0] Output | Variable Phase Shift Overflow. Control output for “Variable Fine 4
Phase Shifting.” The Variable Phase Shifter has reached its
minimum or maximum limit value. The limit value is either 255
or a lesser value if the phase shifter reached the end of the delay
line. See “Variable Fine Phase Shifting,” page 123.

Note: This function is not supported in the Spartan-3E family.
In the Spartan-3 family, STATUS[0] also indicates overflow for a
fixed phase shift selection.

0 The Phase Shifter has not yet reached its limit value.

1 The Phase Shifter has reached its limit value.

STATUS[1] Output | CLKIN Input Stopped Indicator. Available only when the CLKFB v v v
feedback input is connected. Held in reset until the LOCKED
output is asserted. Requires at least one CLKIN cycle to become
active. Never asserted if CLKIN never toggles.

0 CLKIN input is toggling.

1 CLKIN input is not toggling, even though the
LOCKED output might still be High. See
“Momentarily Stopping CLKIN".

STATUS|2] Output | CLKEX or CLKFX180 Output Stopped Indicator. See Frequency v
Synthesizer (CLKFX, CLKFX180).

0 CLKEFX and CLKFX180 outputs are toggling.

1 CLKEX and CLKFX180 outputs are not toggling,
even though the LOCKED output might still be
High. See “Momentarily Stopping CLKIN”.

STATUS[7:3] Output | Reserved

Spartan-3 Generation FPGA User Guide www.xilinx.com 75
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Table 3-6: DCM Connection Ports (Cont’'d)

Functional Unit
Port Direction Description

DLL PS DFS

LOCKED Output | All DCM features have locked onto the CLKIN frequency. Clock | v v v
outputs are now valid, assuming CLKIN is within specified limits
(as described in “DCM Clock Requirements”). See “Frequency
Synthesizer (CLKFX, CLKFX180).”

0 DCM is attempting to lock onto CLKIN frequency.
DCM clock outputs are not valid.

1 DCM is locked onto CLKIN frequency. DCM clock
outputs are valid.

1-to-0 | DCM lost lock. Reset DCM.

PSDONE Output | Variable Phase Shift operation complete. See “Variable Fine Phase 4
Shifting,” page 123.

0 No phase shift operation is active or phase shift
operation is in progress.

1 Requested phase shift operation is complete. Output
High for one PSCLK cycle. Okay to provide next
Variable Phase Shift operation.

Attributes, Properties, or Constraints

Table 3-7 lists the various attributes for the Digital Clock Manager. All attributes are set at
design time and programmed during configuration. Most, except for the Dynamic Fine
Phase Shift function, cannot be changed by the FPGA application at run-time. To set an
attribute, set <ATTRIBUTE>=<SETTING> as appropriate for the design entry tool.

76 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

DCM Primitive

Table 3-7: DCM Attributes

Attribute

Allowable Settings and Description

DLL_FREQUENCY_MODE

Spartan-3 FPGA Family Only. Specifies the allowable frequency range for the
CLKIN input and for the output clocks from the DCM’s Delay-Locked Loop
(DLL) unit. The DLL clock outputs include CLK0, CLK90, CLK180, CLK270,
CLK2X, CLK2X180, CLKDV.

LOW | Default. The DLL function unit operates in its low-frequency mode.
All DLL-related outputs are available. The frequency for all clock
inputs and outputs must fall within the low-frequency DLL limits
specified in the Spartan-3 FPGA Data Sheet.

HIGH | The DLL function unit operates in its high-frequency mode. The
Clock Doubler (CLK2X, CLK2X180) outputs are not available. The
Quadrant Phase Shifted Outputs CLK90 and CLK270 are not
available. The duty cycle for the CLKDV output is not 50% if the
CLKDV_DIVIDE attribute has a non-integer value. The frequency
for all clock inputs and outputs must fall within the high-frequency
DLL limits specified in the Spartan-3 FPGA Family Data Sheet.

CLKIN_PERIOD

Specifies in ns the period of the clock used to drive the CLKIN pin of the DCM.
Optional input, primarily used only for DRC checks. On Spartan-3E and
Extended Spartan-3A family FPGAs, setting CLKIN_PERIOD helps reduce DFS
jitter and results in faster locking time.

CLK_FEEDBACK

Defines the frequency of the feedback clock.

1X Default. CLKO feedback. Same frequency as CLKIN.

2X CLK2X feedback. Double the frequency of CLKIN.

None | No feedback. Allowed if using only the CLKFX or CLKFX180
outputs.

DUTY_CYCLE_CORRECTION

Spartan-3 FPGAs only. Enables or disables the 50% duty-cycle correction for the
CLKO, CLK90, CLK180, and CLK270 outputs from the DLL unit. The duty cycles
for all outputs on Spartan-3E and Extended Spartan-3A family FPGAs are
always corrected to 50%.

TRUE | Default. Enable duty-cycle correction.

FALSE | Disable duty-cycle correction.

CLKDV_DIVIDE

Defines the frequency of the CLKDV output. Allowable values for
CLKDV_DIVIDE include 1.5,2,2.5,3,3.5,4,45,5,5.5,6,6.5,7,7.5,8,9,10, 11, 12,
13,14, 15, 16.

F - Ferkin
CLKDV ™ CLKDV_DIVIDE

The locking time is longer, and there is more output jitter when CLKDV_DIVIDE
is a non-integer value.

Spartan-3 Generation FPGA User Guide www.xilinx.com 77

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Table 3-7: DCM Attributes (Cont'd)

Attribute

Allowable Settings and Description

CLKFX_MULTIPLY

Defines the multiplication factor for the frequency of the CLKFX and CLKFX180
outputs. Used in conjunction with the CLKFX_DIVIDE attribute. Allowable
values for CLKFX_MULTIPLY include integers ranging from 2 to 32. Default
value is 4.

F - F . CLKFX_MULTIPLY
CLKFX = “CLKIN ° CLKFX DIVIDE

CLKEFX_DIVIDE

Defines the division factor for the frequency of the CLKFX and CLKFX180
outputs. Used in conjunction with the CLKEX_MULTIPLY attribute. Allowable
values for CLKFX_DIVIDE include integers ranging from 1 to 32. Default value
is 1.

r -r . CLKFX MULTIPLY
CLKEX ™= "CLKIN = CLKFX_DIVIDE

PHASE_SHIFT

The PHASE_SHIFT attribute is applicable only if the CLKOUT_PHASE_SHIFT
attribute is set to FIXED or VARIABLE. Defines the rising-edge skew between
CLKIN and all the DCM clock outputs at configuration and consequently phase
shifts the DCM clock outputs.

The skew or phase shift value is specified as an integer that represents a fraction
of the clock period as expressed in the equations in “Fine Phase Shifting.” The
integer value must range from —-255 to 255. The default is 0. Actual allowable
values depend on input clock frequency. The actual range is less when Ty ki >
FINE_SHIFT_RANGE. The FINE_SHIFT_RANGE specification represents the
total delay of all taps in the delay line. See “Fine Phase Shifting,” for more
information.

CLKOUT_PHASE_SHIFT

Sets the phase shift mode. Together with the PHASE_SHIFT constraint,
implements the Digital Phase Shifter (DPS) feature of the DCM. Affects all DCM
clock outputs from both the DLL and DFS units. See “Fine Phase Shifting,” for
more information.

NONE Default. CLKIN and CLKFB are in phase (no skew) and phase
relationship cannot be changed. Equivalent to FIXED setting
with a PHASE_SHIFT value of 0.

FIXED Phase relationship is set at configuration by the PHASE_SHIFT
attribute value and cannot be changed by the application.

VARIABLE | Phase relationship is set at configuration by the PHASE_SHIFT
attribute value but can be changed by the application using the
Variable Phase Shift controls, PSEN, PSCLK, PSINCDEC, and
PSDONE.

78

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ DCM Primitive

Table 3-7: DCM Attributes (Cont'd)

Attribute Allowable Settings and Description

DESKEW_ADJUST Controls the clock delay alignment between the FPGA clock input pin and the
DCM output clocks. See “Skew Adjustment.”

SYSTEM_SYNCHRONOUS | Default. All devices clocked by a common,
system-wide clock source.

SOURCE_SYNCHRONOUS | Clock is provided by the data source, i.e.,
source-synchronous applications.

Do not use this setting to phase shift DCM clock outputs. Instead, use the
CLKOUT_PHASE_SHIFT and PHASE_SHIFT constraints to achieve accurate
phase shifting.

DFS_FREQUENCY_MODE Spartan-3 FPGA Family Only. Specifies the allowable frequency range for the
CLKFX and CLKFX180 output clocks from the DCM’s Digital Frequency
Synthesizer (DFS). If any DLL clock outputs are used, then the more restrictive
DLL_FREQUENCY_MODE limits the CLKIN input frequency.

LOW | Default. The DFS function unit operates in its low-frequency mode.
The frequency for the CLKFX and CLKFX180 outputs must fall
within the low-frequency DFS limits specified in the Spartan-3
FPGA Data Sheet. The frequency limits for the CLKIN input
depend on if any DLL clock outputs are used.

HIGH | The DFS function unit operates in its high-frequency mode. The
frequency for the CLKFX and CLKFX180 outputs must fall within
the high-frequency DFS limits specified in the Spartan-3 FPGA Data
Sheet. The frequency limits for the CLKIN input depend on if any
DLL clock outputs are used.

STARTUP_WAIT Controls whether the FPGA configuration signal DONE waits for the DCM to
assert its LOCKED signal before going High.

FALSE | Default. DONE is asserted at the end of configuration without
waiting for the DCM to assert LOCKED.

TRUE | The DONE signal does not go High until the LOCKED signal goes
HIGH on the associated DCM. STARTUP_WAIT does not prevent
LOCKED from going High. The FPGA startup sequence must also
be modified to insert a LCK (lock) cycle before the postponed cycle
(see “Bitstream Generation Settings”). Either the DONE cycle or
GWE cycle are typical choices.

If more than one DCM is so configured, the FPGA waits until all DCMs are
locked.

Spartan-3 Generation FPGA User Guide www.xilinx.com 79
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Table 3-7: DCM Attributes (Cont'd)

Attribute Allowable Settings and Description

CLKIN_DIVIDE_BY_2 Optionally divides the CLKIN in half before entering DCM block. In some
applications, reduces the input clock frequency to within acceptable limits. Can
be used for either DLL or DFS.

FALSE | Default. CLKIN input directly feeds the DCM block.

TRUE | Divides CLKIN frequency in half and provides roughly a 50% duty-
cycle clock before entering the DCM block. Helpful with high-
frequency clocks to meet the DCM input clock frequency or duty-
cycle requirements. Divides the clock frequency in half when
determining operating frequency modes and calculating phase shift

limits.
FACTORY_JF Spartan-3 FPGA Family Only. Controls how often the DCM’s DLL unit adjusts
its tap settings. The FACTORY_]JF setting affects the jitter characteristics of the
DLL element.
The settings are automatically adjusted based on the DLL_FREQUENCY_MODE
attribute.
DLL_FREQUENCY_MODE FACTORY_JF
LOW 0x8080
HIGH 0x8080

Do not change the default values unless otherwise recommended (see
“Adjusting FACTORY_JF Setting (Spartan-3 FPGA Family Only)”).

LOC Specifies the physical location of the DCM.

DCM Clock Requirements

The DCM is built for maximum flexibility, but there are certain requirements on clock
frequency and clock stability, both frequency variation and clock jitter.

Input Clock Frequency Range

The DCM clock input frequency depends on whether the DLL functional unit, the DFS
unit, or both are utilized in the application.

Table 3-8: DFS Unit Clock Input Frequency Requirements (-4 Speed Grade)

Function Minimum Frequency Maximum Frequency | Units
Data Sheet Specification CLKIN_FREQ_FX_MIN | CLKIN_FREQ_FX_MAX
Spartan-3 FPGA 1 280 MHz
Spartan-3E FPGA 0.200 333 MHz
Extended Spartan-3A family 0.200 333 MHz
FPGAs

Table 3-8 shows the clock input, CLKIN, frequency range for the Digital Frequency
Synthesizer (DFS) unit. The DFS unit, if used stand-alone, has a wider frequency range

80 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ DCM Clock Requirements

than the DLL unit. If the application uses both units, then the more restrictive DLL
requirements apply. The table shows the data sheet specification name and an estimated
value. The actual value depends on which speed grade is required for the design and the
value specified in the data sheet takes precedence over the estimate.

Table 3-9 and Table 3-10 show the clock input, CLKIN, frequency range for the Delay-
Locked Loop (DLL) unit. The DLL frequency restrictions apply regardless if the DLL is
used stand-alone or with the DFS unit. The table shows the data sheet specification name
and value. The actual value depends on which speed grade is required for the design, and
the value specified in the data sheet takes precedence over any values shown in this user
guide.

Spartan-3E and Extended Spartan-3A family FPGAs have a single DLL operating range, as
shown in Table 3-9. The frequencies shown for Spartan-3E FPGAs are for the Stepping 1
revision.

Table 3-9: Extended Spartan-3A Family FPGAs: DLL Unit Clock Input Frequency Requirements

Speed Minimum Maximum
FPGA Family d Units
Grade | CLKIN_FREQ DLL_MIN CLKIN_FREQ DLL_MAX
-4 250 MHz
Extended Spartan-3A family FPGAs
-5 280 MHz
5
-4 240 MHz
Spartan-3E FPGAs (Stepping 1)
-5 270 MHz

Table 3-10 shows the frequency range for Spartan-3 FPGAs, where the DLL has two
distinct operating frequency ranges, called Low and High. The operating mode is
controlled by the DLL_FREQUENCY_MODE attribute.

Table 3-10: Spartan-3 FPGAs: DLL Unit Clock Input Frequency Requirements

DLL Frequency Mode Attribute (DLL_FREQUENCY_MODE)

EFPGA =LOW = HIGH
Family

Minimum Frequency Maximum Frequency Minimum Frequency Maximum Frequency

CLKIN_FREQ DLL_LF_MIN | CLKIN_FREQ DLL_LF_MAX | CLKIN_FREQ DLL_HF_MIN | CLKIN_FREQ_DLL_HF_MIN

Spartan-3
FPGAs 18 MHz 167 MHz 48 MHz 280 MHz

Spartan-3E and Extended Spartan-3A family FPGA DLLs support input clock frequencies
as low as 5 MHz, whereas the Spartan-3 FPGA DLL requires at least 18 MHz.
Output Clock Frequency Range

The various DCM output clocks also have a specified frequency range. See the “Input and
Output Clock Frequency Restrictions” section for more information.

Input Clock and Clock Feedback Variation

As described later in the “A Stable, Monotonic Clock Input” section, the DCM expects a
stable, monotonic clock input. However, for maximum flexibility, the DCM tolerates a

Spartan-3 Generation FPGA User Guide www.xilinx.com 81
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

certain amount of clock jitter on the CLKIN input and a reasonable amount of frequency
variation on both the CLKIN input and the CLKFB clock feedback input.

There are two types of jitter tolerance on the CLKIN input.
* Cycle-to-cycle jitter
e Period jitter

Cycle-to-Cycle Jitter

Cycle-to-cycle jitter indicates how much the CLKIN input period is allowed to change
from one cycle to the next. The maximum allowable cycle-to-cycle change is shown in
Table 3-11, including the data sheet specification name and an estimated value. The table
also indicates when the specification applies. While Spartan-3E and Extended Spartan-3A
family FPGAs have one distinct operating range, the acceptable amount of cycle-to-cycle
jitter decreases at input frequencies about 150 MHz. For Spartan-3 FPGAs, the limits apply
depending on the DLL_FREQUENCY_MODE attribute setting.

Table 3-11: Maximum Allowable Cycle-to-Cycle Jitter

Frequency Mode/Frequency Range
Functional Unit
Low High
DLL CLKIN_CYC_JITT_DLL_LF CLKIN_CYC_JITT_DLL_HF
DFS CLKIN_CYC_JITT_FX_LF CLKIN_CYC_JITT_FX_HF
Cycle-to-cycle jitter +300 ps +150 ps
Spartan—3E, When FCLKIN/FX <150 MHz When FCLKIN/FX > 150 MHz
Extended Spartan-3A family FPGAs
Spartan-3 FPGAs When When
DLL_FREQUENCY_MODE = LOW | DLL_FREQUENCY_MODE = HIGH

Period Jitter

The other applicable type of jitter is called period jitter. Period jitter indicates the maximum
variation in the clock period over millions of clock cycles. Cycle-to-cycle jitter shows the
change from one clock cycle to the next while period jitter indicates the maximum range of
change over time. The maximum allowable period jitter appears in Table 3-12, including
the data sheet specification name and an estimated value.

Table 3-12: Maximum Allowable Period Jitter

Frequency Mode
Functional Unit
Low High
DLL CLKIN_PER_JITT_DLL_LF CLKIN_PER_JITT_DLL_HF
DFS CLKIN_PER_JITT_FX_LF CLKIN_PER_JITT_FX_HF
Period jitter +1,000 ps (=1 ns)
82 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

DCM Clock Requirements

DLL Feedback Delay Variance

Another source of stability for the DCM is the clock feedback path used by the DLL unit.
The feedback path delay variance must also be within the limit shown in Table 3-13. This
limit only applies to an external feedback path as any on-chip variance is minimal when

connected to a global clock line.

Table 3-13: External Feedback Path Delay Variation

Description Specification

Maximum allowable variation in off-chip CLKFB feedback path CLKFB_DELAY_VAR_EXT

+1,000 ps (+1 ns)

Spread Spectrum Clocks

The Spartan-3E and Extended Spartan-3A family FPGA DCMs accept typical spread
spectrum clocks. The DLL part of the DCM tracks the frequency changes created by the
typical spread spectrum clock, to drive the global clocks to the FPGA fabric. The spread
spectrum clock must meet the DLL input requirements as specified in the device data
sheets. See the Input Clock Jitter Tolerance and Delay Path Variation specifications in the
Recommended Operating Conditions for the DLL, CLKIN_CYC_JITT_DLL and
CLKIN_PER_JITT_DLL.

The DFS can track a typical spread spectrum input as long as it meets the input clock
specifications. If phase shift is used, it should be set to FIXED. See XAPP469 for more
details.

Spartan-3 Generation FPGA User Guide www.xilinx.com 83
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp469.pdf
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Optimal DCM Clock and External Feedback Inputs

Each DCM has multiple optimal inputs for an incoming clock signal or external feedback
signal.

Spartan-3E FPGA DCM Clock Inputs

Table 3-14 through Table 3-16 list the direct inputs to each DCM on Spartan-3E FPGAs.
Each DCM has up to four direct input pins, used for clock or external feedback
connections. Optionally, these pins are also the direct inputs to the global buffers on the
FPGA. Each table shows all four possible direct inputs, the associated pin number by
package, the associated GCLK, RHCLK, or LHCLK clock input, and the BUFGMUX clock
buffers associated with each DCM. Lastly, each table also includes the LOC location
attribute string from the DCM, the associated BUFGMUX buffers, and the direct input
pins.

The pin number is shown for each potential direct input. Two associated pins can be
combined to form a differential clock input.

Table 3-14, page 85 shows the direct connections to the DCMs associated with the global
clock network. These DCMs are the best choice for the highest-speed clocks in the design
and for clocks with the highest fanout. The top DCMs are associated with I/O Bank 0, and
the bottom DCM s are associated with I/O Bank 2. The XC3S100E has only two “global”
DCMs, located in the upper right and lower right. The outputs from a “global” DCM drive
up to four BUFGMUX clock buffers along the same edge. The two DCMs along an edge
share these four clock buffers. Each of these buffers, in turn, connects to one of the eight
global clock lines.

Table 3-15, page 86 and Table 3-16, page 86 show the direct connections to the left- and
right-edge DCMs available on the XC351200E and XC351600E FPGAs. The output clocks
from these DCMs are available on the associated half of the FPGA. The left-edge DCMs are
associated with I/O Bank 3, and the right-edge DCMs are associated with I/O Bank 1. The
outputs from a left-edge or right-edge DCM each drive up to four BUFGMUX clock buffers
along the same edge, each of which connects to one of the eight clock lines. These
BUFGMUX buffers provide clocks to half of the chip, whereas the “global” DCMs provide
clocks to the entire FPGA.

84

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ DCM Clock Requirements

Table 3-14: Spartan-3E FPGA: Direct Input Connections and Optional External Feedback to Associated
DCMs

I/O Bank O
Differential Pair Differential Pair Differential Pair Differential Pair
N P N P N P N P
Package Pin Number for Single-Ended Input Pin Number for Single-Ended Input
vVQ100 Pa1 P90 P89 P88 P86 P85 P84 P83
CP132 B7 A7 C8 B8 A9 B9 9 A10
TQ144 P131 P130 P129 P128 P126 P125 P123 P122
PQ208 P186 P185 P184 P183 P181 P180 P178 P177
FT256 D8 C8 B8 A8 A9 A10 F9 E9
FG320 D9 9 B9 B8 A10 B10 E10 D10
FG400 A9 A10 G10 H10 E10 Ell G11 F11
FG484 B11 C11 H11 H12 C12 B12 E12 F12
v v 7 v Associated Global Buffers \ v 7 v
GCLK11 GCLK10 GCLK9 GCLKS8 5 E S E
Top Left DCM >‘_<|I ;l Ql QI Top Right DCM
5 5 X 5 XC3S100E: DCM_X0Y1
XC3S250E, XC3S500E: DCM_X0Y1 3 3 3 3 XC3S250E, XC3S500E: DCM_X1Y1
XC3S1200E, XC3S1600E: DCM_X1Y3 é % é % XC3S1200E, XC3S1600E: DCM_X2Y3
v v Vv Vv
Global Clock Line
Ol 5 +]
) () () A
Bottom Left DCM = = g = Bottom Right DCM
><| ><, ><‘ ><| XC3S100E: DCM_X0Y0
XC3S250E, XC3S500E: DCM_X0Y0 515 | 858 |5 XC3S250E, XC3S500E: DCM_X1Y0
XC3S1200E, XC3S1600E: DCM_X1Y0 51818 |8 XC3S1200E, XC3S1600E: DCM_X2Y0
o = = =
2 |2 |3 |8
N N ") Associated Global Buffers ") " N
Differential Pair Differential Pair Differential Pair Differential Pair
Package P N P N P N P N
Pin Number for Single-Ended Input Pin Number for Single-Ended Input
VvQ100 P32 P33 P35 P36 P38 P39 P40 P41
CP132 M4 N4 M5 N5 M6 N6 P6 P7
TQ144 P50 P51 P53 P54 P56 P57 P58 P59
PQ208 P74 P75 P77 P78 P80 P81 P82 P83
FT256 M8 L8 N8 P8 T9 R9 P9 N9
FG320 N9 M9 U9 \ u10 T10 R10 P10
FG400 W9 W10 R10 P10 P11 P12 V10 Vi1
FG484 Vil un R11 T R12 P12 Y12 W12
1/0 Bank 2
Spartan-3 Generation FPGA User Guide www.xilinx.com 85

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

Table 3-15: Spartan-3E FPGA: Direct Input and Optional External Feedback to Left-Edge DCMs

(XC3S1200E and XC3S1600E)

Table 3-16: Spartan-3E FPGA: Direct Input and Optional External Feedback to Right-Edge DCMs

(XC3S1200E and XC3S1600E)

BUFGMUX_X0Y7

v

BUFGMUX_X0Y6

Diff. Single-Ended Pin Number by Package Type Left Edge
Clock | vQ100 | cP132 | TQ144 | PQ208 | FT256 | FG320 | FG400 | FG48a LHCLK | DCM/BUFGMUX
BUFGMUX_X0Y5 | 2| D
BUFGMUX_X0Y4 | 2| C
= P P9 F3 P14 P22 H5 15 K3 M5 | > RisER @
& N| P10 F2 P15 P23 He J4 K2 L5 ¢d LHCLK1 E
DCM_X0Y2 ~
= P | Pl1 F1 P16 P24 H3 11 K7 L8 rd LHCLK2 g
& | N| P12 Gl P17 P25 H4]2 L7 M8 | > EisleRi«] o
0 BUFGMUX_X0Y3 | | B
§ BUFGMUX_X0Y2 | 9] A
©)
B BUFGMUX_X0Y9 | =3l
BUFGMUX_X0Y8 -)
= P | P15 G3 P20 P28]2 K3 M1 YV 4 LHCLK4 @
& N| P16 H1 P21 P29 J3 K4 L1 N1 | > po:lenie E
DCM_X0Y1 ~
- P | P17 H2 P22 P30 15 K6 M3 M3 | 2> RisERG g
& | N| P18 H3 P23 P31 J4 K5 L3 ISR 3 LHCLK7 o
o

Vv

€«

BUFGMUX_X3Y7

BUFGMUX_X3Y6

Right Edge Single-Ended Pin Number by Package Type Diff.

DCM/BUFGMUX | RHCLK VQ100 | CP132 | TQ144 | PQ208 | FT256 | FG320 | FG400 | FGas4 | Clock
D | €| BUFGMUX_X3Y5
C | €| BUFGMUX_X3Y4
2 jNs(eNOM € P68 | GI3 | P94 | P135 | HI11 | Jl4 J20 | L19 | N | _
5 GOVl € P67 | Gl4 | P93 | P134 | HI12 | J15 | K20 | L18 | P &

DCM_X3Y2
i .
S INC@NEH € Po6 | HI2 | P92 | P133 | HI4 | Jl6 | Ki4 | 121 [N | _
o jNs(eNCM € Po5 | HI3 | P91 | P132 | H15 | J17 | K13 | 120 | P |£
B | €] BUFGMUX_X3Y3 <
A | €| BUFGMUX_X3Y2 ﬂ%

@)

sl €| BUFGMUX_X3Y9
(e €| BUFGMUX_X3Y8
7 €| P63 | J14 | P88 | P129 | JI3 | Kl4 | L14 | Ml6 [N | _
5 €| P2 | 713 | P87 | P128 | J14 | KI5 | L15 | M15 | P | &
" DCM_X3Y1
S € Pl | J12 | P86 | P127 | Jl6 | K12 | L16 | M2 [N |
o €| Pe0 | K14 | P85 | P126 | K16 | K13 | Ml6 | N22 | P | &
‘E\

86

www.xilinx.com

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ DCM Clock Requirements

Extended Spartan-3A Family FPGA DCM Clock Inputs

Table 3-18 through Table 3-20 list the direct inputs to each DCM on Extended Spartan-3A
family FPGAs. References to Spartan-3A platform part numbers also apply to the Spartan-
3AN platform. Each DCM has up to four direct input pins, used for clock or external
feedback connections. Optionally, these pins are also the direct inputs to the global buffers
on the FPGA. Each table shows all four possible direct inputs, the associated pin number
by package, the associated GCLK, RHCLK, or LHCLK clock input, and the BUFGMUX
clock buffers associated with each DCM. Lastly, each table also includes the LOC location
attribute string from the DCM, the associated BUFGMUX buffers, and the direct input
pins.

The pin number is shown for each potential direct input. Two associated pins can be
combined to form a differential clock input.

Table 3-18, page 88 shows the direct connections to the DCMs associated with the global
clock network. These DCMs are the best choice for the highest-speed clocks in the design
and for clocks with the highest fanout. The top DCMs are associated with I/O Bank 0, and
the bottom DCMs are associated with I/O Bank 2. The XC3S50A has only two “global”
DCMs, those located in the upper left and upper right. The outputs from a “global” DCM
drive up to four BUFGMUX clock buffers along the same edge. The two DCMs along an
edge share these four clock buffers. Each of these buffers, in turn, connects to one of the
eight global clock lines.

Table 3-19, page 89 and Table 3-20, page 89 show the direct connections to the left- and
right-edge DCMs available on the XC35700A and XC351400A and Spartan-3A DSP
FPGAs. The output clocks from these DCMs are available on the associated half of the
FPGA. The left-edge DCMs are associated with I/O Bank 3, and the right-edge DCMs are
associated with I/O Bank 1. The outputs from a left-edge or right-edge DCM each drive up
to four BUFGMUX clock buffers along the same edge, each of which connects to one of the
eight clock lines. These BUFGMUX bulffers provide clocks to half of the chip, whereas the
“global” DCMs provide clocks to the entire FPGA.

When using the DCM to generate high speed clocks to drive the double data rate ODDR2,
a specific BUFGMUX is recommended for CLKFX and another BUFGMUX is
recommended for CLKFX180 to minimize period jitter. See Table 3-17.

Table 3-17: Recommended DCM/BUFG Connections

DCM Recommended BUFGMUX
XC3S700A/AN
XC3S50A/AN igggiggﬁ;ﬁm nggéé?_g’gé:{\l CLKFX CLKFX180
XC3SD3400A
- X0YO0 X1Y0 X2Y1 X1YO0
- X1Y0 X2Y0 X2Y1 X1YO0
- - X0Y1 X0Y6 X0Y9
- - X0Y2 X0Y2 X0Y5
X0YO X0Y1 X1Y3 X2Y11 X1Y10
X1Y0 X1Y1 X2Y3 X2Y11 X1Y10
- - X3Y2 X3Y2 X3Y5
- - X3Y1 X3Y6 X3Y9
Spartan-3 Generation FPGA User Guide www.xilinx.com 87

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

Table 3-18: Extended Spartan-3A Family: Direct Input Connections and Optional External DCM Feedback
1/0 Bank O
Differential Pair Differential Pair Differential Pair Differential Pair
N P N P N P N P
Package Pin Number for Single-Ended Input Pin Number for Single-Ended Input
VQ100 P90 N/A P89 P88 P86 P85 P84 P83
TQ144 P132 P130 P131 P129 P127 P125 P126 P124
FT256 B8 A8 D8 C8 A9 C9 D9 C10
FG320 C8 B8 B7 A8 B9 A10 9 B10
FG400 A8 A9 E10 D10 C10 A10 El1l D11
CS484 B8 A8 Ell F10 B9 A9 F11 E12
FG484 El1 D11 C11 B11 All Al2 E12 C12
FG676 C13 B13 G13 F13 Al4 B14 J14 K14
17 v N7 v Associated Global Buffers N7 v N7 v

GCeLk11 GCLK10 GCLK9 GCLKS EEIEIEEEEE GCLK7 GCLK6 GCLK5 GCLK4
Top Left DCM E E § § Top Right DCM
XC3S50A: DCM_X0Y0 ! él ! Sl XC3S50A: DCM_X1Y0
XC3S5200A, XC3S400A: DCM_X0Y1 § s § S XC35200A, XC3S400A: DCM_X1Y1
XC3S700A/1400A, Spartan-3ADSP | £ | £ | £ | 2 | xC35700A/1400A, Spartan-3A DSP
FPGA: DCM_X1Y3 2 |2 | B | B FPGA: DCM_X2Y3
\7 v \7 \7

HOGS ¢
Global Clock Line
[D[c[B]A]
A () ()
Bottom Left DCM o = o = Bottom Right DCM
> | = 5 | =
— — 9] N
><I ><I ><I ><I
XC3S5200A, XC3S400A: DCM_X0Y0 X5 |5 |5 XC3S5200A, XC3S400A: DCM_X1Y0
XC3S700A/1400A, Spartan-3A DSP > = > > XC3S700A/1400A, Spartan-3A DSP
FPGA: DCM_X1Y0 9 9 9 9 FPGA: DCM_X2Y0
> | D | 2 | D
[aa)] M [aa]

)) N N Associated Global Buffers)] h]
Differential Pair Differential Pair Differential Pair Differential Pair
Package P N P N P N P N
Pin Number for Single-Ended Input Pin Number for Single-Ended Input
vVQ100 N/A N/A P40 P41 P43 P44 N/A N/A
TQ144 N/A N/A P54 P55 P57 P59 P58 P60
FT256 R7() T7() Ji] T8 N9 P9 R9 T9
FG320 U8 V8 U9 \% U10 T10 Vi1 Ull
FG400 W9 Y9 V10 W10 Y11 V11 U1l V12
CS484 Y11 Y10 AA12 AB12 Ui12 V12 AB13 AAl4
FG484 un Vi1 W12 Y12 AA12 AB12 V12 U12
FG676 AA13 Y13 AF13 AE13 Y14 AAl4 AF14 AE14
1/0 Bank 2
1. N/A in XC3550A
88 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

DCM Clock Requirements

Table 3-19:

Left-Edge DCMs (XC3S700A/AN, XC3S1400A/AN, and Spartan-3A DSP FPGAS)

Extended Spartan-3A Family FPGA: Direct Clock Input and Optional External Feedback to

BUFGMUX_X0Y7

v

BUFGMUX_X0Y6

7

Diff. Single-Ended Pin Number by Package Type Left Edge
Clock | FT256 | FG400 | FG484 | CS484 | FG676 LHCLK DCM/BUFGMUX
BUFGMUX_X0Y5 | > [D
BUFGMUX_X0Y4 || C
| P G2 I L5 L6 N6 * ¥ LHCLKO 2
S I N| m1 K2 L3 M5 N7 S LHCLK1 5
DCM_X0Y2 v
R H3 K3 K1 K1 Pl S LHCLK2 3
& | N E L3 L1 L1 P2 * LHCLK3 o
N BUFGMUX_X0Y3 | [B
§ BUFGMUX_X0Y2 | > [A
Q
- BUFGMUX_X0Y9 | > B
BUFGMUX_X0Y8 | &
| P 2 K4 M1 L3 P4 * LHCLK4 2
SN J1 L5 M2 M2 P3 > e 5
DCM_X0Y1 v
R K3 L1 M3 M6 N9 S LHCLK6 3
& | N K1 M1 M4 N7 P10 * ¥ LHCLK? O
o

Table 3-20: Extended Spartan-3A Family FPGA: Direct Clock Input and Optional External Feedback to
Right-Edge DCMs (XC3S700A/AN, XC3S1400A/AN, and Spartan-3A DSP FPGAS)

Right Edge Single-Ended Pin Number by Package Type Diff.
DCM/BUFGMUX RHCLK FT256 | FG400 | FG484 | CS484 | FGe76 | Clock
D | € BUEGMUX_X3Y5
Cc | € BUFGMUX_X3Y4
7 RHCLK?7 KNSl J20 K19 L17 N19 N |
5 RHCLK6 KRBt K20 K20 M18 P18 P&
—“8 DCM._X3Y2 RHCLK5 [K3NEESsP! L17 M20 120 N24 N | .
O RHCLK4 K3 114 K18 M18 L21 P23 P&
B | €] BUFGMUX_X3Y3 <
A | €| BUFGMUX_X3Y2 §
o)
H K3 BUEGMUX_X3Y9 B
€ BUFGMUX_X3Y8
7 € J16 L18 120 M20 P25 N |
& € | Ki6 L19 121 N21 P26 P&
§ DEM_ X3 € | K4 M20 L22 M17 P20 N | .
o €| KI5 M19 M22 N18 P21 P&
€ BUFGMUX_X3Y7
H € BUFGMUX_X3Y6
Spartan-3 Generation FPGA User Guide www.xilinx.com 89

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

LOCKED Output Behavior

The DCM’s LOCKED output indicates when all the enabled DCM functions have locked to
the CLKIN input. When the DCM asserts LOCKED, the output clocks are valid for use
within the FPGA application.

Figure 3-5 shows the behavior of the LOCKED output. The LOCKED output is Low
immediately after the FPGA finishes its configuration process and is Low whenever the
RST input is asserted.

After configuration, the DCM always attempts to lock, whether the CLKIN signal is valid
yet or not. If the input clock changes, assert the RST input until the CLKIN input stabilizes.
Once the RST input is released, the DCM again relocks to the new CLKIN input frequency.
The DLL unit uses both the CLKIN input and the CLKFB feedback input to determine
when locking is complete, that is, when the rising edges of CLKIN and CLKFB are phase-
aligned. The DFS unit monitors the CLKIN input to determine if a valid frequency is
present on CLKIN. To achieve lock, the DCM might need to sample several thousand clock
cycles.

The DCM asserts its LOCKED output High when its internal state machine has locked onto
the CLKIN input. The DCM clock outputs are then valid and available for use within the
FPGA application. The DCM timing section of the data sheet provides worst-case locking
times. In general, the DLL unit outputs lock faster with increasing clock frequency. The
DFS unit outputs require significantly longer to lock, depending on the multiply and
divide factors. Smaller multiply and divide factors result in faster lock times.

To guarantee that the system clock is established before the FPGA completes its
configuration process, the DCM can optionally delay the completion of the configuration
process until after the DCM locks. The STARTUP_WAIT attribute activates this feature.

Until LOCKED is High, there is no guarantee how the DCM clock outputs behave. The
DCM output clocks are not valid until LOCKED is High and before that time can exhibit
glitches, spikes, or other spurious behavior.

The LOCKED signal might stay High when CLKIN stops - see “Momentarily Stopping
CLKIN”. The LOCKED signal might also stay High when CLKIN varies considerably - see
“A Stable, Monotonic Clock Input”.

In the Extended Spartan-3A family, when two adjacent DCMs are used, the outputs
should be considered valid once both DCMs are LOCKED. Adjacent DCMs should share
the same reset signal.

90

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

LOCKED Output Behavior

FPGA
Configuration
Startup Phase

RST Input
asserted

LOCKED output
is LOW

If CLKIN not yet stable,
assert RST input until
CLKIN stabilizes

Is
CLKIN stable?
Within specified
limits?

FPGA application
asserts RST input

Y

If lock is lost, assert RST
input to force DCM to
reacquire lock

Fhasgo Lost lock.
algneI K LOCKED output
Output clocks is LOW
good?

LOCKED output
is HIGH

Figure 3-5: Functional Behavior of LOCKED Output

x462_05_120206

While the CLKIN input stays within the specified limits, the DCM continues to adjust its
internal delay taps to maintain lock. However, if the CLKIN input strays well beyond the
specified limits, then the DCM potentially loses lock and deasserts the LOCKED output.

Once the DCM loses lock, it does not automatically attempt to reacquire lock. When the
DCM loses lock—i.e., LOCKED was High, then goes Low—the FPGA application must
take the appropriate action. For example, once lock is lost, resetting the DCM via the RST
input forces the DCM to reacquire lock.

Using the LOCKED Signal

To operate properly, the DCM requires a stable, monotonic clock input. Once locked, the
DCM tolerates clock period variations up to the value specified in the specific FPGA data
sheet. If the input clock stays within the specified limits, then the output clocks always are
valid when the LOCKED output is High. However, it is possible for the clock to stray well
outside the limits, for the LOCKED output to stay High, and for the DCM outputs to be
invalid. It is good design practice to monitor both LOCKED and the STATUS signals.
Monitoring STATUS[1] is recommended as this will indicate when CLKIN has stopped
(moved outside the acceptable CLKIN tolerances). STATUS[1] will go High after one
missed CLKIN cycle. However, the DCM might not lose LOCKED unless CLKIN is
stopped for more than 100 ms. STATUS[1] is not a sticky bit; it will go Low once CLKIN has
returned. For the most robust indicator of the status of your DCM's output clock,
monitoring both the LOCKED and STATUS[1] bits is recommended.

Spartan-3 Generation FPGA User Guide

www.xilinx.com 91

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Spartan-3A FPGA DCM Digital Frequency Synthesizer Requires
Additional Lock Circuitry

To help guarantee DFS lock, a circuit is automatically inserted by the ISE development
software starting with version 9.1i for the Extended Spartan-3A family FPGAs

(Figure 3-6). Using FPGA logic, the circuit monitors both the LOCKED output from the
DCM_SP function and the STATUS|2] bit, which indicates that the DFS output CLKEX has
stopped. If LOCKED =0 and STATUS[2] = 1, then the circuit asserts the DCM RESET input.
If the FPGA application also resets the DCM, then OR the reset signal from the FPGA
application with the monitored output signals.

DCM_SP

(from FPGA application)
DCM_RESET STATUS[2]

B RESET LOCKED
AND
I—c DCM LOCKED

CLKFX_STOPPED

ENO035_02_101806

Figure 3-6: Spartan-3A FPGA DCM DFS Lock Logic

RST Input Behavior

The asynchronous RST input forces the DCM to its post-configuration state. Use the RST
pin when changing the input clock frequency beyond the allowable range. The active-High
RST pin either must connect to a dynamic signal or must be tied to ground. The RST input
must be asserted for three valid CLKIN cycles or longer.

If the input clock frequency is not yet stable after configuration, assert RST until the clock
stabilizes. When using external feedback, hold the DCM in reset immediately after
configuration. Figure 3-20, page 107 shows an example reset technique using an SRL16
shift register primitive.

If the DCM loses lock—i.e., the LOCKED output was High then goes Low—then the FPGA
application must assert RST to force the DCM to reacquire the input clock frequency.

If the DCM LOCKED output is High, then the LOCKED signal deactivates within four
source clock cycles after RST is asserted. Asserting RST forces the DCM to reacquire lock.

Asserting RST also resets the DCM’s delay tap position to zero. Due to the tap position
changes, glitches might occur on the DCM clock output pins. Similarly, the duty cycle on
the clock outputs might be affected when RST is asserted.

Asserting RST also resets the present variable phase shift value back to the value specified
by the PHASE_SHIFT attribute.

92

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Clocking Wizard

Clocking Wizard

To simplify applications using DCMs, the Xilinx ISE development software includes a
software wizard that provides step-by-step instructions for configuring a DCM. As shown
in Figure 3-7, Clocking Wizard generates a vendor-specific logic synthesis file instantiating
the DCM in either VHDL or Verilog syntax. Similarly, Clocking Wizard generates a user
constraints file (UCF) for the specific implementation. Finally, all the user specifications are
saved in a Xilinx Architecture Wizard (XAW) settings file.

Clocking Wizard

]
Graphically configure a
Spartan-3 Digital Clock

Manager (DCM)

Xilinx Architecture
Wizard (XAW)
settings file

Vendor-specific
VHDL or Verilog

User contraints
file (UCF)
UG331_c3_28_022407

Figure 3-7: Clocking Wizard Provides a Graphical Interface for Configuring Digital
Clock Managers

Invoking Clocking Wizard

There are multiple methods to invoke Clocking Wizard, either from the Windows Start
button or from within the Xilinx ISE Project Navigator software.

From Windows Start Button

To invoke Clocking Wizard from the Windows Start button, click Start = Programs =
Xilinx ISE - Accessories = Architecture Wizard. The setup window shown in Figure 3-8
appears.

® Specify the name of the Xilinx Architecture Wizard (.xaw) file that holds the option
settings for this DCM.

* Optionally, click Browse and select a directory location for the *. xawfile.
e Select the logic synthesis language for the output file, either VHDL or Verilog.

® Choose the targeted logic synthesis tool. Clocking Wizard creates vendor-specific
output for the specified synthesis tool.

* Select the targeted Spartan-3 generation FPGA.

Spartan-3 Generation FPGA User Guide www.xilinx.com 93
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

i File:

Enter the filename to
B ¥ilinx Architecture Wizar RV settings for

this DCM module

IE:'\D atatmy_deszigna\DCM W pDChd

Output File Type

’71';' YHOL

/ Click here to select
the directory for the
Browsge £

filename

language for the
generated output

Choose the
= Yerlog

Synthesiz Tool

ES
Part

Choose the targeted
logic synthesis
package

| o35 200a-4t256-4

ak.

p
Select... S Generation FPGA

\J Caricel
AN

wh

Click OK

Click here to select
the Spartan-3

part number for your
application

en finished

UG331_c3_05_120206

Figure 3-8: Set Up the Architecture Wizard

From within Project Navigator

Optionally, invoke Clocking Wizard from within Project Navigator, either from the menu
bar or from within the “Sources in Project” window. From the menu bar, select Project >
New Source. Alternatively, right-click in the “Sources in Project” window and choose New

Source.

Select IP (Coregen & Architecture Wizard) from the available list, as shown in Figure 3-9.
Enter the file name for the Xilinx Architecture Wizard (* . xaw)) file, and select the directory

where the file will be saved. Click Next > to continue.

Wizard

b the wizard:

B Xilink Architecture Wizard - Selection
Select Clocking

Architecture YWizards for spartanda

N

=- I:I_n:l

cking ‘wizard

i Board Deskew with an Intemnal Deskew
Cazcading in Senes with Two DCM_5Ps
b Clock Forwarding / Board Deskew

Clock Switching with Two DCM_5Pz _J Choose a
specific wizard

Carcel |

Ok I

Click OK

when finished

UG332_c3_06_120206

Figure 3-9: Configuring a New Architecture Wizard in the Project Navigator

94

www.xilinx.com

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Clocking Wizard

General Setup

Specify most of the DCM’s options using the Xilinx Clocking Wizard General Setup panel,
as shown in Figure 3-10. The text in blue ovals shows the DCM primitive attribute name
for the corresponding setting.

To select the outputs and functions used in the final application, check the option
boxes next to the desired DCM clock outputs. Checking the output boxes enables
related option settings below.

Enter the frequency of the CLKIN clock input. Either specify the frequency in MHz, or
specify the clock period in nanoseconds. The specified value also sets the DCM’s
DLL_FREQUENCY_MODE attribute for Spartan-3 FPGA designs.

Specify whether the CLKIN source is internal or external to the FPGA. If External,
then Clocking Wizard automatically inserts a global buffer input (IBUFG) primitive. If
Internal, then the source signal is provided as a top-level input within the generated
HDL source file.

If the CLKDV output box is checked, then specify the Divide by Value for the Clock
Divider circuit. This setting defines the DCM’s CLKDV_DIVIDE attribute.

Specify the feedback path to the DCM. If only the CLKFX or CLKFX180 outputs are
used, then select None. Otherwise, feedback is required. If the feedback is from within
the FPGA, choose Internal. If the feedback loop is from outside the FPGA, choose
External. Furthermore, specify the source of the DCM feedback, either from CLKO
(1X) or from CLK2X (2X). This setting defines the DCM’s CLK_FEEDBACK attribute.

Spartan-3 Generation FPGA User Guide www.xilinx.com 95

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

F‘h Xilinx Clocking Wizard - General Setup

DCM attribute name

Enterinput clock
frequency, with
full accuracy, in
MHz or ns

DLL_FREQUENCY_MODE
InpLt Clack Erequer.(_, — 7Q r—rrer .}t

Check CLKDVto
enable the Clock
Divider options

1
Check CLKFXor
CLKFX180 to
enable the
Frequency
Synthesizer
options

1
SelectFixed to
phase shift all
outputs by the
value defined
below. Select
Variablemode to
dynamically
adjust phase
shifting using the
PSEN
PSINCDEC, and

PSCLK inputs

—
{ 30 £ MHz & ns Type: [FIXED ‘I/
Sonneca CLIN 0 an Bure ™Y ||| Value: J23 2] 85185 [Sets e Fixed phase shif
%Iobal buffer input primitive value or tg1|e Inr|1t|al vaLue
electInternal to connect CLKIN 2695 ns 32344 Deqgrees fOTXa”a ep %Ses ift
to another source. (CLKOUT_PHASE_SHIFT) mode, measured as

256ths of a clock period

CLEIM SLae/

[+ Use Duty Cycle Corection
_(DUTY_CYCLE_CORRECTION)

|— —Feedback Source
s Extemal = Internal " External f+ Intemal & Mone
If clock or . .
feedbackis * Single (% Single e e
t
Cﬁ(o%rsr;a ' ™ Differential = Differential Ionrtﬁlronﬁé Ol [2 A SoE
whether the T
R g1e ended] Divide By vl Feedback Val
ingle-ende ivide alue — —Feedback Walue .
or D?fferenti al oL f%?tthheeglbvélg & If clock feedback is
B o 1 24 required, is it from the CLKO
Ct’}'(S\r/OUtput = = output(1X) or the CLK2X
CLKOV DVIDE Bt (2X)s

More Info | Advanced | < Back | Mewst = Catizel |
M oA =] il =
}N
Click for) Click Next to
Advanced options continue
UG331_c3_07_120206

Figure 3-10: A Majority of DCM Options are Set in the General Setup Panel

Specify whether to phase shift all DCM outputs. By default, there is no phase shifting
(None). If phase shifting is required by the application, choose whether the phase shift
value is Fixed or Variable. Selecting Variable also enables the Variable Phase Shift
controls, PSEN, PSINCDEC, PSCLK, and PSDONE. This setting defines the DCM’s
CLKOUT_PHASE_SHIFT attribute. For both Fixed and Variable modes, specify the
related Phase Shift Value, which provides either the fixed phase shift value or the

96 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Clocking Wizard

initial value for the Variable Phase Shift. This setting defines the DCM’s
PHASE_SHIFT attribute.

To open the Advanced Options window, click Advanced.
When finished, click Next > to continue to the Clock Buffers panel.

Advanced Options

Various advanced DCM options are grouped together in the Advanced Options window,
shown in Figure 3-11:

By default, the DCM has no effect on the FPGA’s configuration process. Click Wait for
DCM lock before DONE signal goes high to have the FPGA wait for the DCM to
assert its LOCKED output before asserting the DONE signal at the end of
configuration. This setting defines the DCM’s STARTUP_WAIT attribute. If checked,
additional bitstream generation option changes are required, as described in the
“Setting Configuration Logic to Wait for DCM LOCKED Output” section.

If the CLKIN input frequency is too high for a particular DCM feature, check Divide
Input Clock by 2 to reduce the input frequency by half with nearly ideal 50% duty
cycle before entering the DCM block. This setting defines the DCM’s
CLKIN_DIVIDE_BY_2 attribute.

If required for source-synchronous data transfer applications, modify the DCM
Deskew Adjust value to SOURCE_SYNCHRONOUS. Do not use any values other
than SOURCE_SYNCHRONOUS or SYSTEM_SYNCHRONOUS without first
consulting Xilinx. This setting defines the DCM’s DESKEW_ADJUST attribute. See
“Skew Adjustment.”

Click OK when finished to apply any changes and return to the General Setup
window.

Controls how much
skew is purposely
added to the DCM

signal

Controls whether the
FPGA configuration
process waits for the
DCM to lock before
asserting the DONE

clock path

i Xilink Clocking Wizard - Adwancad E
DESKEW_ADJUST

DCh Deskew Adiust (3l me=n] o ks
Wit Far DCM lack before DOME signal goes high (STARTUP_WAIT)

frequency by 2

Optionally divides CLKIN %_ Divide Input Clack By 2 (CLKIN_DIVIDE_BY_2))
-

|nzert rezet loaic for extermal feedback

feedback

Automatically insert reset
logic when using external
b ore Info

QK\{ Cancel |
AN

(DCM attribute name) changes and

Click OK to apply

close this window

UG331_c3_08_022407

Figure 3-11: DCM Advanced Options Panel

Spartan-3 Generation FPGA User Guide www.xilinx.com 97

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

Clock Buffers

Define the clock buffer output type for each DCM clock output, shown in Figure 3-12. By
default, Clocking Wizard automatically assigns all outputs to a global buffer (BUFG).
However, there are only four global buffers along each the top or bottom edge of the
device, shared by two DCMs. In the XC3S50, there is a single DCM along the top or bottom
edge that optionally connects to all four global buffers along the edge.

¢ To assign clock buffer types for each DCM clock output, click Customize under Clock
Buffer Settings.

® For each DCM clock output, select a Clock Buffer output type using the drop-down
list. Table 3-21 lists the available Clock Buffer options.

¢ If using an Enabled Buffer output type, either specify a signal name for the buffer
enable (CE) input or use the automatically generated name.

e If using a Clock Mux output type, either specify a signal name for the select (S) input

or use the automatically generated name.

¢ When finished, click Next > or Finish to continue. The Next > option only appears if
the CLKFX or CLKFX180 outputs were selected in the General Setup panel.
Otherwise, click Finish to generate the HDL output (see “Generating HDL Output”).

By default, Clock
Wizard places
lobal buffers
BUFG) on all the
selected DCM
clock outputs

Optionally,
customize how
the DCM clock
outputs connect to
the other FPGA
logic using the
buttons below

5';!1 Xilinx Clocking Wizard - Clock Buffers
\Xlifzk B uffer Settingz
N
I ze Global Buffers for all selected clock outputs
] add Buffer |
Input 10 Input 11 Yiew/Edit Buffer
CLKD [Global Buffer
CLEASD Enabled Buffer
CLE720 Lowskewline
For each ?kah
tput, tt .
CLK270 T Local Routing
connecting the
CLK2X Signa to the Blobal Buffer
CLK2180 CLKFY Clock Muy
tare Info ¢ Back | Hest % I LCancel
Click-Next to
continue UG331_c3_09_120206

Figure 3-12: Clocking Wizard Provides a Variety of Buffer Options for each DCM Output

98

www.xilinx.com

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Clocking Wizard

Table 3-21: Settings for Clock Buffer Output Types

Clock Buffer

Selection Diagram Description
Global Buffer BUFG Connect to one of four global buffers (BUFG) along the same edge as the DCM.
10 | > (@)
Enabled Buffer BUFGCE Connect to one of the four global buffers configured as an enable clock buffer
10 |]> 0 (BUFGCE). The CE input enables the buffer when High. When CE is Low, the
CE buffer output is zero.
CE @)
0 0
1 I0
Clock Mux BUEGMUX Connect to one of the four global buffers configured as a clock multiplexer
10 ° (BUFGMUX). The S input selects the clock source.
e s o
S 0 10
1 In
Lowskewline Connect to low-skew programmable interconnect.
10
Local Routing o 4 3 Connect to local interconnect, skew not critical.
E\E_

Clock Frequency Synthesizer

The Clock Frequency Synthesizer panel, shown in Figure 3-13, only appears if the CLKFX
or CLKFX180 outputs were selected in the General Setup panel.

Here, specify either the desired output frequency or enter the specific values for the
Multiply and Divide factors. The frequency limits—or delay limits if CLKIN was specified
in ns—appear under Valid Ranges for Selected Speed Grade. The range is displayed for
possible values of the DFS_FREQUENCY_MODE attribute, which only applies to
Spartan-3 FPGAs. The range is tighter if the DCM uses any of the DLL-related clock

outputs.

* (lick Use output frequency and enter the requested value, in as much precision as
possible, either in megahertz (MHz) or in nanoseconds (ns). Click Calculate to
compute the values for the CLKEX_MULTIPLY and CLKEX_DIVIDE attributes. If no
solution is available using the possible multiply and divide values, Clocking Wizard
issues an error message asking for another output frequency value. If a solution exists,
then the multiply and divide values, plus the resulting jitter values (see “Clock Jitter
or Phase Noise”) appear under Generated Output.

Spartan-3 Generation FPGA User Guide www.xilinx.com 99
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

* Optionally, click Use Multiply (M) and Divide (D) values and enter the desired
values. Click Calculate to calculate the resulting output frequency and jitter,

displayed under Generated Output.

e Finally, click Next to generate the HDL output (see “Generating HDL Output”).

E:'f! Xilinx Clocking Wizard - Clock Frequency Synthesizer

Valid Rianges for Speed Grade -4—(DFS_FREQUENCY_MODE)
Fin [MHz]

Dz Mode

=10 x]

Fout [MHz]

Lo

0.200 - 326.000

5.000 - 326.000

Displays the incoming | o

0.200 - 326.000

5.000 - 326.000
N—

IR W G —
Displays the frequency

period, specified earlier

clock frequency or . .
d y N‘s for Jitter Calculations
L |nput Clock Frequency: 30 nz

limits for the Frequency
Synthesizer. Spartan-3

Enter the desired output

s Lsze output frequency

FPGAs have both low-

frequency, in MHz or ns,

and high -frequency limits

then click Calculate.
Clocking Wizard calculates>|3?-5
the best multiply (M) and

divide (D) values
possible.

i i) |4 3:

Optionally, enter the
specific values for the

= Usze Multiply (M] and Divide [0 values

i MHz " ns

(CLKFX_ MULTIPLY)

; |1—=, (CLKFX DIVIDE)

After entering the desired output
frequency or multiply and divide

Calculate

multiply (M) and divide
(D) values, then click

values, click Calculateto compute the
resulting jitter for the Frequency

Calculate | Generated Output Synthesizer output

M D O utput Period Jitter [unit | Period Jitter

Freq [MHz] interval] [pk-to-pk nz]

29 11 875 0aa 1.11
(CLKFX_MULTIPLY Y CLKFX_DIVIDE) NS
Mare Info | < Back Mest » X el
L N
Click Next Displays the calculated

(DCM attribute name)

when finished output jitter values based

on the settings

UG331_c3_10_022607

Figure 3-13: Set the Multiply and Divide Values for the Digital Frequency Synthesizer and Calculate the
Resulting Jitter

Generating HDL Output

After reviewing that all the parameters are correct, as shown in Figure 3-14, click Finish.
Clocking Wizard then generates the requested VHDL or Verilog HDL output file. Clocking
Wizard also generates a User Constraints File (UCF) based on the settings.

100

www.xilinx.com

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ VHDL and Verilog Instantiation

5‘!’ Xilinx Clocking Wizard - Summary

Feature Sumrmar:

I & zingle DCM_SP configured

Filez Ta Be Generated:

File Directary:

c:hlling

Archwiz file: FpOCA wan

HOL file: twDCh . vhd

LICF template file; MuDCh_anwz ucf

Block Attributes:

Attributes for DCM_SP, bllkname = DCM_SP_INST
CLK_FEEDBACK = 1=
CLKEDY DIVIDE = 4.5 Review options
CLEF=_DIIDE =11
CLEF=_MULTIPLY = 29
CLKIN_DIWIDE_BY 2 = FALSE
CLKIN_PERIOD = 30

% Show all modifiable attibutes

" Show only the modifiable atibutes whoze values
differ from the default

< Back ;iﬂish Cancel
/[
~ L
Click Finish to

generate output file

UG331_c3_11_120206

Figure 3-14: Review Settings, Then Click Finish

VHDL and Verilog Instantiation

Clocking Wizard is the easiest method to create a VHDL or Verilog HDL description of a
DCM. However, Verilog and VHDL source examples are also available.

Language Templates within Project Navigator

There are DCM language templates available within the ISE Project Navigator. To select a
DCM template, select Edit > Language Templates from the Project Navigator menu. From
the Templates tree shown in Figure 3-15, expand either the Verilog or VHDL folder, then
the Device Primitive Instantiation folder, then FPGA - Clock Components - Digital
Clock Manager (DCM) folder. Under the DCM folder, select the desired DCM source file.
The source file for the selected DCM appears in the adjacent window.

Spartan-3 Generation FPGA User Guide www.xilinx.com 101
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Click the “light bulb” icon

Pk :ﬂ:ﬁ’[”E“J% =W |JJ£5; h?“] for language templates %U;J [B 7 X (& E|
|
Wcmosealanguage | ;l F g Cut code helow this lir.;l

- (7 Common Constructs |

f¢ DCM SP: Digital Clock Manac

Ela DS.-E;LFSWWE [nztantiation %ﬁ&gﬂeeﬁfﬁﬁge &f’ Spartan-3E/34
G- : / Eilinx HDL Lancmage Tewplat
5. EIFPEA design source file
--D.-’-‘-.rithmetiu: Functions DCM 3P #1
EB Clock Components . CLKD?_D IVIDE (2.0, // Diwi
[(27 Clack Buffers £ .

[Clack MU .CLEFX DIVIDE (1), A4 Can

- (21 Delay Locked Loop [Vites/E. Spartan 11 LR DIvIDE BT 2] L o
= Digital Clack M anager [DCk]) - - -

- _ .CLEIN PERIOD(0.0), // Spe
Advanced DCM for Wites-4/5 [DEM_.":" . CLKOUT_PHASE_SHIFT ("HCHE™)

! BaSE DCM for Wirtex-4/5 [DCM_BASE] .CLE_FEEDBACKE("1X"), // 3
f DCH for Spartan-3E 238 ([DCM_SP

1 - .DESKEII]_I-LDJUSTI:"SYSTEH_EYNC -
« [_>|_I o | »

UG331_c3_12_120206

Choose the
appropriate DCM
function

Language Templates I

Figure 3-15: DCM Coding Examples in Project Navigator Language Templates

Use the file either as a reference or cut the content of the window into a new source file.

Eliminating Clock Skew

One of the fundamental functions of a DCM is to eliminate clock skew. Eliminating clock
skew is especially important for higher-performance designs operating at 50 MHz or more.
Furthermore, the concepts involved in clock skew elimination also apply to many of the
other applications of a DCM.

What is Clock Skew?

Clock skew inherently exists in every synchronous system. A pristine clock edge generated
by the clock source actually arrives at different times at different points in the system—
either within a single device or on the clock inputs to the different devices connected to the
clock. This difference in arrival times is called clock skew.

Figure 3-16 illustrates clock skew in an example system. A clock source drives the clock
input to an FPGA. The clock enters through an input pin on the FPGA, is distributed
within the FPGA using the internal low-skew global clock network, and arrives at a flip-
flop within the FPGA. Each element in the clock path delays the arrival of the clock edge at
the flip-flop. Consequently, the clock input at the flip-flop—Point (B)—is delayed, or
skewed compared to the original clock source at Point (A). In this example, this clock skew
or difference in arrival time for this path is called Ab.

102 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Eliminating Clock Skew

FPGA

@ @ De?/}gg ron

II——>—e—> Board

AC—{—»} X462_16_123105
Figure 3-16: Clock Skew Inherently Exists in Every Synchronous System

Similarly, the clock source is rebuffered in the FPGA and drives another device on the
board. In this case, again the clock source enters the FPGA via an input pin, is distributed
via the global clock network, feeds an output pin on the FPGA, and finally connects to the
other device via a trace on the printed circuit board (PCB). Because there is more total delay
in this clock path, the resulting skew, Ac, is also larger.

Clock Skew: The Performance Thief

Clock skew potentially reduces the overall performance of the design by increasing setup
times and lengthening clock-to-output delays—both of which increase the clock cycle time.
Similarly, clock skew might require lengthy hold times on some devices. Otherwise,
unreliable operation might result.

Make It Go Away!

Is there a way to eliminate clock skew? Fortunately, a DCM provides such capabilities.
Figure 3-17 shows the same example design as Figure 3-16, except this time implemented
in a Spartan-3 generation FPGA. Two DCMs eliminate the clock skew: one DCM
eliminates the skew for clocked items within the FPGA, the other DCM eliminates the
skew when clocking the other device on the board. The result is practically ideal alignment
between the clock at Points (A), (B), and (C)!

How is clock skew elimination accomplished? Remember, clock skew is caused by the
delay in the clock path. In Figure 3-17, the clock at Point (B) was skewed by Ab and the
clock at Point (C) was skewed by Ac. What if there was a way to provide Point (B) with an
early version of the clock, advanced by Ab and a way to provide Point (C) with an early
version of the clock, advanced by Ac? The result would be that all clocks would arrive at
their destinations with perfect clock edge alignment. Such perfect alignment reduces setup
times, shortens clock-to-output delays, and increases overall system performance.

Spartan-3 Generation FPGA User Guide www.xilinx.com 103
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Spartan-3 Generation FPGA

Other
Device on
Board

1 AC
Early Clocks Eliminate Skew

UG331_c3_22_120:

Figure 3-17: Eliminating Clock Skew in a Spartan-3 Generation FPGA Design

Predicting the Future by Closely Examining the Past

Even though Spartan-3 generation FPGAs employ highly advanced digital logic, they
cannot predict the future. However, a DCM applies its knowledge of the past behavior of
the clock to predict the future. Most input clocks to a system have a never-changing,
monotonic frequency. Consequently, the input clock has a nearly constant period, T.

Because it is impossible to insert a negative delay to counteract the clock skew, the DCM
actually delays the output clocks enough so that they appear to be advanced in time. How
is this accomplished? The clock cycle is repetitive and has a fixed period, T. As shown in
Figure 3-18, the clock at Point (B) appears to be advanced in time by the delay Ab. In reality
however, the clock is delayed by (T — Ab). Similarly, the clock at Point (C) is delayed by
(T - Ac).

104 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Eliminating Clock Skew

Clock Period (T)
N

. Delay=T-Ab |
@ Delay=T-Ac (A
\ \ \

x462_18_123105

Figure 3-18: Delaying a Fixed Frequency Clock Appears to Predict the Future

The clock period, T, is easy to derive knowing the frequency of the incoming monotonic
clock signal. But what are the clock skew delays Ab and Ac? With careful analysis, they can
be determined after examining the behavior of multiple systems under different
conditions. In reality, this is impractical. Furthermore, the values of Ab and Ac are different
between devices and vary with temperature and voltage on the same device.

Instead of attempting to determine the Ab and Ac delays in advance, the Spartan-3 FPGA
DCM employs a DLL that constantly monitors the delay via a feedback loop, as shown in
Figure 3-17. In this particular example, two DCMs are required—one to compensate for the
clock skew to internal signals and another to compensate for the skew to external devices,
each with their own clock feedback loop. The DLL constantly adapts to subtle changes
caused by temperature and voltage.

Locked on Target

A Stable,

In order to determine and insert the correct delay, the DCM samples up to several
thousand clock cycles. Once the DCM inserts the correct delay, the DCM asserts its
LOCKED output signal.

Do not use the DCM clock outputs until the DCM asserts its LOCKED signal. Until the
DCM locks onto the input clock signal, the output clocks are invalid. While the DCM
attempts to lock onto the clock signal, the output clocks can exhibit glitches, spikes, or
other spurious movements.

In an application, the LOCKED signal qualifies the output clock. Think of LOCKED as a
“clock signal good” indicator.

Monotonic Clock Input

To operate properly, the DCM requires a stable, monotonic clock input. Consequently, the
DCM can predict future clock periods and adjust the output clock timing appropriately.
Once locked, the DCM tolerates clock period variations up to the value specified in the
specific FPGA data sheet. See the “DCM Clock Requirements” section.

Should the input clock vary well outside the specified limits, the DCM loses lock and the
LOCKED output switches Low. If the DCM loses lock, reset the DCM to reacquire lock. If
the input clock stays within the specified limits, then the output clocks always are valid
when the LOCKED output is High. However, it is possible for the clock to stray well
outside the limits, for the LOCKED output to stay High, and for either the CLKDV or
CLKEX outputs to be invalid. In short, a stable, monotonic clock input guarantees
problem-free designs.

The recommended input path to a DCM’s CLKIN input is via one of the four global buffer
inputs (IBUFG) along the same half of the device. Using the IBUFG path, the delay from

Spartan-3 Generation FPGA User Guide www.xilinx.com 105
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

the pad, through the global buffer, to the DCM is eliminated from the deskewed output.
Other paths are possible, however, as shown in Table 3-22. The signal driving the CLKIN
input can also originate a general-purpose input pin (IBUF primitive) via general-purpose
interconnect, from a global buffer input (IBUFG), or from a global buffer multiplexer
(BUFGMUX, BUFGCE). Similarly, an LVDS clock input can provide the clock signal. The
deskew logic is characterized for a single-ended clock input such as LVCMOS or LVITL.
Differential signals might incur a slight amount of phase error due to I/O timing. See the
corresponding FPGA data sheet for specific I/O timing differences.

Table 3-22: CLKIN Input Sources

CLKIN Source

Description

Via global buffer input

IBUFG

Y

A global buffer input, IBUFG, is the preferred source for an external clock to the DCM.
The delay from the pad, through the global buffer, to the CLKIN input is characterized,
and this delay is removed from the deskewed clock output.

Global Clock Buffer

BUFG

Y

A global clock buffer, using either a BUFG, BUFGCE, or BUFGMUX primitive, is a
preferred source for an internally generated clock to the DCM. The delay through the
global buffer is characterized, and this delay is removed from the deskewed clock
output.

BUFGCE When using BUFGCE or BUFGMUX, the input clock might change frequency or stop,
I 0 depending on the design. The DCM should be reset after enabling a BUFGCE or
e changing inputs on a BUFGMUX. Also see “Momentarily Stopping CLKIN,” page 150.
BUFGMUX
10
(6]
11
S
Via general-purpose I/O Any user-I/O pin, IBUF, becomes an alternate source for an external clock. The pad-to-

;

DCM delay cannot be predetermined due to the numerous potential input paths, and
consequently, the delay is not compensated by the DCM.

Derived from internal logic Logic within the FPGA also can be the clock source. Again, the logic-to-DCM delay

Internal
Logic

cannot be predetermined and it is not compensated by the DCM.

Feedback from a Reliable Source

In order to lock in on the proper delay, the DCM monitors both the incoming clock and a
feedback clock, tapped after the clock distribution delay. There are no restrictions on the
total delay in the clock feedback path. If required, the DLL effectively delays the output
clock by multiple clock periods. Consequently, a DCM can compensate for either internal
or external delays, but the clock feedback must connect to the correct feedback point.

Removing Skew from an Internal Clock

To eliminate skew within the FPGA, the feedback tap is the same clock as that seen by the
clocked elements within the FPGA, shown in Figure 3-19. The feedback clock is typically
the CLKO output (no phase shift) from the DCM, connected to the output of a global clock

106

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Eliminating Clock Skew

buffer (BUFG) or a global clock multiplexer (BUFGMUX or BUFGCE primitive) on the
same edge of the device. If a BUFGMUX or BUFGCE global clock multiplexer is used, the
DCM should be reset after the clock is switched or enabled. Alternatively, the DCM’s
CLK2X output (no phase shift, frequency doubled) can be used instead of the CLKO

output.

(or BUFGMUX,

or BUFGCE)
IBUFG BUFG
| 0] I o Clock to
CLKIN CLKO »—— internal
(or CLK2X) FPGA logic

(alternate clock inputs DCM or DCM SP
possible, but not fully = p "
skew adjusted) CLKFB LOCKED Clock Good

(Internal Feedback)

Figure 3-19:

UG331_c3_23_022407

Eliminating Skew on Internal Clock Signals

Removing Skew from an External Clock

Constructing the DCM feedback for an external clock is slightly more complex. Ideally, the
clock feedback originates from the point where the signal feeds any external clocked
inputs, after any long printed-circuit board traces or external clock rebuffering, as shown

in Figure 3-20.

_ Circuit-board trace Other
FPGA delay, additional DeVéce(sg
IBUEG OBUF clock buffers, etc. on Boar
EZ'—' CLKIN CLKO |—. S CLK
(or CLK2X)
|'3UFGO DCMor DCM_SP | | 2BUF o
—»EZ'— CLKFB LOCKED >—E§ ENABLE
SRL16
<G | D Q— RESET Feedback path delay
MWCLK must match the
forward path delay to
T A[3:0] guarantee skew
: <—— Recommended elimination
INIT=000F T~
(External Feedback Trace) UG331_c3_24_120306

Figure 3-20: Eliminating Skew on External Clock Signals

The LOCKED signal indicates when the DCM achieves lock, qualifying the clock signal.
The LOCKED signal can enable external devices or an inverted version can connect to an
active-Low chip enable.

Reset DCM After Configuration

When using external feedback, apply a reset pulse to the DCM immediately after
configuration to ensure consistent locking. An SRL16 primitive, initialized with 0x000F,
supplies the necessary reset pulse, as shown in Figure 3-20. See “RST Input Behavior.”

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

www.xilinx.com 107

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Why Reset?

Why is this extra reset pulse required? For an optimum locking process, a DCM configured
with external feedback requires both the CLKIN and either the CLKO or CLK2X signals to
be present and stable when the DCM begins to lock. During the configuration process, the
external feedback, CLKFB, is not available because the FPGA’s I/O buffers are not yet
active.

At the end of configuration, the DCM begins the capture process once the device enters the
startup sequence. Because the FPGA'’s global 3-state signal (GTS) still is asserted at this
time, any output pins remain in a 3-state (high-impedance, floating) condition.
Consequently, the CLKFB signal is in an unknown logic state.

When CLKEB eventually appears after the GTS is deasserted, the DCM proceeds to
capture. However, without the reset pulse, the DCM might not lock at the optimal point,
which potentially introduces slightly more jitter and greater clock cycle latency through
the DCM.

Without the reset, another possible issue might occur if the CLKFB signal, while in the
3-state condition, cross-couples with another signal on the board due to a printed-circuit
board signal integrity problem. The DCM might sense this invalid cross-coupled signal as
CLKFB and use it to proceed with a lock. This possibly prevents the DCM from properly
locking once the GTS signal deasserts and the true CLKFB signal appears.

108

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Eliminating Clock Skew

What is a Delay-Locked Loop?
Two basic types of circuits remove clock delay:

* Delay-Locked Loops (DLLs) and
* Phase-Locked Loops (PLLs)

In addition to their primary function of removing clock distribution delay, DLLs and PLLs typically provide
additional functionality such as frequency synthesis, clock conditioning, and phase shifting.

Delay-Locked Loop (DLL)

As shown in Figure 3-21, a DLL in its simplest form consists of a tapped delay line and control logic. The delay line
produces a delayed version of the input clock CLKIN. The clock distribution network routes the clock to all
internal registers and to the clock feedback CLKFB pin. The control logic continuously samples the input clock as
well as the feedback clock to properly adjust the delay line. Delay lines are constructed either using a voltage

controlled delay or as a series of discrete delay elements. For best, ruggedly stable performance, the Spartan-
3 FPGA DLL uses an all-digital delay line.

i CLKOUT ~ Clock
CLKIN Variable |~~~ (" pjstribution
Delay Line Network
x462_21_061903

Figure 3-21: Delay-Locked Loop (DLL) Block Diagram

A DLL works by inserting delay between the input clock and the feedback clock until the two rising edges align,
effectively delaying the feedback clock by almost an entire period—minus the clock distribution delay, of course. In
DLL and PLL parlance, the feedback clock is 360° out of phase, which means that they appear to be exactly in
phase again.

CLKFB

After the edges from the input clock line up with the edges from the feedback clock, the DLL “locks”, and the two
clocks have no discernible difference. Thus, the DLL output clock compensates for the delay in the clock
distribution network, effectively removing the delay between the source clock and its loads. Voila!

Spartan-3 Generation FPGA User Guide www.xilinx.com 109
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Phase-Locked Loop (PLL)

While designed for the same basic function, a PLL uses a different architecture to accomplish the task. As shown in
Figure 3-22, the fundamental difference between the PLL and DLL is that instead of a delay line, the PLL uses a
voltage-controlled oscillator, which generates a clock signal that approximates the input clock CLKIN. The control
logic, consisting of a phase detector and filter, adjusts the oscillator frequency and phase to compensate for the
clock distribution delay. The PLL control logic compares the input clock to the feedback clock CLKFB and adjusts
the oscillator clock until the rising edge of the input clock aligns with the feedback clock. The PLL then “locks.”

Voltage Controlled | =~ "~ "
Oscillator

CLKIN ——» @
CLKFB
X462_22_061903

Figure 3-22: Phase-Locked Loop (PLL) Block Diagram

Distribution
Network

Implementation

A DLL or PLL is assembled using either analog or digital circuitry; each approach has its own advantages. An
analog implementation with careful circuit design produces a DLL or PLL with a finer timing resolution.
Additionally, analog implementations sometimes consume less silicon area.

Conversely, digital implementations offer advantages in noise immunity, lower power consumption and better
jitter performance. Digital implementations also provide the ability to stop the clock, facilitating power
management. Analog implementations can require additional power supplies, require close control of the power
supply, and pose problems in migrating to new process technologies.

DLL vs. PLL

When choosing between a PLL or a DLL for a particular application, understand the differences in the
architectures. The oscillator used in the PLL inherently introduces some instability, which degrades the
performance of the PLL when attempting to compensate for the delay of the clock distribution network.
Conversely, the unconditionally stable DLL architecture excels at delay compensation and clock conditioning. On
the other hand, the PLL typically has more flexibility when synthesizing a new clock frequency.

Skew Adjustment

Most of this section discusses how to remove skew and how to phase align an internal or
external clock to the clock source. In actuality, the DCM purposely adds a small amount of
skew via an advanced attribute called DESKEW_ADJUST. In Clocking Wizard, the
DESKEW_ADJUST attribute is controlled via the Advanced Options window.

There are two primary applications for this attribute, SYSTEM_SYNCHRONOUS and
SOURCE_SYNCHRONOUS. The overwhelming majority of applications use the default
SYSTEM_SYNCHRONOUS setting. The purpose of each mode is described below.

System Synchronous

In a System Synchronous design, all devices within a data path share a common clock
source, as shown in Figure 3-23. This is the traditional and most-common system
configuration. The SYSTEM_SYNCHRONOUS option, which is the default value, adds a

110 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Eliminating Clock Skew

small amount of clock delay so that there is zero hold time when capturing data. Hold time
is essentially the timing difference between the best-case data path and the worst-case
clock path. The DCM'’s clock skew elimination function advances the clock, essentially
dramatically shortening the worst-case clock path. However, if the clock path is advanced
so far that the clock appears before the data, then hold time results. The
SYSTEM_SYNCHRONOUS setting injects enough additional skew on the clock path to
guarantee zero hold times, but at the expense of a slightly longer clock-to-output time.

DATA_OUT :> DATA_IN
2% D

Clock |_ILI'L
Source

X462_23_061903

Figure 3-23: System-Synchronous Applications are Clocked by a Single, System-
Wide Clock Source

The extra delay is injected in the SYSTEM_SYNCHRONOUS setting by adding an internal
delay on the feedback path. However, there are some situations where the DCM does not
add this extra delay, and therefore the DESKEW_ADJUST parameter has no affect. These
situations include DCMs that are cascaded, have external feedback, or have an external
CLKIN that does not come from a clock input.

Source Synchronous

SOURCE_SYNCHRONOUS mode is an advanced setting, used primarily in high-speed
data communications interfaces. In Source Synchronous applications, both the data and
the clock are derived from the same clock source, as shown in Figure 3-24. The transmitting
devices sends both data and clock to the receiving device. The receiving device then
adjusts the clock timing for best data reception. High-speed Dual-Data Rate (DDR) and
LVDS connections are examples of such systems.

DATA_OUT) DATA_IN

Clock | 1T > DATA_CLK _ﬂ_ﬂ_>

Source

X462_24_061903

Figure 3-24: In Source-Synchronous Applications, the Data Clock is Provided by
the Data Source

The SOURCE_SYNCHRONOUS setting essentially zeros out any phase difference
between the incoming clock and the deskewed output clock from the DCM. The FPGA
application must then adjust the clock timing using either the Fixed or Dynamic Fine Phase
Shift mode. The following application notes provide additional information on Source
Synchronous design and using dynamic phase alignment:

e XAPP268: Dynamic Phase Alignment
http:/ /www.xilinx.com /support/documentation /application_notes/xapp268.pdf

e XAPP622: SDR LVDS Transmitter/Receiver
http:/ /www.xilinx.com /support/documentation /application_notes/xapp622.pdf

Spartan-3 Generation FPGA User Guide www.xilinx.com 111
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp268.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp622.pdf
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Similarly, the following application note delves into more details on system-level timing.
Although the application note is written for the Virtex-II and Virtex-II Pro FPGA
architectures, most of the concepts apply directly to Spartan-3 FPGAs.

* XAPP259: System Interface Timing Parameters
http:/ /www.xilinx.com /support/documentation/application_notes/xapp259.pdf

Timing Comparisons

Figure 3-25 compares the effect of both SYSTEM_SYNCHRONOUS and
SOURCE_SYNCHRONOUS settings using a Dual-Data Rate (DDR) application. In DDR
applications, two data bits appear on each data line—one during the first half-period of the
clock, the second during the second half-period.

In SYSTEM_SYNCHRONOUS mode, a small amount of skew is purposely added to the
DCM clock path so that there is zero hold time.

In SOURCE_SYNCHRONOUS mode, no additional skew is inserted to the DCM clock
path. However, the FPGA application must insert additional skew or phase shifting so that
the clock appears at the ideal location in the data window.

Data capture window
or data “eye”

A G

DATA_IN X

X

SOURCE_SYNCHRONOUS

[
[
\
\
|
SYSTEM_SYNCHRONOUS }—: }
\
[
\
\

SOURCE_SYNCHRONOUS r
+ Fixed or Dynamic Phase Shift =k====a== -

x462_25_061903

Figure 3-25: Comparing SYSTEM_SYNCHRONOUS and
SOURCE_SYNCHRONOUS Timing in a Dual-Data Rate (DDR) Application

Clock Conditioning

Clock conditioning is a function where an incoming clock with a duty cycle other than 50%
is reshaped to have a 50% duty cycle. Figure 3-26 shows an example where an incoming
clock, with roughly a 45% High time and a 55% Low time (45%/55% duty cycle), is
reshaped into a nearly perfect 50% duty cycle—nearly perfect because there is some
residual duty-cycle distortion specified by the CLKOUT_DUTY_CYCLE_DLL and
CLKOUT_DUTY_CYCLE_FX values in the applicable FPGA family data sheet. The DCM
itself adds little to no distortion. Most of the distortion is caused by the difference in rise
and fall times in the internal routing and clock networks. The distortion is estimated at
100 ps to 400 ps, depending on the device.

112 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/application_notes/xapp259.pdf
http://www.xilinx.com

XX"JNX@ Clock Conditioning

| 45% | 55% |

I I

| | |
CLKIN |

| |
| |
Conditioned l |
Clock Output | I |
| |
|

5 50% ' 50%

UG331_c3_04_120206

Figure 3-26: DCM Duty-Cycle Correction Feature Provides 50% Duty Cycle Outputs

Clocks with 50% duty cycle are mandatory for high-speed communications interfaces such
as LVDS or Dual-Data Rate (DDR) and for clock forwarding or clock mirroring
applications. See “Dual-Data Rate (DDR) Clocking Example.”

Spartan-3E and Extended Spartan-3A Family FPGA Output Clock
Conditioning

The DCM automatically conditions all clock outputs on Spartan-3E and
Extended Spartan-3A family FPGAs so that they have a 50% duty cycle.

Spartan-3 FPGA Output Clock Conditioning

On Spartan-3 FPGAs, most of the of the output clocks are conditioned to a 50% duty cycle,
although other outputs are optionally conditioned, depending either on the operating
conditions or on attribute settings, as shown in Table 3-23.

Table 3-23: Spartan-3 FPGA Family: Clock Outputs with Conditioned 50% Duty Cycle

DCM Clock 0
Output 50% Duty Cycle Output
CLKO .
When DUTY_CYCLE_CORRECTION attribute set to TRUE
CLK180
CLK90 :
CLK270 DLL_FREQUENCY_MODE Attribute
LOW HIGH
When DUTY_CYCLE_CORRECTION attribute set to TRUE | Outputs not available
CLK2X _
CLK2X180 DLL_FREQUENCY_MODE Attribute
LOwW HIGH
Always Outputs not available
Spartan-3 Generation FPGA User Guide www.xilinx.com 113

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Table 3-23: Spartan-3 FPGA Family: Clock Outputs with Conditioned 50% Duty Cycle (Cont'd)

DCM Clock o
Output 50% Duty Cycle Output
CLKDV .
DLL_FREQUENCY_MODE Attribute
LOW HIGH
Always When CLKDV_DIVIDE attribute is an integer value

CLKEX Al

CLKFX180 ways

The Quadrant Phase Shifted Outputs, CLK0, CLK90, CLK180, and CLK270 have optional
clock conditioning, controlled by the DUTY_CYCLE_CORRECTION attribute. By default,
the DUTY_CYCLE_CORRECTION attribute is set to TRUE, meaning that these outputs
are conditioned to a 50% duty cycle. Setting this attribute to FALSE disables the clock-
conditioning feature, in which case the effected clock outputs have roughly the same duty
cycle as the incoming clock. Exact replication of the CLKIN duty cycle is not guaranteed.

Phase Shifting — Delaying Clock Outputs by a Fraction of a Period

A DCM also optionally phase shifts an incoming clock, effectively delaying the clock by a
fraction of the clock period.

The DCM supports four different types of phase shifting. Each type can be used
independently, or in conjunction with other phase shifting modes. The phase shift
capabilities for each clock output appear in Table 3-24.

1. Half-Period Phase Shifted Outputs provide a pair of outputs, one with a rising edge at
0° phase shift and the other at 180° phase shift, at the half-period point during the clock
period.

2. Quadrant Phase Shifted Outputs of 0° (CLKO0), 90° (CLK90), 180° (CLK180), and 270°
(CLK270).

3. Fixed Fine Phase Shifting of all DCM clock outputs with a resolution of 1/256t of a
clock cycle.

4. Variable Fine Phase Shifting of all DCM clock outputs from within the FPGA
application. For variable phase shifting, there are significant differences between the
Spartan-3 FPGA family and the Spartan-3E and Extended Spartan-3A families.
Spartan-3 FPGAs provide variable phase shift with a step size of 1/256th of a CLKIN
clock cycle. The size of the step varies depending on the CLKIN input frequency. On
Spartan-3E and Extended Spartan-3A family FPGAs, the step size, called
DCM_DELAY_STEP, is independent of the CLKIN clock frequency.

Table 3-24: Phase Shift Capabilities by Clock Output

Clock Output Half-Period Quadrant Fixed or Dynamic
CLKO v v v
CLK90 v
CLK180 4 v v
CLK270 v v
CLK2X v v
114 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Phase Shifting — Delaying Clock Outputs by a Fraction of a Period

Table 3-24: Phase Shift Capabilities by Clock Output (Cont’d)

Clock Output Half-Period Quadrant Fixed or Dynamic
CLK2X180 v v
CLKDV v
CLKFX v v
CLKFX180 v

Half-Period Phase Shifted Outputs

The Half-Period Phase Shift outputs provide a non-shifted clock output, and the
equivalent clock output but shifted by half a period (180° phase shift). The Half-Period
Phase Shift outputs appear in pairs, as shown in Table 3-25.

Table 3-25: Half-Period Phase Shifted Outputs

Output Pairs

Comment
No Phase Shift | 180° Phase Shift

CLKO CLK180 Same frequency as CLKIN input. Spartan-3E and Extended Spartan-3A family
FPGAs always have a 50% duty cycle. On Spartan-3 FPGAs, duty cycles for
outputs are corrected to 50% by default, controlled by the
DUTY_CYCLE_CORRECTION attribute.

CLK2X CLK2X180 Outputs from the Clock Doubler (CLK2X, CLK2X180). Twice the frequency of
the CLKIN input, always has a 50% duty cycle.

CLKFX CLKFX180 Outputs from the Frequency Synthesizer (CLKFX, CLKFX180). Output
frequency depends on Frequency Synthesizer attributes. Always has a 50%
duty cycle.

The Half-Period Phase Shift outputs are ideal for duty-cycle critical applications such as
high-speed Dual-Data Rate (DDR) designs and clock mirrors. The Half-Period Phase Shift
output pairs provide two clocks, one with a rising edge at the beginning of the clock
period, and another rising edge precisely aligned at half the clock period, as shown in

Figure 3-27.
Delay (fraction of
clock period) ™ © Vel T
Phase Shift (degrees) — 0° 180° 360°
| | |
| | |
CLKXx
CLKx180	
!	
I I
N S/
IV
Clock Period (T)
X462_27_061903
Figure 3-27: Half-Period Phase Shift Outputs
Spartan-3 Generation FPGA User Guide www.xilinx.com 115

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Half-Period Phase Shift Outputs Reduce Duty-Cycle Distortion

When the DCM clock outputs are duty-cycle corrected to 50%, it appears that the 180°
phase-shifted clock is just an inverted version on the non-shifted clock. For low-frequency
applications, this is essentially true.

However, at very high operating frequencies, duty-cycle distortion—due to differences in
rise and fall times of individual transistors—becomes relevant within the FPGA device.
Starting with a 50% clock cycle, such distortion causes differences between the clock High
and clock Low times, which is consistent from cycle to cycle.

Dual-Data Rate (DDR) Clocking Example

In Figure 3-28, a single DCM clock output, CLKX, drives both clocks on a Dual-Data Rate
(DDR) output flip-flop. One DDR clock input uses the clock output as is, the other input
inverts the clock within the DDR flip-flop. The CLKx output from the DCM has a 50% duty
cycle, but after traveling through the FPGA’s clock network, the duty cycle becomes
slightly distorted. In this exaggerated example, the distortion truncates the clock High time
and elongates the clock Low time. Consequently, the C1 clock input triggers slightly before
half the clock period. At lower frequencies, this distortion is usually negligible. However,
high-performance DDR-based systems require precise clocking due to the extremely short
half-period timing.

ODDR?2
— DO Q
— D1
DCM or DCM_SP
BUFG — |CE
CLKIN CLKXx > CO
> C1

| |
CLKX
(50% duty cycle) /—\—/
| |

—»| |=— Duty-cycle distortion

|
CLKx at Flip-Flop |
(with duty-cycle distortion) |
| f

\ Factor in distortion
when using a single,

inverted clock
UG331_c3_25_120306

Figure 3-28: Dual-Data Rate (DDR) Output Using Both Edges of a Single Clock
Induces Duty-Cycle Distortion

Figure 3-29 shows a slightly modified circuit compared to Figure 3-28. In this case, the
DCM provides both a non-shifted and a 180° phase-shifted output to the DDR output flip-
flop. The CLKXx clock signal precisely triggers the DDR flip-flop’s CO input at the start of
the clock period. Similarly, the CLKx180 clock signal precisely triggers the DDR flip-flop’s
C1 input halfway through the clock period. The cost of this approach is an additional

116

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Phase Shifting — Delaying Clock Outputs by a Fraction of a Period

global buffer and global clock line, but it potentially reduces the potential duty-cycle
distortion by approximately 300 ps.

ODDR?2
—1 Do 0
— D1
DCM or DCM_SP
BUFG ~— |CE
CLKIN CLKx < > CO
CLKx180 D C1
BUFG

| |
CLKX
(50% duty cycle) l/—\—/
|

|

|

|

CLKx at Flip-Flop |

(with duty-cycle distortion) |

I 180° !

| Phase Shift |
CLKx180 at Flip-Flop\ !
(with duty-cycle distortion) :
T

UG331_c3_24_120

Figure 3-29: Using Half-Period Phase Shift Outputs Reduces Potential Duty-Cycle
Distortion

Table 3-26 shows the specified duty-cycle distortion values as measured using DDR output
flip-flops and LVDS outputs. There might be additional distortion on other output types
caused by asymmetrical rise and fall times, which can be simulated using IBIS.

When using the DCM to generate high speed clocks to drive the double data rate ODDR2,
BUFGMUX_X1Y1 is recommended for CLKFX and BUFGMUX_X2Y0 is recommended for
CLKFX180 to minimize period jitter.

Table 3-26: Duty-Cycle Distortion Parameters

Parameter Description Estimated
Value
Tpep crxo Duty-cycle distortion when local inversion provides negative-edge clock to DDR ~400 ps
element in an I/O block. See Figure 3-28.
Tpep crxiso Duty-cycle distortion when DCM CLKx180 output provides clock to DDR element in ~60 ps
an I/O block. See Figure 3-29.

Quadrant Phase Shifted Outputs

The Quadrant Phase Shift outputs shift the CLKIN input, each by a quarter period, as
shown in Figure 3-30 and Table 3-28. Because the Quadrant Phase Shift outputs require a
feedback path back to the CLKFB input, the CLKO output is phase aligned to the rising
edge of the CLKIN input. The CLK90 output is phase shifted 90° from the CLKIN input,
and so forth.

Spartan-3 Generation FPGA User Guide www.xilinx.com 117
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Dela%léé&agg?igg)f —- 0 YaT T YT 1T
Phase Shift (degrees) — 0° 90° 180° 270° 360°
| [[[

|
| | | | |
CLKO : :
| |

|
|
|
CLK90 :

CLK180

| |
I
CLK270
|

| |
| |
| |
I I
~ _

N\
Clock Period (T)
x462_30_061903
Figure 3-30: Quadrant Phase Shift Outputs Shift CLKIN, Each by a Quarter Period
(Shown with Duty-Cycle Correction Enabled)

Output Availability Depends on DLL Frequency Mode

The availability of the Quadrant Phase Shift outputs depends on the DLL'’s frequency
mode. On Spartan-3 FPGAs, the range is controlled by the DLL_FREQUENCY_MODE
attribute. On Spartan-3E and Extended Spartan-3A family FPGAs, the outputs depend on
whether the CLKIN input frequency is above or below a certain frequency, typically

200 MHz.

All four Quadrant Phase Shift outputs are available in low-frequency mode
(DLL_FREQUENCY_MODE = LOW), as shown in Table 3-27. Only the CLK0 and CLK180
outputs are available in both modes.

Table 3-27: Quadrant Phase Shift Output Availability by DLL Frequency Mode

Spartan-3 FPGAs
DLL_FREQUENCY_MODE = LOW DLL_FREQUENCY_MODE = HIGH
Output Spartan-3E and Extended Spartan-3A family FPGAs
CLKIN <167 MHz CLKIN > 167 MHz
CLKO v v
CLK90 v
CLK180 v v
CLK270 v

Spartan-3 FPGA: Optional 50/50 Duty Cycle Correction

On Spartan-3E and Extended Spartan-3A family FPGAs, the quadrant outputs are always
conditioned to a 50% duty cycle. On Spartan-3 FPGAs, the outputs are optionally

118

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Phase Shifting — Delaying Clock Outputs by a Fraction of a Period

Four

conditioned to a 50% duty cycle, controlled by the DUTY_CYCLE_CORRECTION
attribute. When TRUE, which is the default, all four outputs have a 50% duty cycle. When
FALSE, the outputs do not necessarily have the same duty cycle as the CLKIN input. See
the “Clock Conditioning” section for more information.

Phases, Delayed Clock Edges, Phased Pulses

One view of the Quadrant Phase Shift outputs is that each provides a rising clock that is
delayed one quarter period from the preceding pulse, as shown in Table 3-28. These
outputs provide flexible timing for such applications as memory interfaces and peripheral
control.

When these outputs are conditioned with a 50% duty cycle, there are other ways to view
these signals. For example, the outputs also provide falling-edge clocks separated by a
quarter phase. Again, see Table 3-28. Similarly, each output produces a High-going pulse,
and a Low-going pulse, both half a period wide. For example, the CLK90 output shown in
Figure 3-30 produces a High-going pulse, centered within the CLKO clock period.

Table 3-28: Quadrant Phase Shift Outputs and Characteristics (DUTY_CYCLE_CORRECTION=TRUE)

Delayed by . .
DCM Output Pha;e Period Rising Falling Comment
Shift - Edge Edge
Fraction
CLKO 0° 0 0 VT Deskewed input clock, no phase shift
CLK90 90° wuT wuT T High-going pulse, 2T wide, in middle of period
CLK180 180° nT nT 0T Inverted CLKO, rising clock edge in middle of
period
CLK270 270° T T wuT Low-going pulse, T wide, in middle of period

Fine Phase Shifting

The DCM provides additional controls over clock skew using fine phase shifting. Fine-
phase adjustment affects all nine DCM output clocks simultaneously. The fine phase shift
capability requires the DCM’s DLL functional unit. Consequently, clock feedback via the
CLKEFB input is required. Phase Shifter operation in the Spartan-3 family is only supported
when DLL_FREQUENCY_MODE = LOW.

Physically, the fine phase shift control adjusts the phase relationship between the rising
edges of the CLKIN and CLKFB inputs. The net effect, however, is that all DCM outputs
are phase shifted with relation to the CLKIN input.

By default, fine phase shifting is disabled (CLKOUT_PHASE_SHIFT = NONE), meaning
that the clock outputs are phase aligned with the CLKIN input clock. In this case, there is
no skew between the input clock, CLKIN, and the feedback clock, measured at the
appropriate feedback point (see “Feedback from a Reliable Source” section). When fine
phase shifting is enabled, the output clock edges can be phase shifted so that they are
advanced or are delayed compared to the CLKIN input, as shown in Figure 3-32.

There are two fine phase shift modes as described below. Both are commonly used in high-
speed data communications applications. See the “Source Synchronous” section.

1. Fixed Fine Phase Shift mode sets the phase shift value at design time. The phase shift
value is loaded into the FPGA during configuration and cannot be changed by the
application. The Fixed phase shift feature is identical among Spartan-3 generation
FPGAs.

Spartan-3 Generation FPGA User Guide

www.xilinx.com 119

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

2. Variable Fine Phase Shift mode has an initial phase shift value, similar to Fixed Fine
Phase Shift, which is set during FPGA configuration. However, the phase shift value
can be changed by the application after the DCM’s LOCKED output goes High.

Note: There are important differences between the Variable phase shift feature on Spartan-3
FPGAs and that found on Spartan-3E and Extended Spartan-3A family FPGAs. See “Important
Differences Between Spartan-3 Generation FPGA Families,” page 123.

Fixed Fine Phase Shifting

In Fixed Fine Phase Shift mode, the phase shift value is specified at design time and set
during the FPGA configuration process. The application cannot change the value during
run time.

Note: Fixed Fine Phase Shift in the Spartan-3 family should be implemented using the latest
available software update.

Two attributes control this mode. The CLKOUT_PHASE_SHIFT attribute is set to FIXED,
and the PHASE_SHIFT attribute controls the amount of phase shift. If PHASE_SHIFT is 0,
then the output clocks and the CLKIN input are phase aligned, as shown in Figure 3-32. If
PHASE_SHIFT is a negative integer, then the clock output(s) are phase shifted before
CLKIN. If PHASE_SHIFT is a positive integer, then the clock output(s) are phase shifted
after CLKIN.

The size of each phase shift unit is always the same at 1 /,54th of the CLKIN clock period, as
shown in Figure 3-31, which equates to 1.40625° per step. The physical delay of each step
depends on the CLKIN input clock frequency, as shown in Equation 3-5.

Oo

N

of CLKIN clock period
(=1.40625°)

L
256

180°
0) 64 128 192 255

PHASE_SHIFT =
|«—CLKIN Period (T¢) —>1
Phase = Ph%sgh'ﬂ e 360° = Phase Shift ® 1.40625°
Time = —Pha§§65h'ﬂ ® ToikiN

UG331_c3_19_022407

Figure 3-31: Each PHASE_SHIFT Unit is 1/256th of the CLKIN Period

Spartan-3 Family Fixed Fine Phase Shift Range

The PHASE_SHIFT attribute is always an integer value, ranging between —255 and +255.
However, the actual limits for the Spartan-3 FPGA family can be lower depending on the
CLKIN input frequency, as described below.

120 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Phase Shifting — Delaying Clock Outputs by a Fraction of a Period

CLKIN

4

\

Clock Outputs

Fixed Phase Shift ' ' ' ' ' ' ' ' ' ' Fixed Phase Shift
- Limit + Limit

The PHASE_SHIFT attribute, set at design
time, controls the amount of phase shift on the
DCM clock outputs relative to the CLKIN input. x462_31_061903

Figure 3-32: Fixed-Value Fine Phase Shift Control

The minimum and maximum limits of the PHASE_SHIFT attribute depend on two values.

1. The period of the CLKIN input, Ty gy, measured in nanoseconds.

2. For Spartan-3 family FPGAs, FINE_SHIFT_RANGE defines the maximum guaranteed
delay achievable by the phase shift delay line. The actual delay line within a given
device can be longer, but only the delay up to FINE_SHIFT_RANGE is guaranteed.
The Extended Spartan-3A family does not have a FINE_SHIFT_RANGE limit for fixed
phase shifting.

Using these two values, calculate the SHIFT_DELAY_RATIO using Equation 3-1. The
limits for the PHASE_SHIFT attribute are different, depending on whether the result is less
than or if it is greater than or equal to one.

FINE_SHIFT_RANGE
TCLKIN

SHIFT_DELAY_RATIO = Equation 3-1

SHIFT_DELAY_RATIO <1

If the Spartan-3 FPGA clock period is longer than the specified FINE_SHIFT_RANGE, then
the SHIFT_DELAY_RATIO < 1, meaning that maximum fine phase shift is limited by
FINE_SHIFT_RANGE. When SHIFT_DELAY_RATIO < 1, then the PHASE_SHIFT limits
are set according to Equation 3-2:

PHASE_SHIFT, s = * [INTEGER(256 o LINE_SHIFT_RAN GE)}

T Equation 3-2
CLKIN

For example, assume that Fp g is 75 MHz (Top kv = 13.33 ns) and FINE_SHIFT_RANGE
is 10.00 ns. In this case, the PHASE_SHIFT value is limited to £191.

Consequently, the phase shift value when SHIFT_DELAY_RATIO < 1 is shown by
Equation 3-3. To determine the phase shift resolution, set PHASE_SHIFT = 1.

. _ (PHASE_SHIFT
PhaseShift |PHASE_SHIFTL[M[T5’

)o FINE_SHIFT_RANGE Equation 3-3

SHIFT_DELAY_RATIO =1

By contrast, if the Spartan-3 FPGA clock period is shorter than the specified
FINE_SHIFT_RANGE, then the SHIFT_DELAY_RATIO = 1, meaning that maximum fine
phase shift is limited to £255.

Spartan-3 Generation FPGA User Guide www.xilinx.com 121
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

PHASE_SHIFT, ;75 = 4255

Equation 3-4

Consequently, the phase shift value when SHIFT_DELAY_RATIO >1 is shown by
Equation 3-5. To determine the phase shift resolution, set PHASE_SHIFT = 1.

TPhaseShift = (

Minimum Phase Shift Size

PHASE_SHIFT

256)’ Terkin

Equation 3-5

The minimum phase shift size is controlled by the greater of two limiting factors.

1/,56th of the CLKIN clock period. However, the phase shift delay is physically

The smallest phase shift amount must be at least as large as the minimum delay

1.

implemented using delay elements.
2.

element resolution, listed by FPGA family in Table 3-29.
Table 3-29: Delay Element Step Size

FPGA Family

Delay Element

Specification Symbol

Delay Element Value

Spartan-3 FPGA

DCM_TAP

30 to 60 ps

Spartan-3E FPGA

DCM_DELAY_STEP

20 to 40 ps, 25 ps typical

Extended Spartan-3A family FPGA

DCM_DELAY_STEP

15 to 35 ps, 23 ps typical

Other Design Considerations

In Fixed Phase Shift mode, the Variable Phase Shift control inputs must be tied to GND,
which Clocking Wizard and the ISE software do automatically.

Clocking Wizard

To use Fixed Phase Shift mode, select Fixed in the Phase Shift section of Clocking Wizard's
General Setup panel, shown in Figure 3-33. This action sets the CLKOUT_PHASE_SHIFT
attribute to FIXED.

Enter the phase shift Value, which must be an integer within the limits described above.
This action sets the PHASE_SHIFT attribute value. Clocking Wizard checks that the phase
shift value is within the limits.

[Select FIXED |
Fhase Shift [

Enter Fixed
{J/hzl;\se shift \ Tves: | FIXED
alue
Naie [2 estoss | flowabie,
range at
2695 nz 32.344 Degrees frequency

S~

A
Equivalent phase
shift for specified
Value

UG331_c3_13_ 120206

Selecting Fixed Fine Shift Mode

Figure 3-33:

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

122 www.xilinx.com

http://www.xilinx.com

SXILINX®

Phase Shifting — Delaying Clock Outputs by a Fraction of a Period

Variable Fine Phase Shifting

In Variable Fine Phase Shift mode, the initial skew or phase shift is still controlled by the
PHASE_SHIFT attribute during configuration, just as it is for Fixed Fine Shift mode.
However, in dynamic mode, the FPGA application can adjust the current phase shift
location after the DCM’s LOCKED output goes High using the Dynamic Fine Phase Shift
control inputs, PSEN, PSCLK, and PSINCDEC.

The total resulting phase shift is the sum of the initial Fixed phase shift plus any Variable
phase shift adjustments, as shown in Equation 3-6, assuming the same units.

Phase Shift;,; = FIXED_PHASE_SHIFT + VARIABLE_PHASE_SHIFT ~ Equation 3-6

Important Differences Between Spartan-3 Generation FPGA Families

For Variable Phase Shift mode, there are important differences between

Spartan-3 generation FPGA families. Spartan-3E and Extended Spartan-3A family FPGAs
both use a silicon-efficient delay-based variable phase shifting method. Spartan-3 FPGAs
use a more elaborate method based on the fraction of the clock period. Although both
methods perform phase shifting, they are completely different.

Table 3-30 summarizes the differences. All Spartan-3 generation FPGAs perform Fixed
Phase Shift identically, as illustrated in Figure 3-31, page 120. The resulting phase shift is
always 1/,54th of the CLKIN period. Similarly, all Spartan-3 generation FPGAs use the
identical Variable phase shift control mechanism using the PSEN, PSINCDEC, PSCLK, and
PSDONE connections to the DCM.

The major difference is the result of each Variable Phase Shift operation. For Spartan-3
FPGAs, a Variable phase shift operation is similar to a Fixed phase shift operation. The
operation always results in a phase change measured in degrees, as shown in Figure 3-31,
page 120. The phase shift measured in degrees never changes; the phase shift measured in

time depends on the CLKIN input frequency.

Table 3-30: FIXED and VARIABLE Phase Shift Implementations by Spartan-3 Generation FPGA Family

FPGA Family

Spartan-3 FPGA

Spartan-3E FPGA

Extended Spartan-3A

Family FPGA
EIXED Phase Shlft unit increment or 1/,56t of CLKIN Period
ecrement unit
FIXED Phase Shift measurement
Degrees

unit

VARIABLE Phase Shift control

PSEN, PSINCDEC, PSCLK, and PSDONE signals

mechanism on the DCM

VARIABLE Phase Shiftincrementor | 1/,54th of CLKIN

decrement unit Period DCM_DELAY_STEP, DCM_DELAY_STEP,

between 20 to 40 ps between 15 to 35 ps

(1.4065°)

Figure showing VARIABLE Phase Figure 3-31, .

Shift logic page 120 Figure 3-34, page 124

VARIABLE Phase Shift equation Equation 3-5 Equation 3-7, Equation 3-8

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

www.xilinx.com

123

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Table 3-30: FIXED and VARIABLE Phase Shift Implementations by Spartan-3 Generation FPGA Family

FPGA Family

Extended Spartan-3A

Spartan-3 FPGA Spartan-3E FPGA Family FPGA

measurement unit

VARIABLE Phase Shift

Degrees Time

frequency?

Does Phase Shift, measured in
degrees, change with CLKIN input No Yes

frequency?

Does Phase Shift, measured in time,
change with CLKIN input Yes No

On Spartan-3E and Extended Spartan-3A family FPGAs, however, a Variable Phase Shift
operation results in a delay change, not a phase change. The phase shift is implemented by
cascaded delay elements, as shown in Figure 3-34. Each DCM_DELAY_STEP element
ranges from the minimum and maximum values shown in Table 3-29, page 122.
Consequently, the actual amount of phase shift time added to the clock outputs ranges
between the cumulative minimum and maximum delay through all the selected elements.
This time is relatively constant and does not change with the CLKIN frequency. The
corresponding phase shift, measured in degrees, does change with frequency.

«— MAX_STEPS

«——Time ———»

{- DCM_DELAY_STEP

Phase Shift

Time > Phase Shift ® DCM_DELAY_STEP_MIN
< Phase Shift ® DCM_DELAY_STEP_MAX

Phase = Pﬂ * 360°

CLKIN UG331_c3_20_120306

Figure 3-34: Spartan-3E and Extended Spartan-3A Family FPGA Variable Phase
Shift Logic

Spartan-3E and Extended Spartan-3A Family FPGA Variable Phase Shift
Operations

The results of a Variable phase shift operation on a Spartan-3E or Extended Spartan-3A
family FPGA is always measured in time, as shown in Equation 3-7 and Equation 3-8. The
resulting phase shift has minimum and maximum values due to the variation of the delay
in each DCM_DELAY_STEP, as shown in Table 3-29, page 122.

TrAX(VariableShifty = Variable e« DCM_DELAY_STEP_MAX Equation 3-7

124

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Phase Shifting — Delaying Clock Outputs by a Fraction of a Period

TrIN(Variableshifty = Variable s DCM_DELAY_STEP_MIN Equation 3-8

Based on the results from Equation 3-7 and Equation 3-8, the resulting phase shift,
measured in degrees, is determined from Equation 3-9. Ty kqn is the period of the CLKIN

input.
T, .)
PHASE SHIFT = —Zariableshift 4 5540 Equation 3-9
TCLKIN
Operation

Use the phase shift control inputs to adjust the current phase shift value, as shown in
Figure 3-35. The rising edge of PSCLK synchronizes all Variable Phase Shift operations. A
valid operation starts by asserting the PSEN enable input for one and only one PSCLK
clock period. Asserting PSEN for more than one rising PSCLK clock edge might cause
undesired behavior.

Start new phase shift The timing to complete a phase
operation. Shift by shift operation varies. PSDONE
one phasle increment. / indicates operation is complete.

PSCLK ff ﬁ|
|
PSEN / | \ .. /

- |

PSINCDEC X . ; X [r[, \

| JI
\1\0 = Decrement phase shift
| 1 = Increment phase shift
PSDONE |
Vga
| fad k
I

Operation complete.
Okay to start new
operation.

STATUS|0]
(Variable Phase /
Shift Overflow) ‘K

If phase shift incremented or
decremented to limit value,
STATUS|O0] stays High until new
operation shifts away from limit.

UG331_c3_29_100509
Figure 3-35: Dynamic Fine Phase Shift Control Interface

The value on the PSINCDEC increment/decrement control input determines the phase
shift direction. When PSINCDEC is High, the present Variable Phase Shift value is
incremented by one unit. Similarly, when PSINCDEC is Low, the present Variable Phase
Shift value is decremented by one unit.

The actual phase shift operation timing varies and the operation completes when the DCM
asserts the PSDONE output High for a single PSCLK clock period. Between enabling PSEN
until PSDONE is asserted, the DCM output clocks slide, bit by bit, from their original
phase shift value to their new phase shift value. During this time, the DCM remains locked
on the incoming clock and continues to assert its LOCKED output.

Spartan-3 Generation FPGA User Guide www.xilinx.com 125
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

The phase adjustment might require as many as 100 CLKIN cycles plus 3 PSCLK cycles to
take effect, at which point the DCM’s PSDONE output goes High for one PSCLK cycle.
This pulse indicates that the PS unit completed the previous adjustment and is now ready
for the next request.

To enable Dynamic Fine Phase Shift mode, set the CLKOUT_PHASE_SHIFT attribute to
VARIABLE. The PHASE_SHIFT attribute value sets the initial phase shift location,
established after FPGA configuration. The FPGA application can the dynamically adjust
the skew or phase shift on the DCM’s output clocks after the DCM's LOCKED output goes
High. If the DCM is reset, the PHASE_SHIFT value reverts to its initial configuration value.

CLKIN The PHASE_SHIFT attribute determines
the initial phase shift position. DCM
initially asserts LOCKED with this phase
shift value. DCM returns to this value

v upon RESET.

Clock Outputs |

—_—1

1
Fixed Phase Shift ' ' ' ' ' ' s ' ' Fixed Phase Shift
- Limit 0 | + Limit

iy cEy
|

Dynamic Phase Shift ﬂ

T| Dynamic Phase Shift
- Limit + Limit
Decrement Phase . Increment Phase
; DCM Variable Phase .
Shift Value T Shift Control T Shift Value
Enable —— PSEN
Increment/Decrement —— PSINCDEC PSDONE —— Phase Shift Done
Phase Shift Clock —— > PSCLK STATUS[0] —— Variable Phase
Shift Overflow

After the DCM asserts LOCKED, the FPGA

application can increment or decrement the

present phase shift value using the Dynamic

Phase Shift Control logic. ¥462_34_061903

Figure 3-36: Variable Phase Shift Controls

Variable Fine Phase Shift Range

Just as the PHASE_SHIFT attribute has minimum and maximum phase shift limits, so does
the Variable Phase Shift, as shown in Figure 3-36. Due to the differences between Spartan-3
FPGAs and Spartan-3E and Extended Spartan-3A family FPGAs, the limits are also
different.

Spartan-3 FPGA Family Variable Phase Shift Range

For Spartan-3 FPGAs, the limits again depend on the ratio of the FINE_SHIFT_RANGE
versus the input clock period, as calculated by the SHIFT_DELAY_RATIO equation above.
However, since the Spartan-3 FPGA FINE_SHIFT_RANGE is 10 ns, and Phase Shift is only
supported in the Low Frequency Mode (up to 167 MHz), the SHIFT_DELAY_RATIO will
always be <2.

126 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Phase Shifting — Delaying Clock Outputs by a Fraction of a Period

The maximum dynamic fine phase shift value is limited by FINE_SHIFT_RANGE, the
maximum delay tap value. The Variable Phase Shift limits are set according to
Equation 3-10.

DynamicPhaseShift, jy;rs = {INTEGER(lzs o EINE_SHIFT_RAN GE)}

Equation 3-10
TCLKIN

For example, assume that Fp gy is 75 MHz (T¢p gy = 13.33 ns) and FINE_SHIFT_RANGE
is 10.00 ns. In this case, the Variable Phase Shift value is limited to 196.

The Variable Phase Shift value is shown by Equation 3-11. To determine the Variable Phase
Shift resolution, set Variable Phase Shift = 1.

T o (DynamicPhaseShift
PhaseShift =\ |DynamicPhaseShift; |

)0 FINE_SHIFT_RANGE Equation 3-11

Spartan-3E and Extended Spartan-3A Family Variable Phase-Shift Range

For Spartan-3E and Extended Spartan-3A family FPGAs, variable phase shifting is
performed using delay elements. There is a physical maximum for the number of delay
steps, depending on the CLKIN input period, T kN, as shown in Table 3-31.

Table 3-31: Maximum Number of DCM Delay Steps

CLKIN CLKIN Period Maximum Number of DCM Delay Steps Unit
Frequency TCLKlN
<60 MHz > 16.67 ns +[INTEGER(10 ® (Tcpxn — 3 ns))]
Steps
=60 MHz < 16.67 ns +[INTEGER(15 ® (Tcrxin — 3 ns))]

For example, assume that the CLKIN clock entering the DCM is 100 MHz, which equates
to a clock period of Ty gy = 10 ns. Using the equation in Table 3-31, the Variable Phase
Shifter is limited to phase shift operations of 105 steps. On a Spartan-3E FPGA, this
equates to a maximum variable phase shift measured in time of up to +2.1 ns to +4.2 ns.
Measured in degrees, this equates to a maximum between +75.6° and 151.2°.

Controls

As shown in Figure 3-35, page 125 and Figure 3-36, page 126, the DCM’s Variable Phase
Shift control signals allow the FPGA application to adjust the present phase relationship
between the CLKIN input and the DCM clock outputs. Table 3-32 shows the detailed
relationship between control inputs, the current and next phase relationship, how the
operation affects the delay tap, and the control outputs.

Spartan-3 Generation FPGA User Guide www.xilinx.com 127
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Table 3-32: Variable Phase Shifter Control (assumes no internal inversion)

STATUS[O]
Current Next (Overflow - Not
PSEN |PSINC-DEC|PSCLK . . Delay Line | PSDONE Available in Operation
Phase Shift | Phase Shift
Spartan-3E
FPGAs)

0 X X X No change | No change ? ? Variable Phase Shift disabled.

1 > -Limit Current—1 | Current-1 1* 0 Decrement phase shift and phase
pointer.

1 0 <-Limitand | Current—1 | No Change 1* 1 End of delay line. No phase shift

> -255 change. Phase pointer decremented.

1 0 -255 255 No Change 1* 1 End of delay line. No phase shift
change. Phase pointer at limit.

1 1 < +Limit Current +1 | Current + 1 1% 0 Increment phase shift and phase
pointer.

1 1 >+Limitand | Current+1 | No Change 1* 1 End of delay line. No phase shift

< +255 change. Phase pointer incremented.

1 1 +255 +255 No Change 1* 1 End of delay line. No phase shift

change. Phase pointer at limit.
Notes:

X =don't care.
? = indeterminate, depends on current application state.
1* = PSDONE asserted High for one PSCLK period.
-Limit = minimum delay line position.

+Limit = maximum delay line position.

Assert PSEN for only one PSCLK cycle.

When PSEN is Low, the Variable Phase Shifter is disabled and all other inputs are ignored.
All present shift values and the delay line position remain unchanged.

If the delay line has not reached its limits (-Limit or —255 when decrementing, +Limit or
+255 when incrementing), then the FPGA application can change the existing phase shift
value by asserting PSEN High and the appropriate increment/decrement value on
PSINCDEC before the next rising edge of PSCLK. The phase shift value increments or
decrements as instructed. At the end of the operation, PSDONE goes High for a single
PSCLK period indicating that the phase shift operation is complete. STATUS[0] remains
Low because no phase shift overflow condition occurred.

When the DCM is incremented beyond +255 or below —255, the delay line position remains
unchanged at its limit value of +255 or —255 and no phase change occurs. STATUS|[0] goes
High, indicating a Variable Phase Shift overflow (not available in Spartan-3E FPGAs).
When a new phase shift operation changes the value in the opposition direction—i.e.,
away from the limit value—STATUS[0] returns Low.

If the phase shift does not reach +255 or -255, but the phase shift exceeds the delay-line
range—indicated by +Limit and —Limit in Table 3-32—then no phase change occurs.
However, STATUS[0] again goes High. In the Spartan-3 and Extended Spartan-3A families
only, the STATUS|0] output indicates when the delay tap reaches the end of the delay line.
In the FPGA application, however, use the limit value calculated using Equation 3-10. The
calculated delay limit is a guaranteed value. A specific device, due to processing, voltage,
or temperature, might have a longer line delay, but this cannot be guaranteed from device
to device. The phase shift value—but not the delay line positions—continues to increment
or decrement until it reaches its +255 or —255 limit. When a new phase shift operation
changes the value in the opposition direction—i.e., away from the limit value—the

128

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

2:X||_|NX® Clock Multiplication, Clock Division, and Frequency Synthesis

STATUSJ[0] signal returns Low. The phase shift value is incremented or decremented back
to a value that corresponds to a valid absolute delay in the delay line.

Clocking Wizard

The Variable Phase Shift options are part of the Clocking Wizard’s General Setup panel,
shown in Figure 3-37. To enable dynamic fine phase shifting, select VARIABLE, as shown
in Figure 3-37. Enter an initial Phase Shift Value in the text box provided. The initial value
behaves exactly like the Fixed Fine Phase Shifting mode described above.

Check STATUS output to
access STATUSIO], the
Dynamic Phase Shift
Overflow status bit

v RST
— PSEN STATUS L—
— PSINCDEC LOCKED
—_— PSCLE PSDOME
Select
VARIABLE
— Input Clack Ere /

I Selecting VARIABLE

enables the phase shift

controls PSEN, Yalue: IEI 3: -85 to 85
PSINCDEC, PSCLK, and
PSDONE 0,000 e 0.000 Degrees

[2%}

UG331_c3_14_120206

Figure 3-37: Selecting Variable Fine Phase Shift Mode in Clocking Wizard

Choosing Variable mode also enables the Variable Phase Shift control signals, PSEN,
PSINCDEC, PSCLK, and PSDONE. For the Spartan-3 family, check the STATUS output box
to enable the STATUS[0] signal. STATUS[0] indicates when the Variable Phase Shifter
reaches its maximum or minimum limit value (not available in Spartan-3E family).

Example Applications

See application note XAPP268 for an example of how to use the Variable Phase Shift
function to perform dynamic phase alignment.

e XAPP268: Dynamic Phase Alignment
http:/ /www.xilinx.com /support/documentation /application_notes/xapp268.pdf

Clock Multiplication, Clock Division, and Frequency Synthesis

A DCM provides flexible methods for generating new clock frequencies—one of the most
common DCM applications. Spartan-3 generation DCMs provide up to three independent
frequency synthesis functions, listed below, and in Figure 3-38, and summarized in

Table 3-33. An application can use one or all three functions simultaneously. Detailed
descriptions for each function follows.

1. A Clock Doubler (CLK2X, CLK2X180) that doubles the frequency of the input clock.
2. A Clock Divider (CLKDV) that reduces the input frequency by a fixed divider value.

3. A Frequency Synthesizer (CLKFX, CLKFX180) for generating a completely new
frequency from an incoming clock frequency.

Spartan-3 Generation FPGA User Guide www.xilinx.com 129
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp268.pdf
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

Output clocks are phase-aligned
when using clock feedback via
the CLKFB input.

|
' Deskewed Clock
J |_| |_| |_—> CLKIN CLKO —>_| FoF
DCM or I CLKIN
F——————
CLKO ~o | Clock : DCM_SP |
or —Jl _>—1 Distribution I—» CLKFB
CLK2X - | Dela CLK2X |—
¥ _] Clock Doubler
F=2F
Clock Feedback Loop CLK2X180 |—» | I | I | I CLKIN
A clock feedback loop to CLKFB |
is required when using the ..
CLKO, CLK2X, CLK2X180, or | C'OCKFD'V'der
CLKDV outputs. Use only CLKO ' ‘ B CLKIN
or CLK2X as the feedback CLKDV [F= CLKDV DIVIDE
source. Feedback is not | Usually 50% duty cycle,
required when using only the | depending on conditions
CLKFX or CLKFX180 outputs. Frequency Svnthesizer
CLKFX |—= g y 5y
_ CLKFX_MULTIPLY
F=Fewan |~ ikrx pivioe
CLKFX180 — —
50% duty cycle

| UG331_c3_02240°

Figure 3-38: Clock Synthesis Options

All the frequency synthesis outputs, except CLKDV, always have a 50/50 duty cycle.
CLKDYV usually has a 50% duty cycle except when dividing by a non-integer value at high
frequency, as shown in Table 3-37. The Clock Doubler (CLK2X, CLK2X180) circuit is not
available at high frequencies.

All the DCM clock outputs, except CLKFX and CLKFX180, are generated by the DCM’s
Delay-Locked Loop (DLL) unit and consequently require some form of clock feedback to
the CLKFB pin. The DCM'’s Digital Frequency Synthesizer (DFS) unit generates the CLKFX
and CLKFX180 clock outputs. If the application uses only the CLKFX or CLKFX180
outputs, then the feedback path can be eliminated, which also extends the DCM’s
operating range. The Frequency Synthesizer has a feedback path within the DCM, based

on CLKIN.
Table 3-33: DCM Frequency Synthesis Options
Function DCM Frequenc Fur?cct:i'\(;lnal Feedback 50%
Output(s) q y Unit Required? Duty Cycle?
Deskewed | CLKO FC DLL Yes When DUTY_CYCLE_
Clock LKIN CORRECTION = TRUE
Clock CLK2X JeF DLL Yes Always
Doubler | CLK2X180 CLKIN
Clock CLKDV F DLL Yes Always except when
Divider CLKIN dividing by non-integer value
CLKDV_DIVIDE o1
in high-frequency mode
Frequency | CLKFX DFS Optional. No | Always
Synthesizer | CLKFX180 | F . (CLKF X_MULTIP LY) feedback extends
CLKIN®\" CLKFX_DIVIDE clock input
frequency limits.
130 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

2:X||_|NX® Clock Multiplication, Clock Division, and Frequency Synthesis

Output Alignment

If clock feedback is used, then all the output clocks are phase aligned. Obviously, full clock-
edge alignment across all the DCM outputs occurs only occasionally because some of the
outputs are divided clock values. For example, the CLKDV output is aligned to CLKIN
and CLKO every CLKDV_DIVIDE cycles. Similarly, the CLK2X output is aligned to CLKO
every other clock cycle. The CLKFX output is aligned to CLKIN every CLKFX_DIVIDE
cycles of CLKIN and every CLKFEX_MULTIPLY cycles of CLKFX.

Individual outputs are aligned to CLKIN, but when using divided clocks the DCM
arbitrarily picks a rising edge to align to; therefore, the rising edge of the CLKFX output
might not be aligned to the other outputs. For example, a divide-by-two function on
CLKDYV and a divide-by-four function on CLKFX could be aligned on a falling edge
instead of a rising edge. To align the rising edges in this case, use CLKIN_DIVIDE_BY_2 on
the input, and use the CLKO output for the divide-by-two and the CLKDV output (with D
= 2) for the divide-by-four. If this is not possible, the CLKDV output of one DCM can be
cascaded to a second DCM and CLKDV, with D = 2 for both. Also note that the first rising
edge of CLKFX after LOCKED is High is not always the one aligned to the rising edge of
CLKO. For example, if CLKFX is set to a 1.5X multiple of CLKO, the first rising edge of
CLKO after LOCKED is achieved might be aligned to the falling edge of CLKFX, or it might
be aligned to the rising edge of CLKFX. In this case, you will have alignment on rising
edges at every other CLKO, but not for the very first CLKO after LOCKED is High.

Frequency Synthesis Applications

The potential applications for frequency synthesis are almost boundless. Some example
applications include the following.

¢ Generating a completely new clock frequency for the FPGA and external logic using
an available clock frequency on the board.

* Generate a high-frequency internal clock from a slower external clock source to
reduce system EMI.

¢ Dividing a high-speed serial data clock to process data in parallel within the FPGA, as
shown in Figure 3-39.

e Multiplying a parallel data clock before converting to a high-speed serial data format,
also shown in Figure 3-39.

e Multiplying an input clock to overclock internal logic to reduce resources by time-
sharing logic when implementing moderately fast functions.

Spartan-3 Generation FPGA User Guide www.xilinx.com 131
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

down-converted to

slower parallel data

e [TT] ——

Input and

F
n
High-speed serial data H n-bits m-bits
: wide wide
O

FPGA

l Slower parallel data

O
. up-converted to high-
H speed serial data
L g-om

Overclocked,
— time-shared logic

FeeS

2 il

DCM

F x462_38_070903

Figure 3-39: Common Applications of Frequency Synthesis

Output Clock Frequency Restrictions

The input and output clock frequency restrictions for frequency synthesis depend on
which DCM clock outputs are used. For example, the CLKFX and CLKFX180 outputs only
use the DCM’s DFS unit. All the other clock outputs use the DCM’s DLL unit. The DLL
unit has tighter frequency restrictions than the DFS. Consequently, operating the DFS unit
without the DLL allows a wider frequency operating range. When using both the DFS and
DLL units, the DLL frequency range limits the application.

Also, for the Spartan-3 FPGA family, both the DLL and DFS have a low- and a high-
frequency operating mode and the mode settings determine the allowable frequency
operating range.

A valid DCM design requires that the CLKIN frequency be within the operating range
specified in the FPGA data sheet, summarized in Table 3-9, page 81 and Table 3-10,

page 81. Likewise, the output frequency for any of the clock outputs used must fall within
their respective specified operating range.

The example shown in Figure 3-40 uses a Spartan-3 family FPGA because of the extra
restrictions imposed by the High and Low operating frequency modes. Figure 3-40 shows
how the various clock input and clock output specifications line up by frequency range.
Only the low-frequency operating modes are shown. The Spartan-3 FPGA family data
sheet specification for each name is shown within the shaded boxes. Table 3-34, page 133
provides example DCM applications and how the frequency restrictions apply.

132

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Clock Multiplication, Clock Division, and Frequency Synthesis

1 MHz 280 MHz
DFS
(CLKIN_FREQ_FX_{MIN,MAX})
FoLkin 18 MHz 167 MHz
DLL (Low-Frequency Mode)
(CLKIN_FREQ_DLL_LF_{MIN,MAX})
18 MHz 210 MHz
FeLkex DFS (Low-Frequency Mode)
FeLKEX180 (CLKOUT_FREQ_FX_LF_{MIN,MAX})
1.125 MHz 110 MHz
FeLkoy DLL, CLKDV (Low-Frequency Mode) Data sheet
(CLKOUT_FREQ DV_LF_{MINMAX}) ~8——— oo ification name
36 MHz 334 MHz
FeLkax DLL, CLK2X (Low-Frequency Mode)
FeLk2x180 (CLKOUT_FREQ_2X_LF_{MIN,MAX})
I !

I Frequency
X462_39_011008

See Module 3 of DS099, Spartan-3 FPGA Family: Complete Data Sheet for details.

Figure 3-40: Input and Output Clock Frequency Restrictions (Spartan-3 FPGA Family, Low-Frequency

Mode Example)

Table 3-34: DCM Frequency Restriction Examples (Spartan-3 FPGA Family, Low-Frequency Mode Example)

Input Output Comments
Frequency | Frequency

1.2 MHz 12.8 MHz | Not possible in a single DCM. F¢ ki is within acceptable range for DFS unit, but Fep xgx
requires at least an 18 MHz output frequency.

1.2 MHz 324 MHz | Possible in a single DCM using DFS unit. Set CLKEX_MULTIPLY = 27. Fp ggx is within
the DFS output frequency range.

25 MHz 25MHz | Possible in a single DCM using both the DFS and DLL units. Use the CLKDV output for a

30 MHz | 2-5 MHz signal, setting CLKDV_DIVIDE=10. Use the CLKFX output for a 30 MHz signal,

setting CLKFX_MULTIPLY = 6 and CLKEX_DIVIDE = 5. All input and output
frequencies are within appropriate ranges.

Clock Doubler (CLK2X, CLK2X180)

The Clock Doubler unit doubles the frequency of the incoming CLKIN input, as
summarized in Table 3-35. The Clock Doubler is part of the DLL functional unit and
requires a clock feedback path back to CLKFB from either the CLKO or CLK2X output. The
outputs from the Clock Doubler are CLK2X and CLK2X180. Both outputs are always
conditioned to a 50% duty cycle. Both have the same output frequency but CLK2X180 is
180° phase shifted from CLK2X, essentially inverting the CLK2X output. Having both
phases is essential for high-performance Dual-Data Rate (DDR) or clock forwarding
applications.

The CLK2X and CLK2X180 outputs are available in the Spartan-3 family only when the
DLL_FREQUENCY_MODE attribute is LOW. If required by the application, reduce the
CLKIN input frequency using the optional divide-by-two feature (see “Advanced
Options,” page 97).

Spartan-3 Generation FPGA User Guide 133

UG331 (v1.8) June 13, 2011

www.xilinx.com

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs)

SXILINX®

Table 3-35: Clock Doubler Summary

DCM Output(s) CLK2X
CLK2X180
Output Frequency 20 Foyin
DCM Functional Unit Delay-Locked Loop (DLL)
Feedback Required? Yes
50% Duty Cycle? Yes

Controlling Attributes

Spartan-3 FPGAs only:
DLL_FREQUENCY_MODE

On Spartan-3 FPGAs, the CLK2X and CLK2X180 outputs are only valid when
DLL_FREQUENCY_MODE = LOW.

CLKIN

Generally, the CLK2X and CLK2X180 outputs are only available up to a CLKIN of 167
MHz, primarily because the output frequency is limited to 334 MHz. On Spartan-3
FPGAs, the CLKIN frequency limits are determined by the DLL_FREQUENCY_MODE

attribute.

FPGA Family

Minimum Frequency

Maximum Frequency

Spartan-3 FPGA

CLKIN_FREQ DLL_LF_MIN

CLKIN_FREQ DLL_LF_MAX

18 MHz 167 MHz
CLKIN_FREQ_DLL_MIN Limited to half maximum
Spartan-3E FPGA 5MHz CLK2X frequency
(Stepping 1) -4:155.5 MHz
-5:167 MHz
Extended Spartan-3A CLKIN_FREQ_DLL_MIN Limited to half maximum
FPGA 5MHz CLK2X frequency
167 MHz

CLK2X On Spartan-3 FPGAs, the CLK2X frequency limits are determined by the
CLK2X180 DLL_FREQUENCY_MODE attribute.
FPGA Family Minimum Frequency Maximum Frequency
CLKOUT_FREQ_2X_LF_MIN | CLKOUT_FREQ_2X_LF_MAX
Spartan-3 FPGA 36 MHz 334 MHz
CLKOUT_FREQ_2X_MIN CLKOUT_FREQ_2X_MAX
Spartan-3E FPGA 10 MH 4 311 MHL
St : 1 Z 4! Z
(Stepping 1) 5: 334 MHz
Extended Spartan-3A | CLKOUT_FREQ_2X_MIN CLKOUT_FREQ_2X_MAX
FPGA 10 MHz 334 MHz
Clock Divider (CLKDV)
The Clock Divider unit, summarized in Table 3-36, divides the incoming CLKIN frequency
by the value specified by the CLKDV_DIVIDE attribute, set at design time. The Clock
Divider unit is part of the DLL functional unit and requires a clock feedback path back to
CLKFB from either the CLKO or CLK2X output.
134 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Clock Multiplication, Clock Division, and Frequency Synthesis

Table 3-36: Clock Divider Summary

DCM Output(s) CLKDV
Output Frequency Ferxin
CLKDV_DIVIDE
DCM Functional Unit Delay-Locked Loop (DLL)
Feedback Required? Yes, using either CLKO or CLK2X output from DCM
50% Duty Cycle? Yes, except when DLL_FREQUENCY_MODE=HIGH and CLKDV_DIVIDE is a non-

integer value

Controlling Attributes

Spartan-3 FPGAs only:
DLL_FREQUENCY_MODE

CLKDV is available in both modes. Potentially affects duty cycle of output (see “CLKDV
Clock Conditioning”), depending on divider value.

CLKDV_DIVIDE

Controls the output frequency per the equation above. Legal values include 1.5, 2, 2.5, 3,
3.5,4,45,5,55,6,6.5,7,7.5,8,9,10,11, 12,13, 14, 15, and 16. The DLL locks faster on
integer values than on non-integer values. Likewise, integer values result in lower
output jitter.

Frequency Constraints

CLKIN

The CLKIN frequency limits are listed in the following tables.
Spartan-3E and Extended Spartan-3A family FPGAs: Table 3-9, page 81
Spartan-3 FPGAs: Table 3-10, page 81

CLKDV

On Spartan-3 FPGAs, the CLKDV frequency limits are determined by the
DLL_FREQUENCY_MODE attribute.

FPGA Family Minimum Frequency Maximum Frequency
CLKOUT_FREQ_DV_LF_MIN | CLKOUT_FREQ_DV_LF_MAX
1.125 MHz 110 MHz
Spartan-3 FPGA

CLKOUT_FREQ_DV_HF_MIN
3.0 MHz

CLKOUT_FREQ_DV_HF_MAX
185 MHz

CLKOUT_FREQ_DV_MIN
0.3125 MHz (312.5 kHz)

CLKOUT_FREQ _DV_MAX
-4: 160 MHz
-5:183 MHz

Spartan-3E FPGA
(Stepping 1)

CLKOUT_FREQ_DV_MIN
0.3125 MHz (312.5 kHz)

CLKOUT_FREQ _DV_MAX
-4: 166 MHz
-5:186 MHz

Extended Spartan-3A
FPGA

CLKDV Clock Conditioning

The CLKDV output is conditioned to a 50% duty cycle unless the
DLL_FREQUENCY_MODE attribute is set to HIGH and CLKDV_DIVIDE is a non-integer
value. Under these conditions, the CLKDV duty cycle is shown in Table 3-37. A Spartan-3,
Spartan-3E, or Extended Spartan-3A family DCM requires CLKIN to have at least a

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

www.xilinx.com 135

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

60%/40% (or 40%/60%) or better duty cycle. Consequently, the CLKDV output, divided
by 1.5 in high-frequency mode cannot provide a clock input to a second cascaded DCM.

Table 3-37: CLKDV Duty Cycle with DLL_FREQUENCY_MODE=HIGH

CLKDV_DIVIDE Attribute Duty Cycle ?(;?;I (T:';;fé
Integer 50.000% 1/2
15 33.333% 1/3
25 40.000% 2/5
35 42.857% 3/7
45 44.444% 4/9
5.5 45.454% 5/11
6.5 46.154% 6/13
7.5 46.667% 7/15

CLKDV Jitter Depends on Frequency Mode and Integer or Non-Integer Value

Similarly, integer values for the CLKDV_DIVIDE attribute result in lower output jitter and
faster DLL locking times.

Table 3-38: CLKDV Output Jitter

Spartan-3 Generation CLKDV Output
CLKDV_DIVIDE Data Sheet Symbol FPGA Family Period Jitter
Integer Value | CLKOUT_PER_JITT_DV1 | All 150 ps
Non-Integer CLKOUT_PER_JITT_DV2 | Spartan-3 FPGA 1300 ps
Value Spartan-3E FPGA

partan- +[1% of CLKIN

Extended Spartan-3A .

FPGA period + 150] ps

Clocking Wizard

The Clock Divider controls are in Clocking Wizard’s General Setup window. Check the
CLKDYV output box, shown in Figure 3-41a. Then, choose the Clock Divider’s Divide by
Value using the drop-down list, shown in Figure 3-41b.

Divide By Value —;
CLKDV I—J/ ’7 A ‘

UG331_c3_21_120306

X462_40b_061903

a. Check the CLKDV Output Box b. Select the Divide by Value from the Drop-Down List
Figure 3-41: Specifying the Clock Divider in Clocking Wizard

Frequency Synthesizer (CLKFX, CLKFX180)

The Frequency Synthesizer provides the most flexible means to multiply, divide, or
multiply and divide an input frequency. As shown in Table 3-39, the two Frequency
Synthesizer outputs are CLKFX and CLKFX180. The CLKFX180 output has the same

136 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Clock Multiplication, Clock Division, and Frequency Synthesis

frequency as CLKFX but is phase shifted 180°, or half a clock period. Because both
Frequency Synthesizer outputs have 50% duty cycles, CLKFX180 appears to be an inverted
version of CLKFX.

Two attributes, set at design time, control the synthesized output frequency, as shown in
the equation in Table 3-39. The CLKIN clock input is multiplied the fraction formed by
CLKFX_MULTIPLY as the numerator and CLKFX_DIVIDE as the denominator. For
example, to create a 155 MHz output using a 75 MHz CLKIN input, the Frequency
Synthesizer multiplies CLKIN by the fraction 31/15. Note that it does not multiply CLKIN
by 31 first, then divide by the result by 15. Multiplying CLKIN by 31 would result in a
2.325 GHz output frequency—well outside the frequency range of the Spartan-3 FPGA
DCM.

The multiplier and divider values should be reduced to their simplest form, which results
in faster lock times. For example, reduce the fraction 6/8 to 3/4.

Frequency synthesis always requires some form of clock feedback. However, the DFS unit
has an internal feedback loop based on CLKIN and does not require a separate loop on
CLKEFB if used without the DLL unit.

The CLKFX output is phase aligned with the CLKIN input every CLKFX_DIVIDE cycles of
CLKIN and every CLKFEX_MULTIPLY cycles of CLKFX. For example, if
CLKFX_MULTIPLY = 3 and CLKEX_DIVIDE = 5, then the CLKFX output is phase aligned
with the CLKIN input every five CLKIN cycles and every three CLKFX cycles. After the
DCM asserts its LOCKED output, the DFS unit is resynchronized to the CLKIN input at
each concurrence and phase alignment is nearly perfect at these edges.

Table 3-39: Frequency Synthesizer Summary

DCM Output(s) CLKFX
CLKFX180 (same as CLKFX, phase shifted 180°)
Output Frequency c CLKFX_MULTIPLY
CLKIN® "CLKFX_DIVIDE
DCM Functional Unit Digital Frequency Synthesizer (DFS)
Feedback Required? No. Uses internal feedback based on CLKIN. Optionally can use CLKFB input if required
for Delay-Locked Loop (DLL) functions.
50% Duty Cycle? Yes, always.

Controlling Attributes

Spartan-3 FPGAs only:

DFS_FREQUENCY_MODE

Affects frequency limits on CLKIN and the CLKFX, CLKFX180 outputs.

Spartan-3 FPGAs only:

Only affects the Frequency Synthesizer if the application uses any DLL outputs.

DLL_FREQUENCY_MODE | Potentially reduces the CLKIN frequency to the more restrictive DLL limits. If only the

CLKEX or CLKFX180 outputs are used, then DFS_FREQUENCY_MODE alone defines
the frequency limits.

CLKFX_MULTIPLY

Controls the output frequency per the equation above. Legal values include integer
values ranging from 2 to 32. Default value is 4.

CLKFX_DIVIDE

Controls the output frequency per the equation above. Legal values include integer
values ranging from 1 to 32. Default value is 1.

Spartan-3 Generation FPGA User Guide www.xilinx.com 137
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Table 3-39: Frequency Synthesizer Summary (Cont’d)

Frequency Constraints

CLKIN The CLKIN frequency limits depend on whether the application uses any outputs from
the Delay-Locked Loop (DLL) unit. If the DLL unit is used, then the more restrictive DLL
clock limits apply.

DEFS Alone: Table 3-10, page 81

DFS Used with DLL:

Spartan-3 FPGAs: Table 3-10, page 81

Spartan-3E and Extended Spartan-3A family FPGAs: Table 3-9, page 81.

CLKFX The CLKFX and CLKFX180 output frequency limits are determined by the
CLKEX180 DFS_FREQUENCY_MODE attribute.
FPGA Family Minimum Frequency Maximum Frequency
CLKOUT_FREQ_FX_LF_MIN | CLKOUT_FREQ_FX_LF_MAX
18 MHz 210 MHz
Spartan-3 FPGA
(Mask Rev ‘) | CLKOUT_FREQ_FX_HF_MIN | CLKOUT_FREQ_FX_HF_MAX
210 MHz -4: 307 MHz
-5: 326 MHz
Spartan-3E FPGA CLKOUT_FREQ_FX_MIN CLKOUT_FREQ_FX_MAX
. 5 MHz -4: 311 MHz
(Stepping 1) 5: 333 MHz
Extended CLKOUT_FREQ_FX_MIN CLKOUT_FREQ_FX_MAX
Spartan-3A FPGA > MHz 1 320 MHz
P -5: 350 MHz

Clocking Wizard

To enable the Frequency Synthesizer in Clocking Wizard, check the CLKFX, CLKFX180, or
both clock outputs in the General Setup window, as shown in Figure 3-42.

Check CLKFX or

[~/ CLKFX180 to enable
the Frequency

~ Synthesizer options

UG331_c3_15_061708
Figure 3-42: Enabling Frequency Synthesizer in Clocking Wizard

If using the CLKFX or CLKFX180 clock outputs stand-alone, then optionally extend the
frequency limits by disabling any DLL clock outputs and any feedback.

e Disable DCM feedback by selecting None, as shown in Figure 3-43. Without feedback,
the CLKFX and CLKFX180 frequency range is extended to both lower and higher
frequencies and disables the CLKO and other DLL outputs.

138 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Clock Forwarding, Mirroring, Rebuffering

If only using the CLKFX or CLKFX180
clock ouputs, optionally click None to
extend the DCM frequency limits.

\

Feedback =
(Source: (" Internal { External (® None

¢ C

x462_42_070903

Figure 3-43: Select No Feedback (None) to Extend Frequency Synthesizer
Frequency Limits

Finally, enter the desired output frequency or the Multiply and Divide values, as described
in the Clocking Wizard Clock Frequency Synthesizer panel section.

Clock Forwarding, Mirroring, Rebuffering

Because DCMs provide advanced clock control features and Spartan-3 generation I/O
pins support a variety of I/O voltage standards, Spartan-3 generation FPGAs commonly
are used to rebuffer or mirror clock signals, often changing the input clock from one
voltage standard to another. Likewise, the DCM conditions an incoming clock signal so
that it has a 50% duty cycle.

Figure 3-20 shows a simple example where a DCM conditions an incoming clock to a 50%
duty cycle, and then either forwards the clock at the same frequency using the CLKO
output, or doubles the frequency using the DCM CLK2X output. Similarly, the input and
output clocks are phase aligned once the DCM asserts its LOCKED output. The clock
feedback path to CLKFB monitors and eliminates the clock distribution delay at the
external clock feedback point.

If a 50/50 duty cycle is important on the output clock, make sure that the output I/O
standard can switch fast enough to preserve the 50% duty cycle. Verify the duty cycle
performance using IBIS simulation on the output signal. Some I/O standards have
asymmetric rise and fall times that distort the duty cycle higher frequencies. On the
Spartan-3 FPGA family, the DCI versions of HSTL, SSTL, and LVCMOS 1I/0 standards
have better symmetry. Generally, differential I/Os also have less distortion.

To guarantee a 50/50 duty cycle above 100 MHz, the DCM'’s duty cycle correction
capability is mandatory for the Spartan-3 FPGA family, even if the CLKIN source provides
a clean 50% duty cycle. Consequently, the DUTY_CYCLE_CORRECTION attribute must
equal TRUE when using the CLK0, CLK90, CLK180, or CLK270 outputs for clock
forwarding. The other DCM clock outputs are normally always clock corrected to a 50%
duty cycle (see “Clock Conditioning”).

For best duty-cycle performance—especially at 200 MHz and greater—use a circuit similar
to that shown in Figure 3-44. Use both the CLKx and CLKx180 outputs from the DCM to
drive the C0 and C1 inputs, respectively, on a Dual-Data Rate (DDR) output flip-flop. The
Spartan-3 family provides the OFDDRCPE and variations, while the Spartan-3E and
Extended Spartan-3A families provide the superset ODDR2 component. Connect the DO
input of the DDR flip-flop to V¢ and the D1 input to GND. Each DCM output drives a
separate global buffer, which minimizes duty-cycle distortion. At higher frequencies, it is
best not to distribute just one clock and invert one phase locally within the DDR flip-flop,
as this adds approximately 400 ps of duty-cycle distortion.

At frequencies of 250 MHz or higher, distribute clocks using a differential signaling
standard, such as LVDS. In Figure 3-44, for example, both the CLKIN clock input and the
clock output use LVDS. Additionally, the clock feedback path uses LVDS. For optimal

Spartan-3 Generation FPGA User Guide www.xilinx.com 139
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

performance, both the clock input and the clock feedback paths require differential global
buffer inputs (IBUFGDS), which unfortunately consumes all the global buffer inputs along
one edge of the device. However, this solution provides the best-quality clock forwarding
solution at high frequencies.

FPGA OFDDRCPE/ODDR2 oBUFDS

IBUFGDS vee —po 0 T
_ \

A
GND — D1 | }
DCM S (e } ‘
BUFG L
CLKIN CLKx > CO | }

\
CLKFB CLKx180 D C1 \ }
IBUFGDS BUFG } |
r——" |
| . ||
] ||
Ll ||
V.. _-_-_—____—__——_——___ " " " " " " " " " — " — —)" __ 2|
- \
External Clock Feedback (LVDS) X462_43_061908

Figure 3-44: High-Frequency (250+ MHz) LVDS Clock Forwarding Circuit with 50% Duty Cycle

Clock Jitter or

Phase Noise

All clocks, including the most expensive, high-precision sources, exhibit some amount of
clock jitter or phase noise. The Spartan-3 FPGA Digital Clock Managers have their own
jitter characteristics, as described in this section. When operating at low frequencies—20
MHz, for example—the effects of jitter usually can be ignored. However, when operating
at high frequencies—200 MHz, for example, especially in dual-data rate (DDR)
applications—clock jitter becomes a relevant design factor. Clock jitter directly subtracts
from the time available to the FPGA application by effectively reducing the available time
between active clock edges.

What is Clock Jitter?

Clock jitter is the variation of a clock edge from its ideal position in time, as illustrated in
Figure 3-45. The heavy line shows the ideal position on the clock signal. On each clock
edge, there is some amount of variation between the actual clock edge and its ideal
location. The difference between the maximum and minimum variations is called peak-to-
peak jitter. Jitter is only relevant on the active clock edge. For example, in single-data rate
(SDR) applications, data is clocked at each rising clock edge and the specified jitter only
subtracts from the total clock period. In dual-data rate (DDR) application, data is clocked at
the start of each period and halfway into the period. Therefore, jitter affects each half
period.

140

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Clock Jitter or Phase Noise

Ideal Clock Peak-to-Peak
Edge Location Jitter

T

Clock Period |

X462_44_060606

Figure 3-45: Jitter in Clock Signals

What Causes Clock Jitter?

Clock jitter is unavoidable and exists in all systems. Clock jitter is caused by the various
sources of noise or by signal imperfections within the system. In fact, jitter is the
manifestation of noise in the time domain. The incoming clock source, for example, has its
own jitter characteristics due to random thermal or mechanical vibration noise from the
crystal. A large number of simultaneous switching outputs (SSOs) adds substrate noise
that slightly changes internal switching thresholds and therefore adds jitter. Similarly, an
improperly designed power supply or insufficient decoupling also contributes to jitter.
Other sources of clock jitter include cross talk from adjacent signals, poor termination,
ground bounce, and electromagnetic interference (EMI).

This chapter only discusses the jitter behavior of Spartan-3 FPGA Digital Clock Managers
(DCMs) and how to improve overall jitter performance within the FPGA.

Understanding Clock Jitter Specifications

Clock jitter is specified in a variety of manners, and the various specifications show
different aspects of the same phenomenon.

Cycle-to-Cycle Jitter

Cycle-to-cycle jitter, also called adjacent cycle jitter, indicates the maximum clock period
variance from one clock cycle to the next, as shown in Figure 3-46. In this simple example,
the maximum change from one cycle to the next is +100 ps and -100 ps, or put simply,
100 ps. Although the clock period can change by larger absolute amounts when measured
over millions of clock cycles, the clock period never changes by more than 100 ps from one
clock cycle to the next.

Cycle-to-cycle jitter is the

difference in clock period
from one cycle to the next.v‘

| Ty | T, =Ty+ 100 ps | T, =T,-100 ps |
I I I I

X462_45_062203

Figure 3-46: Cycle-to-Cycle Jitter Example

Spartan-3 Generation FPGA User Guide www.xilinx.com 141
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Cycle-to-cycle is an important measure of the quality of a clock output or oscillator but has
little use in analyzing the timing of an application.

Period Jitter

Period jitter is the summation of all the cycle-to-cycle jitter values over millions of clock
cycles. Peak jitter indicates the earliest and the latest transition times compared to the ideal
clock transition time over consecutive clocks.

Period jitter for Digital Clock Mangers is random and is expressed as peak-to-peak jitter.
Conceptually, the position of the clock transition is a probabilistic distribution or
histogram, centered around the ideal, desired clock position, as shown in Figure 3-47. The
actual distribution might not appear purely Gaussian and can be bimodal. Regardless,
most actual clock transitions occur near the desired ideal position. However, measured
over millions of clock cycles, some clock transitions occur far from the desired position.

The statistical distance from the desired position is measured in standard deviations, also
called o (sigma). Because the DCM is an all-digital design, it is highly stable and Xilinx
specifies jitter deviation to #7cor peak-to-peak jitter to 14c. As a point of reference, 276
guarantees that 99.99999999974% of the jitter values are less than the specified worst-case
jitter value. A 14c peak-to-peak jitter, #7cjitter deviation, equates to a maximum bit error
rate (BER) of 1.28 x 10712,

Desired cllock period

Number of samples

Measured clock period

Peak-to-peak Period Jitter
(140)

X462_46_061903

Figure 3-47: Peak-to-Peak Period Jitter Example

Unit Interval (Ul)

Another method to specify jitter is as a fraction of the Unit Interval (UI). One Ul represents
the time equivalent to one bit time, irrespective of frequency. In single-data rate (SDR)
applications where either the rising or the falling clock edge captures data, one Ul equals
one clock period. In dual-data rate (DDR) applications where data is clocked at twice the
clock rate, one Ul equals half the clock period.

The peak-to-peak jitter amplitude, quantified in Uls, is the fraction of the peak-to-peak
jitter value compared to the total bit period time.

142 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Clock Jitter or Phase Noise

Peak-to-peak
Period Jitter

Bit Period
S— -
Unit Interval (U1) Peak-to-peak period jitter,
represented as fraction of
Unit Interval.

X462_47_061903

Figure 3-48: Period Jitter Specified as a Fraction of a Unit Interval

Calculating Total Jitter

The FPGA family data sheet specifies the output jitter from the DCM clock outputs, except
for the CLKFX/CLKFX180 outputs, which sometime use a separate jitter calculator. The
DEFS jitter is calculated based on the multiplier and divider settings.

The clock outputs from the DLL unit—i.e., every clock output except CLKFX and
CLKFX180—have a worst-case specified jitter listed in the data sheet. This specified value
includes the jitter added by the DLL unit. The DLL unit does not remove jitter, so the total
jitter on the DLL clock output includes the jitter on the input clock, CLKIN, plus the
specified value from the data sheet.

The DFS clock outputs, CLKFX and CLKFX180, remove some amount of incoming clock
jitter, so the calculated output jitter is the total jitter.

Adding Input Jitter to DLL Output Jitter

When adding the input jitter and the DLL output jitter, use a root-mean-square (RMS)
calculation, similar to noise calculations.

Peak-to-Peak

JITTERpy_pi = o/ JITTER jypup)® + ITTER g pp) Equation 3-12

Peak-to-Peak Deviation
_ {J(}ITTERINPUTf +(JITTERpr)

JITTERpg 7 Equation 3-13
where
JITTERNpyT = The input period jitter, measured at the clock input pin of the FPGA
JITTERgpgc = The DLL clock output period jitter, as specified in the FPGA family
data sheet for the associated output port
Example

Assume that an input clock has 150 ps peak-to-peak period jitter, optionally expressed as
175 ps. The incoming clock is duty-cycle corrected, using the same frequency, on the CLKO
DCM output.

Spartan-3 Generation FPGA User Guide www.xilinx.com 143
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

In this case, ITTER\pyT = 150 ps. The value for JITTERgpg(is the Spartan-3 FPGA Data
Sheet specification called CLKOUT_JITT_PER_0, which is estimated here as 1100 ps, or
200 ps peak-to-peak.

JITTER p_pxc = (150 ps)* + (200 ps)? = 250 ps Equation 3-14

Consequently, the total jitter on the DCM output is 250 ps peak-to-peak or 125 ps.

Cascaded DCM Design Recommendations

Do not cascade DCMs unless it is absolutely necessary; jitter accumulates when the DCMs
are cascaded. Consequently, the output clock jitter of the second stage DCM is worse than
the output clock jitter of the first stage DCM. If possible, implement your application using
two DCMs in parallel instead of in series.

When cascading DCMs, be sure that the LOCKED output of the preceding DCM controls
the cascaded DCM’s RST input. The cascaded DCM should not attempt to lock to the input
clock until the preceding DCM asserts its LOCKED output, indicating that the clock is
stable.

When cascading DCMs, place the most jitter-critical clock output on the first DCM in the
cascaded chain.

Jitter Effect on System Performance

Clock jitter, along with other effects, adversely affects system performance by reducing the
effective bit period. The bit period available to the FPGA application is the total bit period,
TgrT, minus the following effects, as shown in the following equation. In single-data rate
(SDR) applications, the clock period and the bit period are equal. However, in dual-data-
rate (DDR) applications, the bit period is half the clock period.

Tavarasie = Teir—trotar_jitTER —tDUTY_CYCLE_DISTORTION Equation 3-15

where
Tgir = Bit period time

trorar prrer = Total clockjitter. Includes the clock inputjitter plus any DCM
output jitter or cascaded DCM output jitter.

tbuTy cYcLE DisTorTION = Duty cycle distortion specification. Only required for dual-
B B data rate (DDR) applications; otherwise zero. Either data
sheet specification CLKOUT_DUTY_CYCLE_DLL or
CLKOUT_DUTY_CYCLE_FX depending on which DCM
clock output is used.

If the total jitter is specified as a positive value instead of a deviation from the clock
period—e.g., 200 ps instead of £100 ps—subtract half the positive value—i.e., 100 ps. The
bit period is only shortened by the negative deviation. The positive deviation adds to the
bit period, adding more timing slack.

144

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Clock Jitter or Phase Noise

Example

Assume that an incoming clock signal enters the FPGA at 75 MHz and that the clock source
has 100 ps of jitter. The application clocks data on the rising edge of an internally
generated 150 MHz clock, or a total bit period, Tgy, of 6.67 ns. How long is the available bit
period, Tavam.aBLE after considering the effects of jitter?

The CLK2X output from the Clock Doubler generates a 150 MHz clock from the 75 MHz
clock input. The Clock Doubler output, CLK2X, has 2200 ps of worst-case jitter according to
the CLKOUT_PER_JITT_2X specification in the Spartan-3 Data Sheet. Adding the DCM’s
1200 ps of jitter to the clock source’s 100 ps of jitter using root-mean square (RMS), the
total jitter, tTOTAL_HTTER/ is #0.223 ns.

brorar_yrrer = +/(H100ps)” +(2200ps)? = 4223.60ps = 40.223ns Equation 3-16

Because data is only clocked on the rising clock edge, there are no duty-cycle distortion
effects and tpyry_cycre_pistorTiON = 0-

Therefore, the total available clock period, Tayam apLE is reduced down to 6.444 ns from a
total bit period of 6.667 ns. Effectively, this forces the logic to operate at 155.1831 MHz
instead of 150 MHz.

TsvarLapLg = 6-667ns—0.223ns = 6.444ns Equation 3-17

Recommended Design Practices to Minimize Clock Jitter

In higher-performance applications, clock jitter steals valuable bit period time. Adhere to
the following recommendations to minimize the amount of system-wide clock jitter.

Properly Design the Power Distribution System

A properly designed power distribution system (PDS), including proper power-plane
decoupling, reduces system jitter by creating a stable power environment. Application
note XAPP623 discusses recommended design practices for PDS design.

e XAPP623: Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors
http:/ /www.xilinx.com /support/documentation/application_notes/xapp623.pdf

Properly Design the Printed Circuit Board

Design the printed circuit board for expected operating frequency range and application
environment.

e WP174: Methodologies for Efficient FPGA Integration into PCBs
http:/ /www.xilinx.com/support/documentation/white_papers/wpl174.pdf

e PCB Checklist
www.xilinx.com /products/design_resources/signal_integrity/si_pcbcheck.htm

Obey Simultaneous Switching Output (SSO) Recommendations

To avoid signal-related corruption of clock inputs to or clock outputs from a DCM, be sure
to follow the Simultaneous Switching Output (SSO) recommendations outlined in the
associated FPGA family data sheet.

Spartan-3 Generation FPGA User Guide www.xilinx.com 145
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp623.pdf
http://www.xilinx.com/support/documentation/white_papers/wp174.pdf
http://www.xilinx.com/products/design_resources/signal_integrity/si_pcbcheck.htm
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Whenever possible, avoid placing DCM inputs or outputs near heavily switching I/Os,
especially those with large output voltage swings or with high current drive.

Optionally Place Virtual Ground Pins Around DCM Input and Output
Connections

On sensitive, high frequency DCM inputs or outputs, use additional user-1/O pins to
create extra connections to the PCB ground—i.e., create virtual ground pins. Place these
virtual ground pins on the I/O pads adjacent to the sensitive DCM signal. Make sure that
the I/O pads are on adjacent pads on the FPGA die level, not just on adjacent pins or balls
on the package. Adjacent balls on BGA packages do not necessarily connect to adjacent
pads on the FPGA. These techniques reduce the internal voltage drop and improve the
jitter.

To create a “virtual ground”, configure an IOB as a high-drive output driving GND (Low
logic level) and connect the IOB externally directly to the ground plane, as shown in
Figure 3-49.

“Virtual” FPGA

ground pin \ —
Direct connection OBUF

to PCB ground %—GND
plane \;

- IBUFG
Sensitive DCM > To DCM

Clock Input CLKIN Input

OBUF

GND

= |

X462_49_061903

Figure 3-49: Place Virtual Ground Pins Adjacent to Sensitive DCM Input or Output
Clock Signals

The same technique can be used to provide a virtual VCC rail connection. Turning I/O into
virtual GND or virtual VCC can not only help with sensitive signals, but also help with pin
migration. For more information on virtual grounds, see white paper

WP323: Signal Integrity Tips and Tricks.

Vceaux Considerations for Improving Jitter Performance

The Digital Clock Managers are powered by the V-cayx supply input. Any excessive
noise on the Vccayx supply input to the FPGA adversely affects the DCM’s
characteristics, especially its jitter performance. For best DCM performance, please follow
these recommendations.

Note: Extended Spartan-3A family FPGAs optionally support Vccaux = 3.3V, making it possible to
eliminate the 2.5V supply rail in a 3.3-volt only application. Isolate the Vccayx inputs from possible
switching noise originating from the 3.3V supply connected to Vg inputs. Spartan-3AN FPGAs
require Vecaux = 3.3V.

1. Limit changes on the Vccaux power supply or ground potentials to less than 10 mV
total or 10 mV in any 1 ms interval, as shown in Figure 3-50. This recommendation
allows the DCM to properly track out the change.

146

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/white_papers/wp323.pdf
http://www.xilinx.com

XX"JNX@ Miscellaneous Advanced Topics

2. Limit the noise at the power supply to be within 200 mV peak-to-peak, as shown in

Figure 3-50.
Vceaux
Supply Keep Vccaux hoise
(at FPGA) envelope to < 200 mV,

- 7pea7k-7to-peak

dv <10 mV

Avoid sudden changes from
one DC level to another, =~ —"—7"7"—"—"7"—¥6#9—92>— —
Keep dV/dt < 10mV/mS. dt<1mS x462_50_061903

Figure 3-50: Recommended Vccaux Supply Considerations Avoid Voltage Droop

3. If Vecaux and Vo are of the same power plane, every Vecaux/ Veco pin must be
properly decoupled or bypassed (see “Properly Design the Power Distribution
System”). Separate the Vccaux supply from any Ve supplies if Guidelines 1 and 2
above cannot be maintained.

4. The CLK2X output is especially affected by the power or ground shift. Consequently,
the CLKFX output, using CLKFX_MULTIPLY =2 and CLKFX_DIVIDE=1, might
provide a better quality output when all IOBs and CLBs are switching. The CLKEX
circuitry updates the tap every three input clocks in the DFS mode, as opposed to the
slower update rate for the CLK2X output.

Adjusting FACTORY_JF Setting (Spartan-3 FPGA Family Only)

Note: The FACTORY_JF attribute only applies for the Spartan-3 FPGA family, not to Spartan-3E or
Extended Spartan-3A family FPGAs.

A well-designed, stable, properly decoupled power supply is the best overall solution to
reducing clock skew and jitter within the FPGA. However, increasing the FACTORY_JF
attribute setting to OxFFFF might improve jitter performance on a problem board. When
FACTORY_JF=FFFF, the DCM updates its tap settings approximately every twenty input
clocks. The frequency-based default settings update the tap settings much more slowly.

Increasing the FACTORY_JF setting might introduce a small amount of jitter (~30 ps)
because the DCM frequently updates its delay line, which is why FACTORY_]JF is not set to
the maximum value by default. If the power supply is unstable, the phase error introduced
can be much bigger than the extra jitter introduced; therefore, increasing the FACTORY_JF
setting might improve the design.

Miscellaneous Advanced Topics

Bitstream Generation Settings

There are two bitstream generation (BitGen) options related to the DCM. Also see
UG332: Spartan-3 Generation Configuration User Guide for more information.

e -glck_cycle: This option causes the FPGA configuration startup sequence to wait
until all instantiated DCMs assert their LOCKED outputs.

e -g DCMShutdown: This option resets the DCM logic if the "SHUTDOWN"
configuration command is loaded into the configuration logic, as during either partial
reconfiguration or during full reconfiguration via the JTAG port.

Spartan-3 Generation FPGA User Guide www.xilinx.com 147
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

Setting Bitstream Generation Options in Project Navigator

If using the ISE Project Navigator graphical interface, set the bitstream generation options
by right-mouse clicking Generate Programming File in the Processes for Current Source
panel, as shown in Figure 3-51. Select Properties from the resulting menu.

Processes
B0 1@ Generate Programming File

Fum

G Generate PROM, ACE, Rerun
T Configure Device [IMP gt Rerun Al

*.

| - E_t Shop \%/

@f‘ IOCEZTES | r Gpen Withor . UNating
*

Lo E—

UG332_c1_04_120306

Figure 3-51: Setting Bitstream Generator (BitGen) Options within Project
Navigator

See the "Configuration Bitstream Generator (BitGen) Settings" chapter in UG332: Spartan-3
Generation Configuration User Guide for more information.

Setting Bitstream Generation Options via Command Line or Script

To see the available options, type the following in a command window:

bitgen -hel p spartan3 (or spartan3e or spartan3a)

Setting Configuration Logic to Wait for DCM LOCKED Output

The DCM’s STARTUP_WAIT attribute signals the FPGA’s configuration start-up logic to
wait for the DCM to assert its LOCKED output before the FPGA asserts its DONE output.
Two actions are required at design time, however. First, set the STARTUP_WAIT attribute
to TRUE on each of the DCMs that must be locked before configuration completes. Then,
modify the bitstream generation options so that the events shown in Figure 3-52 happen
within the six-clock Startup cycle. Sufficient configuration clock cycles must be provided
after the DCM locks to allow the device to complete the configuration start-up sequence.

148 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.xilinx.com

SXILINX®

Miscellaneous Advanced Topics

Start-upCycles| 0 [1 | 2 | 3 | 4 | 5 [6 |
Start-up CLK L(A | |
GTS_cycle @ -

LCK_cycle <

GWE_cycle A

o AD
DONE_cycle o |@
=

x462_52_062403

Figure 3-52: Start-up Logic Interaction with DCM LOCKED Output

a. If using External Feedback, release the FPGA'’s internal Global Three-State
(GTS_cycle) signal, enabling all I/O signals.

b. Set the cycle where the start-up logic waits for the DCM(s) to assert LOCKED after
the GTS_cycle. The DCMs require some form of external input—a clock and
possibly a feedback signal—before the DCM can lock on the clock signal.

c. After achieving valid DCM lock, assert the FPGA's internal Global Write Enable
(GWE_cycle) signal.

d. Finally, assert the DONE signal.

Figure 3-53 shows these same option settings from within Project Navigator.

E Process Properties E

Categary | Click Startup Options |

- General Dptions
i Configuration ang
b Startup Options
“Readback Options Property Name Walue
FPGA Start-Lp Clack CCLE. b
Set Done cycle to be P _ = If using external
gg{/IRV\(/er!\?ta(S:?clljeLL’ Enable Internal Done Pipe r feedback, set Enable
Outputs(GTS_cycle
(LCK_cycle). one [Output Events) 5 :J/ touarﬁ))llj o (cle e§rll¥er)
| «— than Release DLL,
T eR B Enable Qutputs [Output Eventsz) 3 T DeM wait cycle
the DCM wait cycle Release White Enable [Output Events] | Default (5] =] | (LCK_cycle).
I_t(alrlfu_é:)é(gg&&fggrre the >»F|elease DLL (Output Events) 4 =l
\élvsasltesrt OLrO%(i:('\ég) to Drive Done Pin High v
before continuing .
I Eroperty dizplay level: I Advanced 'I Drefault
0k, Cancel | Apply | Help
"é UG331_c3_17_022407

Figure 3-53: Startup Sequencer Options

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

www.xilinx.com 149

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

The specific start-up phase timing and the timing of both the GWE_cycle and DONE_cycle
are flexible. However, if using the STARTUP_WAIT attribute on a DCM, the GTS_cycle
must always happen before the LCK _cycle. Otherwise, the DCM never locks and
configuration never completes! Similarly, if using External Feedback, the FPGA’s outputs
must first be enabled (GTS_cycle) so that the external feedback signal can propagate back
to the DCM.

Reset DCM During Partial Reconfiguration or During Full Reconfiguration via
JTAG

Another bitstream option resets all the DCMs in the FPGA application during
reconfiguration via the SelectMAP interface or during full or partial reconfiguration via
the JTAG port. If the option is enabled, the DCMs are reset when the AGHIGH
configuration command is issued during the SHUTDOWN command sequence. It is
imperative to reset the DCMs when reconfiguring through JTAG. Change the bitstream
generator options in Project Navigator (see “Setting Bitstream Generation Options in
Project Navigator”). Click Configuration options, then check the Reset DCM if
SHUTDOWN & AGHIGH performed option as shown in Figure 3-54.

&5 Process Prope Click Configuration
Options
Category P
i~ Configuration Options
- Startup Options
- Readback Options Property Name value | Check to reset all

DCMs in the FPGA if

zerlD Code (8 Digit Hexadecimal) I:I:-L-’-\-.EEP an AHIGH command
_ Z__ is issued during a
Feset DCM if SHUTDOWHMN & AGHIGH performed fv SHUTDOWN

sequence.

EBroperty dizplay lewvel: I.-'-‘-.dvanu:ed "I Drefault |

0k Cancel | Apply | Help |
VY

UG331_c3_18_120306

Figure 3-54: Configuration Option Allows DCM Reset During Reconfiguration Process

Momentarily Stopping CLKIN

To reduce overall system noise while taking precision analog measurements, it is possible
to momentarily stop the clock inputs to the DCM without adversely affecting the
remainder of the FPGA application. This is possible, in part, because the DCM is an all-
digital, stable system. The DCM must first lock to the input clock and assert the LOCKED
output. If the DCM is not reset, it is possible to momentarily stop the CLKIN input clock
with little impact to the deskew circuit, provided that these guidelines are followed:

e The clock must not be stopped for more than 100 ms to minimize the effect of device
cooling, which would change the tap delays.

® The clock should be stopped during a Low phase, and when restored, must generate a
full High half-period.

Although the above conditions do technically violate the clock input jitter specifications,
the DCM LOCKED output stays High and remains High when the clock is restored.

150

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Related Materials and References

Consequently, the High on LOCKED does not necessarily mean that a valid clock is
available. The above conditions technically do violate the clock input jitter specifications
but work within the limits described above.

When CLKIN is stopped, an additional one to eight output clock cycles are still generated
as the DCM’s digital delay line is flushed. Similarly, once CLKIN is restarted, output clocks
are not generated for one to four clocks cycles as the delay line is filled. The delay line
usually fills within two or three clocks.

Likewise, it is also possible to phase shift the input clock. This phase shift propagates to the
output one to four clocks after the original shift with no disruption to the DCM control.

Figure 3-55 shows an example where the CLKIN input clock is momentarily stopped. The
figure also illustrates the corresponding effect on the CLK2X clock output.

Clock input must be When restarted, the clock
stopped in Low phase and input must generate a full
for no more than 100 ms. High half-period.

on | r
o JIUUIUUULD — DUUUL

X462_55_062403

Figure 3-55: Momentarily Stopping CLKIN Clock Input

Related Materials and References

e DS099: Spartan-3 FPGA Family Data Sheet
DCM description and specifications.
http:/ /www.xilinx.com /support/documentation /data_sheets/ds099.pdf

e DS312: Spartan-3E FPGA Family Data Sheet
DCM specifications.
http:/ /www.xilinx.com /support/documentation /data_sheets/ds312.pdf

e DS529: Spartan-3A FPGA Family Data Sheet
DCM specifications.
http:/ /www.xilinx.com/support/documentation/data_sheets/ds529.pdf

e DS557: Spartan-3AN FPGA Family Data Sheet
DCM specifications.
http:/ /www.xilinx.com /support/documentation/data_sheets/ds557.pdf

e DS610: Spartan-3A DSP FPGA Family Data Sheet
DCM specifications.
http:/ /www.xilinx.com /support/documentation /data_sheets/ds610.pdf

* Spartan-3A/3AN/3A DSP CLKFX Jitter Calculator
Excel file to calculate DFS output jitter based on input and output clock frequencies.
http:/ /www.xilinx.com/support/documentation/data_sheets/s3a_jitter_calc.zip

® Libraries Guide (DCM primitive description) and Development System Reference
Guide (BitGen bitstream generation program and options)
http:/ /www.xilinx.com/support/documentation/dt_ise.htm

Spartan-3 Generation FPGA User Guide www.xilinx.com 151
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds529.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com/support/documentation/dt_ise.htm
http://www.xilinx.com/support/documentation/data_sheets/ds557.pdf
http://www.xilinx.com/support/documentation/data_sheets/s3a_jitter_calc.zip
http://www.xilinx.com/support/documentation/data_sheets/ds610.pdf
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 3: Using Digital Clock Managers (DCMs) XX"JNX@

e XAPP259: System Interface Timing Parameters
http:/ /www.xilinx.com /support/documentation /application_notes/xapp259.pdf

e XAPP268: Dynamic Phase Alignment
http:/ /www.xilinx.com /support/documentation /application_notes/xapp268.pdf

* XAPP485: 1:7 Deserialization in Spartan-3E/3A FPGAs at Speeds Up to 666 Mbps
http:/ /www.xilinx.com/support/documentation/application_notes/xapp485.pdf

* XAPP486: 7:1 Serialization in Spartan-3E FPGAs at Speeds Up to 666 Mbps
http:/ /www.xilinx.com /support/documentation/application_notes/xapp486.pdf

e XAPP622: SDR LVDS Transmitter/Receiver
http:/ /www.xilinx.com /support/documentation /application_notes/xapp622.pdf

152 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/application_notes/xapp486.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp259.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp268.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp622.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp485.pdf
http://www.xilinx.com

&7 XILINX®

Using Block RAM

Chapter 4

Summary

Introduction

For applications requiring large, on-chip memories, Spartan®-3 generation FPGAs
provide plentiful, efficient SelectRAM memory blocks. Using various configuration
options, SelectRAM blocks create RAM, ROM, FIFOs, large look-up tables, data width
converters, circular buffers, and shift registers, each supporting various data widths and
depths. This chapter describes the features and capabilities of block SelectRAM and
illustrates how to specify the various options using the Xilinx CORE Generator™ system
or via VHDL or Verilog instantiation. Various non-obvious block RAM applications are
discussed with references to additional tools, application notes, and documentation.

All Spartan-3 generation FPGAs feature multiple block RAMs, organized in columns. The
total amount of block RAM depends on the size of the Spartan-3 generation FPGA as

shown in Table 4-1.

Table 4-1: Block RAM Available in Spartan-3 Generation FPGAs

RAM RAM Blocks Total RAM | Total RAM | Total RAM
Family Device Columns Per Column Blocks Bits Kbits
Extended XC3SD1800A 4 20-22 84 1,548,288 1,512K
Spartan3A FPGAS I 35D3400A 5 24-26 126 2322432 | 2,268K
XC3S50A /AN 1 3 3 55,296 54K
XC3S200A /AN 2 8 16 294,912 288K
XC35400A /AN 2 10 20 368,640 360K
XC3S700A /AN 2 10 20 368,640 360K
XC3S1400A /AN 2 16 32 589,824 576K
Spartan-3E FPGAs XC35100E 1 4 4 73,728 72K
XC3S5250E 2 6 12 221,184 216K
XC3S500E 2 10 20 368,640 360K
XC351200E 2 14 28 516,096 504K
XC3S1600E 2 18 36 663,552 648K
Spartan-3 Generation FPGA User Guide www.xilinx.com 153

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

Chapter 4: Using Block RAM XX"JNX@

Table 4-1: Block RAM Available in Spartan-3 Generation FPGAs (Cont'd)
RAM RAM Blocks Total RAM | Total RAM | Total RAM
Family Device Columns Per Column Blocks Bits Kbits
Spartan-3 FPGAs XC3550 1 4 4 73,728 72K
XC35200 2 6 12 221,184 216K
XC35400 2 8 16 294,912 288K
XC351000 2 12 24 442,368 432K
XC351500 2 16 32 589,824 576K
XC352000 2 20 40 737,280 720K
XC354000 4 24 96 1,769,472 1,728K
XC355000 4 26 104 1,916,928 1,872K

Notes:

1. 1Kbit = 1,024 bits, per memory conventions.

Each block RAM contains 18,432 bits of fast static RAM, 16K bits of which is allocated to
data storage and, in some memory configurations, an additional 2K bits allocated to parity
or additional "plus" data bits. Physically, the block RAM has two completely independent
access ports, labeled Port A and Port B. The structure is fully symmetrical, and both ports
are interchangeable and support data read and write operations. Each memory port is
synchronous with its own clock, clock enable, and write enable. Read operations are also
synchronous and require a clock edge and clock enable.

Though physically a dual-port memory, block RAM simulates single-port memory in an
application, as shown in Figure 4-1. Furthermore, each block memory supports multiple
configurations or aspect ratios. Table 4-2 summarizes the essential SelectRAM features.

Cascade multiple block RAMs to create deeper and wider memory organizations with a
minimal timing penalty incurred through specialized routing resources.

The block RAMs in the Spartan-3A DSP platform include an optional output register
similar to the block RAM output register of the Virtex®-4 FPGA. The output register
enables full-speed operation at over 250 MHz for all data widths.

154

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Introduction

WEA RAMB16_Sw,_Swg
ENA
SSRA DOPA[pa—1:0
CLKA > [pA_ .]
ADDRA[rA—1:0] - DOA[Wa—Pa—1:0]
R ————
DlA[WA—pA—l:O] >
DIPA[pa—1:0] -
WEB WE RAMB16_Sw
ENB EN
SSRB 1 SSR
CLKB | DOPBIps—L0] CLK DOP[p-1:0]
DOB[wg—pp—1:0 .
ADDRE[s10] _ [| DOBMe POl SoRi—10] _ [DO[w-p-1:0]
—_—T
DIB[wg—pg—1:0] DI[w—p-1:0]
DIPB[pg—1:0] DIP[p-1:0] -
(a) Dual-Port (b) Single-Port
X463_01_112009
Notes:

1. w, and wp are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively.
See Table 4-8 and Table 4-9.

2. pa and pg are integers that indicate the number of data path lines serving as parity bits.

W

rp and rp are integers representing the address bus width at ports A and B, respectively.

4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.

Figure 4-1:

SelectRAM 18K Blocks Perform as Dual-Port (a) and Single-Port (b) Memory

Table 4-2: SelectRAM 18K Block Memory Features and Applications

Total RAM bits, including
parity

18,432 (16K data + 2K parity)

Memory Organizations

16Kx1

8Kx2

4Kx4

2Kx8 (no parity)

2Kx9 (x8 + parity)

1Kx16 (no parity)

1Kx18 (x16 + 2 parity)
512x32 (no parity)
512x36 (x32 + 4 parity)
256x72 (single-port only)

Parity Available and optional only for organizations byte-wide or
greater. Parity bits optionally available as extra data bits.
Performance 240+ MHz (refer to individual FPGA family data sheet)

Timing Interface

Simple synchronous interface. Similar to reading and writing
from a register with a setup time for write operations and
clock-to-output delay for read operations.

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

www.xilinx.com

155

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

Table 4-2: SelectRAM 18K Block Memory Features and Applications (Cont'd)

Single-Port Yes

True Dual-Port Yes

ROM, Initial RAM Contents | Yes

Mixed Data Port Widths Yes
Power-Up Condition User-defined data, defaults to zero
Potential Applications Local data storage, FIFOs, elastic stores, register files, buffers,

stacks, circular buffers, shift registers, delay lines, waveform
storage and generation, direct digital synthesis, CAMs,
associative memories, function tables, function generators,
wide logic functions, code converters, encoders, decoders,
counters, state machines, microsequencers, program storage
for embedded processor(s)

Block RAM Differences between Spartan-3 Generation Families

Overall, block RAM is similar in all Spartan-3 generation FPGAs. However,

Extended Spartan-3A family FPGAs have some subtle but significant block RAM
enhancements over Spartan-3E and Spartan-3 family FPGAs, as summarized in Table 4-3.
Extended Spartan-3A family FPGAs have byte-level write enable controls, supported by
the RAMB16BWE design primitive. However, Extended Spartan-3A family FPGA designs
continue to support the RAMB16 design primitive that is used for Spartan-3 or Spartan-3E
FPGA designs (see Table 4-8 and Table 4-9). Timing parameters are similar in functionality
between the Spartan-3, Spartan-3E and Extended Spartan-3A family, but have different
names. Spartan-3A DSP FPGAs add an output register, supported by the RAMB16BWER
primitive.

Table 4-3: Comparison Between Spartan-3/3E, Spartan-3A/3AN, and Spartan-3A
DSP FPGA Block RAMs

Spartan-3/3E | Spartan-3A/AN |Spartan-3A DSP

FPGA FPGA FPGA
Feature Block RAM Block RAM Block RAM
Individual write-enables for each byte No
lane in x9, x18, or x36 configurations (single write- Yes Yes

enable only)

Special routing resources between block

RAM and multiplier for x36 No Yes General
. . Purpose

configurations

Output register No No Yes

Supported by RAMB16 primitive Yes Yes Yes

Supported by RAMB16BWE primitive

(RAMB16 with byte-level write enable) BN Yes Yes

Supported by RAMB16BWER primitive No No Yes

(RAMB16BWE with output register)

The Xilinx CORE Generator system supports various modules containing block RAM for
Spartan-3 devices including:

156

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Block RAM Location and Surrounding Neighborhood

¢ Embedded dual- or single-port RAM modules
e ROM modules

* Synchronous and asynchronous FIFO modules
¢ Content-Addressable Memory (CAM) modules

Furthermore, block RAM can be instantiated in any synthesis-based design using the
appropriate RAMB16 module from the Xilinx design library (see Table 4-8 and Table 4-9).

This chapter describes the signals and attributes of the Spartan-3 FPGA block RAM
feature, including details on the various attributes and applications for block RAM.

Block RAM Location and Surrounding Neighborhood

As mentioned previously, block RAM is organized in columns. Figure 4-2 shows the block
RAM column arrangement for the XC35200A. The XC3S50A has a single column of block
RAM, located two CLB columns from the left edge of the device. Spartan-3 generation
FPGAs larger than the XC3S50 have at least two columns of block RAM, adjacent to the left
and right edges of the die, located two columns of CLBs from the I/Os at the edge. In
addition to the block RAM columns at the edge, the XC354000, XC355000, and
XC3SD1800A have two additional columns—a total of four columns—nearly equally
distributed between the two edge columns. The XC3SD3400A adds a fifth block RAM
column, located two CLB columns to the left of the center DCMs. In some devices, the
block RAM column is interrupted by DCMs or CLBs. Table 4-1 describes the number of
columns and the total amount of block RAM on Spartan-3 generation FPGAs. The edge
columns make block RAM particularly useful in buffering or resynchronizing buses
entering or leaving the FPGA.

Block RAM Columns

-
-

OO@ 000000000000 O0C0O@o0
OO 0000000000000000 o0
OO O000000000000000 oQ
OOmfonoonoooodnooooommon
00 O000000000000000 OQ X%%%Aéél\'
OO O000000000000000 oQ
OOMUOOOOOOOOO0OOCOOOOMUIOCO
OO@0C0C0CO00C000COCOO0CO@MIO0
OO O000000000000000 oQ
OO O000000000000000 oQ
ohil REREREREEERERRRE] Shh
XC3S200/A/AN| | 0D000000000000000 O0f XCc3s4000
XC3S400/A/AN\ 101 000000000000000O0 OO XC3S5000
XC3S700A/AN | OO LI O00000000000000CMLI00) «c3SD1800A
XC3S1400A/AN| OO @Moo0OooooooooooooCmroo
XC3S250E OO O000000000C000000 OoQ
XC3S500E 00 O000000000000000 OQ
regstovee | |JgSEon SR
XC3S1600E Ooo0 O000000000000000 0oog
XC3S1000 OO O000000000000000 oQ
XC3S1500 OOMINOOODOODODOOO000O00000OM 100} XC3SD3400A
XC3S2000

-~

2 CLBs
Figure 4-2: Block RAMs Arranged in Columns with Detailed Floorplan of XC3S200

| +—|

Embedded Multipliers
p 2 CLBS UG332_c4_12_011008

Immediately adjacent to each block RAM is an embedded 18x18 hardware multiplier.
Co-locating block RAM and the embedded multipliers improves the performance of some

Spartan-3 Generation FPGA User Guide www.xilinx.com 157
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

digital signal processing functions. In the Spartan-3A DSP platform, the multiplier is
extended into the DSP48A block.

Special interconnect surrounding the block RAM provides efficient signal distribution for
address and data. Furthermore, special provisions allow multiple block RAMs to be
cascaded to create wider or deeper memories.

Block RAM/Multiplier Routing Interaction

Each multiplier is located adjacent to an 18 Kbit block RAM and shares some interconnect
resources. In the Spartan-3 and Spartan-3E families, configuring an 18 Kbit block RAM for
32/36-bit wide data (512 x 36 mode) prevents use of the associated dedicated multiplier
because the lower 16 bits of the A multiplicand input are shared with the upper 16 bits of
the block RAM’s Port A Data input. Similarly, the lower 16 bits of the B multiplicand input
are shared with Port B’s Data input.

For more details, see “Multiplier/Block RAM Routing Interaction” in Chapter 11.

Data Flows

Spartan-3 generation block RAM is constructed of true dual-port memory and
simultaneously supports all the data flows and operations shown in Figure 4-3. Both ports
access the same set of memory bits but with two potentially different address schemes
depending on the port’s data width.

1. Port A behaves as anindependent single-port RAM supporting simultaneous read and
write operations using a single set of address lines.

2. Port Bbehaves as an independent single-port RAM supporting simultaneous read and
write operations using a single set of address lines.

3. Port A is the write port with a separate write address, and Port B is the read port with
a separate read address. The data widths for Port A and Port B can be different also.

4. Port Bis the write port with a separate write address, and Port A is the read port with
a separate read address. The data widths for Port B and Port A can be different also.

Write [Read@
@Read =] Write
< Spartan-3 @
) Dual Port)
% | BlockRAM | %
Write —\> </—— Write
Read ~-+—" > Read

X463_03_060606

Figure 4-3: Block RAM Support Single- and Dual-Port Data Transfers

Signals

The signals connected to a block RAM primitive divide into four categories, as listed
below. Table 4-4 lists the block RAM interface signals, the signal names for both single-port
and dual-port memories, and signal direction.

158 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Signals

1. Data Inputs and Outputs

2. Parity Inputs and Outputs, available when a data port is byte-wide or wider
3. Address inputs to select a specific memory location
4

Various control signals that manage read, write, or set/reset operations

Table 4-4: Block RAM Interface Signals

Dual Port

Signal Description Single Port Port A Port B Direction
Data Input Bus DI DIA DIB Input
Parity Data Input Bus (available only DIP DIPA DIPB Input
for byte-wide and wider organizations)
Data Output Bus DO DOA DOB Output
Parity Data Output (available only for DOP DOPA DOPB Output
byte-wide and wider organizations)
Address Bus ADDR ADDRA | ADDRB Input
Write Enable WE WEA WEB Input
Clock Enable EN ENA ENB Input
Synchronous Set/Reset SSR SSRA SSRB Input
Clock CLK CLKA CLKB Input
Synchronous/Asynchronous Set/Reset N/A RSTA RSTB Input
(Spartan-3A DSP FPGA only)
Output Register N/A REGCEA | REGCEB Input
(Spartan-3A DSP FPGA only)

Data Inputs and Outputs

The total width of a port’s data port includes both the data bus and the parity bus, when
applicable, as shown in Figure 4-4. In the 512x36 organization, for example, the 36-bit data
port width includes four parity bits as the more significant bits followed by the 32 data bits
as the less significant bits.

The data and parity input and output signals are always buses; that is, in a 1-bit width
configuration, the data input signal is DI[0] and the data output signal is DO[0].

Data Input Bus — DI[#:0] (DIA[#:0], DIB[#:0])
The Data Input bus is the source of data to be written into RAM.

Data at the DI input bus is written to the RAM location specified by the address input bus,
ADDR, during a Low-to-High transition on the CLK input, when the clock enable EN and
write enable WE inputs are High.

Data Output Bus — DOJ#:0] (DOA[#:0], DOBJ#:0])

The data output bus, DO, presents the contents of memory cells referenced by the address
bus, ADDR, at the active clock edge during a read operation. During a simultaneous write

Spartan-3 Generation FPGA User Guide www.xilinx.com 159
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

operation, the behavior of the data output latches is controlled by the WRITE_MODE
attribute (see “Read Behavior During Simultaneous Write — WRITE_MODE,” page 171).

Parity Inputs and Outputs

Parity is only supported for data paths byte wide and wider.

Although referred to herein as parity bits, the parity inputs and outputs have no special
functionality and can be used as additional data bits. For example, the parity bits could be
used to hold additional information about a data word, tagging the data as code or data,
positive or negative values, old or new data, etc.

Block RAM does not contain any special circuitry for generating or checking parity. These
functions, if required by the application, are created using CLB logic resources.

Data Input Parity Bus — DIP[#:0] (DIPA[#:0], DIPBJ[#:0])

Data at the DIP input bus is written to the RAM location specified by the address input
bus, ADDR, during a Low-to-High transition on the CLK input, when the clock enable EN
and write enable WE inputs are High.

Data Output Parity Bus — DOP[#:0] (DOPA[#:0], DOPBJ#:0])

The data output bus, DOP, presents the contents of memory cells referenced by the address
bus, ADDR, at the active clock edge during a read operation. During a simultaneous write
operation, the behavior of the data output latches is controlled by the WRITE_MODE

attribute (see “Read Behavior During Simultaneous Write — WRITE_MODE,” page 171).

160

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Signals
512x36 |P3|P2|P1|PO| Byte 3 | Byte 2 Byte 1 Byte 0
P3| P2 Byte 3 Byte 2
1Kx18 Y Y
S P1| PO Byte 1 Byte O
Ay
(26, % o
hep Kjps Pl
Kbirg S 0p, 4, P3 Byte 3
)" P2 Byte 2
2Kx9 Y
P1 Byte 1
/ PO Byte O
pyte
4Kx4 o
L]
pyte D
[e2]
g
>
m
— L]
>8 8Kx2 <{e
= © °
5o
o ® o
2¢ g
>
:‘9./ m
A\
i
¥l
&
P
i
G
16Kx1 < .
D
&
>~
i)
v e
X463_04_062503
Figure 4-4. Data Organization and Mapping Between Modes
161

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

www.xilinx.com

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

Address Input

As dual-port RAM, both ports operate independently while accessing the same set of
18 Kbit memory cells.

Note: Whenever a block RAM port is enabled (ENA or ENB = High), all address transitions must
meet the data sheet setup and hold times with respect to the port clock (CLKA or CLKB). This
requirement must be met even if the RAM read output is of no interest, or WE is deasserted, including
ROM mode. Violating the address setup time (even if write enable is Low) corrupts the data contents
of the block RAM. There are some instances in which these requirements might not be able to be
met; for instance, if there is a multi-cycle path on the address input signals, or while the clock is
stabilizing. Work around this by disabling the port via ENA/ENB during the time that the address
inputs do not meet setup and hold requirements. Deasserting ENA/ENB disables the port so that
violating the address input setup and hold requirements does not affect block RAM contents. Assert
ENA/ENB again when resuming normal read/write functionality.

Address Bus — ADDR[#:0] (ADDRA[#:0], ADDRB[#:0])

The address bus selects the memory cells for read or write operations. The memory depth
determines the required address bus width, as shown in Table 4-8.

Control Inputs

Clock — CLK (CLKA, CLKB)

Each port is fully synchronous with independent clock pins. All port input pins have setup
time referenced to the port CLK pin. The data bus has a clock-to-out time referenced to the
CLK pin. Clock polarity is configurable and is rising edge triggered by default.

With default polarity, a Low-to-High transition on the clock (CLK) input controls read,
write, and reset operations.

Enable — EN (ENA, ENB)

The enable input, EN, controls read, write, and set/reset operations. When EN is Low, no
data is written and the outputs DO and DOP retain the last state. The polarity of EN is
configurable and is active High by default.

When EN is asserted, minus an active synchronous set/reset input or write-enable input,
block RAM always reads the memory location specified by the address bus, ADDR, at the
rising clock edge.

Write Enable — WE (WEA, WEB)

The write enable input, WE, controls when data is written to RAM. When both EN and WE
are asserted at the rising clock edge, the value on the data and parity input buses is written
to memory location selected by the address bus.

The data output latches are loaded or not loaded according to the WRITE_MODE attribute.
The polarity of WE is configurable and is active High by default.

All Spartan-3 generation FPGAs support the RAMB16 block RAM primitive that has a
single write-enable input that controls write operations regardless of the data width for the
configured data organization. See Figure 4-4, page 161 for a diagram of all supported data
organizations. Table 4-5, page 163 shows the write-enable behavior for the RAMB16
primitive.

162

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Signals

Spartan-3A/3AN FPGAs introduce a new block RAM primitive called RAMB16BWE,
essentially a RAMB16 primitive with four independent byte-level write enable inputs. The
Spartan-3A DSP FPGA primitive RAMB16BWER has the same byte-level write enable
function. As shown in Table 4-6, page 163, the independent write-enable inputs allow an
application to write an individual byte or select bytes from a multi-byte data word without
affecting the unselected RAM locations. This feature is useful for a variety of applications,
especially MicroBlaze processor designs. For 1Kx18 data organizations, connect WEQ with
WE2 to select the lower 9 bits and connect WE1 with WE3 to select the upper 9 bits.

Table 4-5: RAMB16 Write Operations (All Spartan-3 Generation FPGAS)

Data
Organization EN WE CLK Function
0 X X Block RAM disabled. No operation.
1 0 N Block RAM enabled but no write operation.
All

As appropriate for the block RAM data
organization, write data from the DI and DIP
input ports to the currently addressed RAM
location.

(See Figure 4-4)

Table 4-6: RAMB16BWE/R Write Operations (Extended Spartan-3A Family FPGAs Only)

Data Byte-level Write Enables
o . EN CLK
rganization WE3 | WE2 | WE1 | WEO Function
All 0 X X X X X | Block RAM disabled. No operation.
16Kx1 0 1 | Block RAM enabled but no write operation.
8Kx2
4K§ 4 1 Write data from the DI and DIP input ports to the
2Kx9 1 0 currently addressed RAM location.
1 1 ~ Write 18 bits: Write data from the DI[15:0] and DIP[1:0]
input ports to the currently addressed RAM location.
Same | Same Write lower 9 bits: Write data only from the DI[7:0]
1Kx18 1 as as 0 1 and DIP[0] input ports to the currently addressed
WEL | WEO RAM location. Other bits in RAM location unaffected.
Write upper 9 bits: Write data only from the DI[15:8]
1 0 and DIP[1] input ports to the currently addressed
RAM location. Other bits in RAM location unaffected.
Spartan-3 Generation FPGA User Guide www.xilinx.com 163

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

Table 4-6: RAMB16BWE/R Write Operations (Extended Spartan-3A Family FPGAs Only) (Cont'd)
Byte-level Write Enables
o Data EN CLK
rganization WE3 | WE2 | WEL | WEO Function

1 1 1 1 A Write 36 bits: Write data from the DI[31:0] and DIP[3:0]
input ports to the currently addressed RAM location.
Write lowest 9 bits: Write data only from the DI[7:0]

0 0 0 1 1 | and DIP[0] input ports to the currently addressed
RAM location. Other bits in RAM location unaffected.
Write next 9 bits: Write data only from the DI[15:8] and

51236 1 0 0 1 0 A | DIP[1] input ports to the currently addressed RAM

location. Other bits in RAM location unaffected.

Write lower 18 bits: Write data from the DI[15:0] and
0 0 1 1 A | DIP[1:0] input ports to the currently addressed RAM
location. Other bits in RAM location unaffected.

Write upper 18 bits: Write data from the DI[31:16] and
1 1 0 0 A | DIP[3:2] input ports to the currently addressed RAM
location. Other bits in RAM location unaffected.

Output Register Enable - REGCE (REGCEA, REGCEB) Spartan-3A DSP
FPGA Only

The Output Register Write enable input, REGCE, controls when data is written to the RAM
Output registers. When both EN and REGCE are asserted at the rising clock edge, the value
on the output of the block RAM is written to the block RAM output register.

The polarity of REGCE is configurable and is active High by default.

Output Latch Synchronous Set/Reset — SSR (SSRA, SSRB)

The synchronous set/reset input, SSR, forces the data output latches to the value specified
by the SRVAL attribute. When SSR and the enable signal, EN, are High, the data output
latches for the DO and DOP outputs are synchronously set to a ‘0" or ‘1" according to the
SRVAL parameter.

A Synchronous Set/Reset operation does not affect RAM cells and does not disturb write
operations on the other port.

The polarity of SSR is configurable and is active High by default.

The SSR input is available on the RAMB16 and RAMB16BWE components. The
RAMB16BWER component for the Spartan-3A DSP platform provides the RST input
instead.

Output Latch/Register Synchronous/Asynchronous Set/Reset - RST (RSTA,
RSTB) - Spartan-3A DSP FPGA Only

The Spartan-3A DSP platform block RAM set/reset input is optionally synchronous or
asynchronous and controls both the output latches and the optional output registers. The
control pin for this operation is named RST and is available on the RAMB16BWER
component.

164

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Attributes

In synchronous mode, if RST and the enable signal EN are High, the data output latches
and optional output registers for the DO and DOP outputs are synchronously set toa ‘0" or
1" according to the SRVAL parameter.

In asynchronous mode, if RST and the enable signal EN are High, the data output latches
and optional output registers for the DO and DOP outputs are asynchronously set to a ‘0’
or ‘1" according to the SRVAL parameter.

The mode is set by setting the RSTTYPE attribute to “SYNC” for synchronous operation or
“ASYNC” for asynchronous operation. The default for RSTTYPE is synchronous. Due to
improved timing and circuit stability, it is recommended to always have this set to "SYNC"
unless an asynchronous reset is absolutely necessary.

A RST operation does not affect block RAM cells and does not disturb write operations on
the other port.

The polarity of RST is configurable and is active High by default.

The RST input is available on the RAMB16BWER component for the Spartan-3A DSP
platform. The RAMB16 and RAMB16BWE components provide the SSR input instead.

Global Set/Reset — GSR

The global set/reset signal, GSR, is asserted automatically and momentarily at the end of
device configuration. By instantiating the STARTUP primitive, the logic application can

also assert GSR to restore the initial FPGA state at any time. The GSR signal initializes the
output latches to the INIT value. A GSR signal has no impact on internal memory contents.

Because GSR is a global signal and automatically connected throughout the device, the
block RAM primitive does not have a GSR input pin.

Inverting Control Pins

For each port, the four control pins—CLK, EN, WE, and SSR/RST—each have an
individual inversion option. Any control signal can be configured as active High or Low,
and the clock can be active on a rising or falling edge without consuming additional logic
resources.

Unused Inputs

Tie any unused data or address inputs to logic ‘1’. Connecting the unused inputs High
saves logic and routing resources compared to connecting the inputs Low.

Attributes
A block RAM has a number of attributes that control its behavior as shown in Table 4-7 for
VHDL and Verilog. The CORE Generator system uses slightly different values, as
described below.
Table 4-7: Block RAM Attributes and VHDL/Verilog Attribute Names
Function VHDL or Verilog Attribute Default Value
Number of Ports Defined by instantiating the N/A
appropriate RAMB16 primitive
Memory Organization Defined by instantiating the N/A
appropriate RAMB16 primitive
Spartan-3 Generation FPGA User Guide www.xilinx.com 165

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

Table 4-7: Block RAM Attributes and VHDL/Verilog Attribute Names (Cont’d)

Function VHDL or Verilog Attribute Default Value
Initial Content for Data Memory, INIT_xx Initialized to zero
Loaded during Configuration
Initial Content for Parity Memory, INITP_xx Initialized to zero
Loaded during Configuration
Data Output Latch Initialization INIT (single-port) Initialized to zero

INIT_A, INIT_B (dual-port)

Data Output Latch Synchronous SRVAL (single-port) Reset to zero
Set/Reset Value SRVAL_A, SRVAL_B (dual-port)
Data Output Latch Behavior during | WRITE_MODE WRITE_FIRST
Write
Block RAM Location LOC N/A
Reset Type RSTTYPE SYNC

(Spartan-3A DSP FPGA only)

Number of Ports

Although physically dual-port memory, each block RAM performs as either single-port or
dual-port memory. The method to specify the number of ports depends on the design
entry tool.

CORE Generator System

As shown in Figure 4-5, the Xilinx CORE Generator system provides module generators
for various types of memory blocks. Choose single- or dual-port block memories or use the
higher-level functions to create FIFOs, content-addressable memories (CAMs), and so
forth.

34- ¥ilink CORE Generator

File Project Core Tools Help

D Ii'| CurrentPrnject:|C:IDataImﬁ,r_designSIteaﬂ LI |E£(| Cg,l =

ey Catalng:lbﬁ; Function j

Spartan3 ontents of: Memaoties & Storage Elements = RAMs & ROMs

- i = . — _
.7 Trig Functions -] Marne Type Yersion | War “l A S
| Mermaories & Storage Elements Distributed Mermory Il FE B0 . b+ b b
oo CAMS Dual Port Block Memaory RgicEEE 10 @

~_|FIFOs Dual Port Block Mermary [SRS J50]

PR |21 & ROMs 1 =ingle Port Black Memary I S L

| PratoType & Development Hardw > | 1Single Port Elack Memary RQlCEFE &0 N
ol 1 | 3

X463_05_060606

Figure 4-5: Selecting a Block RAM Function in CORE Generator System

166 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Attributes

VHDL or Verilog Instantiation

The Xilinx design libraries contain single- and dual-port memory primitives similar to
those shown in Figure 4-1. Select among the various primitives to choose single- or dual-
port memory, as well as the memory organization or aspect ratio of the memory. See
Table 4-8 and Table 4-9 for single-port and dual-port block RAM primitives, respectively.

Memory Organization/Aspect Ratio

The data organization or aspect ratio of a RAM block is configurable, as shown in

Table 4-8. If the data path is byte-wide or wider, then the block RAM also provides
additional bits to support parity for each byte. Consequently, a 1Kx18 memory
organization is 18 bits wide with 16 bits (two bytes) allocated to data plus two parity bits,
one for each byte. Also, the physical amount of memory accessible from a port depends on
the memory organization. For memories byte-wide and wider, there are 18K memory bits
accessible. For narrower memories, only 16K bits are accessible due to the lack of parity
bits in these organizations. Essentially, 16K bits are allocated to data, 2K bits to parity on
the 18 Kbit block RAM. See Figure 4-4 for details on data mapping for and between each
memory organization.

Table 4-8: Block RAM Data Organizations/Aspect Ratios

Memory Data Parity Single-Port Total RAM

Organization Depth Width Width DI/DO DIP/DOP | ADDR Primitive Kbits
512x36 512 32 4 (31:0) (3:0) (8:0) RAVB16_S36 18K
1Kx18 1024 16 2 (15:0) (1:0) (9:0) RAVB16_S18 18K
2Kx9 2048 8 1 (7:0) (0:0) (10:0) RAMVB16_S9 18K

4K x4 4096 4 S (3:0) - (11:0) RAVB16_S4 16K
8Kx2 8192 2 S (1:0) - (12:0) RAVBL6_S2 16K
16Kx1 16384 1 S (0:0) - (13:0) RAVB16_S1 16K

CORE Generator System — Memory Size

The CORE Generator system creates a wide variety of memories with very flexible aspect
ratios. Unlike the actual block RAM primitive, the CORE generator system does not
differentiate between data and parity bits and considers all bits data bits. For dual-port
memories, each port can have different organizations or aspect ratios.

Within the CORE Generator system, locate the Memory Size group and enter the desired
memory organization, as shown in Figure 4-6.

Memory Size
Width |16 valid Range 1..256

Depth |256 Valid Range 2..16384

Figure 4-6: Selecting Memory Width and Depth in CORE Generator System

Spartan-3 Generation FPGA User Guide www.xilinx.com 167
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

VHDL or Verilog Instantiation

The aspect ratio is defined at design time by specifying or instantiating the appropriate
SelectRAM component. Table 4-8 indicates the SelectRAM component for single-port
RAM. For single-port RAM, the proper component name is RAMB16_Sn, where 7 is the
data path width including both the data bits plus parity bits. For example, a 1Kx18 single-
port RAM uses component RAMB16_S18. In this example, 7=18 because there are 16 data
bits plus 2 parity bits.

Selecting a dual-port memory is slightly more complex because the two memory ports can
have different aspect ratios. For dual-port RAM, the proper component name is
RAMBL16_Sm_Sn, where m is the data path width for Port A and # is the width for Port B.
For example, using the suffix shown in Table 4-9, if Port A is organized a 2Kx9 and Port B
is organized as 1Kx18, then the proper dual-port RAM component is RAMB16_S9_S18. In
this example, m=9 and n=18.

Table 4-9: Dual-Port RAM Component Suffix Appended to “RAMB16”

Port A
16Kx1 8Kx2 4K x4 2Kx9 1Kx18 512x36
16Kx1 | _S1_Si
8Kx2 | Sl S2 | S2.s2
@ 4Kx4 | _S1.S4 | _S2.S4 | _S4_S4
S| 2Kx9 | _S1.S9 | _S2.S9 | _s4.S9 | _S9_s9
1IKx18 | S1 S18 | S2 S18 | S4 S18 | SO S18 | _S18_S18
512x36 | _S1 _S36 | _S2 S36 | _S4_S36 | _S9_S36 | _S18_S36 | _S36_S36

Address and Data Mapping Between Two Ports

In dual-port mode, both ports access the same set of memory cells. However, both ports
can have the same or different memory organization or aspect ratio. Figure 4-4 shows how
the same data set might appear with different aspect ratios.

There are extra bits available to store parity for memory organizations that are byte-wide
or wider. The extra parity bits are designed to be associated with a particular byte and
these parity bits appear as the more-significant bits on the data port. For example, if a x36
data word (32 data, 4 parity) is addressed as two x18 halfwords (16 data, 2 parity), the
parity bits associated with each data byte are mapped within the block RAM to
appropriate parity bits. The same effect happens when the x36 data word is mapped as
four x9 words. The extra parity bits are not available if the data port is configured as x4, x2,
or x1.

The following formulas provide the starting and ending address for data when the two
ports have different memory organizations. Find the starting and ending addresses for
Port X given the address and port width of Port Y and the port width of Port X.

ADDRESS, WIDTHY)

START_ADDRESSy, = INTEGER(WIDTH,,

((ADDRESSy +1) ® WIDTH,) — 1)

END_ADDRESSy = INTEGER(WIDTHy

168 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Attributes

If, due the memory organization, one port includes parity bits and the other does not, then
the above equations are invalid and the values for width should only include the data bits.
The parity bits are not available on any port that is less than 8 bits wide.

Content Initialization

By default, block RAM is initialized with all zeros during the device configuration
sequence. However, the contents can also be initialized with user-defined data.
Furthermore, the RAM contents are protected against spurious writes during
configuration.

CORE Generator System — Load Init File

To specify the initial RAM contents for a CORE Generator block RAM function, create a
coefficients (.coe) file. A simple example of a coefficients file appears in Figure 4-7. Ata
minimum, define the radix for the initialization data—i.e., base 2, 10, or 16—and then
specify the RAM contents starting with the data at location 0, followed by data at
subsequent locations.

menory_initialization_radi x=16;
menory_initialization_vector= 80, OF, 00, 0B, 00, 0C .., 81;

Figure 4-7: A Simple Coefficients File (.coe) Example

To include the coefficients file, locate the appropriate section in the CORE Generator
wizard and check Load Init File, as shown in Figure 4-8. Then, click Load File and select
the coefficients file.

— Initial Contents

Jv" Load Init File
Load File ...

C:\MyProject\imy_ram_init.coe (.coe File)

Figure 4-8: Specifying Initial RAM Contents in CORE Generator System

VHDL or Verilog Instantiation — INIT_xx, INITP_xx

For VHDL and Verilog instantiation, there are two different types of initialization
attributes. The | NI T_xx attributes define the initial contents of the data memory locations.
The I NI TP_xx attributes define the initial contents of the parity memory locations.

The I NI T_xx attributes on the instantiated primitive define the initial memory contents.
There are 64 initialization attributes, named | NI T_0O through | NI T_3F Each | NI T_xx
attribute is a 64-digit (256-bit) hex-encoded bit vector. The memory contents can be
partially initialized and any unspecified locations are automatically completed with zeros.

The following formula defines the bit positions for each | NI T_xx attribute.

Given yy = convert_hex_to_decimal(xx), | NI T_xx corresponds to the following memory
cells.

e Starting Location: [(yy + 1) * 256] -1

Spartan-3 Generation FPGA User Guide www.xilinx.com 169
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

¢ End Location: (yy) * 256
For example, for the attribute INIT_1F, the conversion is as follows:

¢ yy = convert_hex_to_decimal(0x1F) = 31
e Starting Location: [(31+1) * 256] -1 = 8191
e End Location: 31 * 256 = 7936

Table 4-10: VHDL/Verilog RAM Initialization Attributes for Block RAM

Attribute From To
NI T_0O 255 0
INIT_O01 511 256
NI T_02 767 512
INIT_3F 16383 16128

The | NI TP_xx attributes define the initial contents of the memory cells corresponding to
parity bits, i.e., those bits that connect to the DIP/DOP buses. By default these memory
cells are also initialized to all zeros.

The eight initialization attributes from | Nl TP_00 through | Nl TP_07 represent the
memory contents of parity bits. Each | NI TP_xx is a 64-digit (256-bit) hex-encoded bit
vector and behaves like an | NI T_xx attribute. The same formula calculates the bit
positions initialized by a particular | Nl TP_xx attribute.

Data Output Latch Initialization

The block RAM output latches can be initialized to a user-specified value immediately
after configuration or whenever the global set/reset signal, GSR, is asserted. For dual-port
memories, there is a separate initialization value for each port.

If no value is specified, the output latch is initialized to zero.

CORE Generator System — Global Init Value

Figure 4-9 describes how to specify the initial value for data output latches in the CORE
Generator system. The value, specified in hexadecimal, should include one bit per the
specified data width. For dual-port memories, there is a separate initialization value for
each port.

— Initial Contents
Global Init Value:
ff0001 (Hex Value)

=

Figure 4-9: Specifying Initial Value for Block RAM Data Output Latches

170 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Attributes

VHDL or Verilog Instantiation — INIT (INIT_A and INIT_B)

For VHDL or Verilog, the INIT attribute (or INIT_A and INIT_B for dual-port memories)
defines the output latch value after configuration. The INIT (or INIT_A and INIT_B)
attribute specifies the initial value for the data and, if applicable, the parity bits. Figure 4-4
shows the expected bit format for each memory organization with parity bits—if
applicable—as the more significant bits followed by the data bits. For example, the
initialization value for a 2Kx9 memory would be nine bits wide and would include one
parity bit followed by eight data bits. These attributes are hex-encoded bit vectors and the
default value is 0.

Data Output Latch Synchronous Set/Reset Value

When the synchronous set/reset input, SSR (RST for the RAMB16BWER), is asserted, the
data output latches are set or reset according to the set/reset value attribute. For dual-port
memories, there is a separate initialization value for each port.

If no value is specified, the output latch is reset to zero during a valid Synchronous
Set/Reset operation.

For the RAMB16BWER, the optional output register is also set or reset with the output
latch.

CORE Generator System — Init Value (SINIT)

Figure 4-10 describes how to specify the synchronous set/reset value for data output
latches in the CORE Generator system. Check the SINIT pin and then specify the
synchronous set/reset value in hexadecimal, with one bit per the specified data width. For
dual-port memories, there is a separate value for each port.

Output Register Options

o[l

]7 SINIT pin (sync. reset of output registers)

Init Value (Hex) [asasof

Figure 4-10: Specifying the Output Data Latch Set/Reset Value

VHDL or Verilog Instantiation — SRVAL (SRVAL_A and SRVAL_B)

For VHDL or Verilog, the SRVAL attribute (or SRVAL_A and SRVAL_B for dual-port
memories) defines the output latch value after configuration. The SRVAL (or SRVAL_A
and SRVAL_B) attribute specifies the initial value for the data and, if applicable, the parity
bits. Figure 4-4 shows the expected bit format for each memory organization with parity
bits—if applicable—as the more significant bits followed by the data bits. These attributes
are hex-encoded bit vectors, and the default value is 0.

Read Behavior During Simultaneous Write — WRITE_MODE

To maximize data throughput and utilization of the dual-port memory at each clock edge,
block RAM supports one of three write modes for each memory port. These different
modes determine which data is available on the output latches after a valid write clock
edge to the same port. The default mode, WRITE_FIRST, provides backwards
compatibility with the older Virtex, Virtex-E, and Spartan-IIE FPGA architectures and is

Spartan-3 Generation FPGA User Guide www.xilinx.com 171
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using

Block RAM ST XILNX®

also the default behavior for Virtex-II and Virtex-II Pro devices. However, READ_FIRST
mode is the most useful as it increases the efficiency of block RAM at each clock cycle,
allowing designs to use maximum bandwidth. In READ_FIRST mode, a memory port
supports simultaneous read and write operations to the same address on the same clock
edge, free of any timing complications.

Table 4-11 outlines how the WRITE_MODE setting affects the output data latches on the
same port, and how it affects the output latches on the opposite port during a
simultaneous access to the same address.

Table 4-11: WRITE_MODE Affects Data Output Latches During Write Operations

Write Mode

Effect on Opposite Port
Effect on Same Port (Dual-Port Mode Only, Same Address)

WRITE_FIRST

Data on DI, DIP inputs written into specified RAM | Invalidates data on DO, DOP outputs.

Read After Write | location and simultaneously appears on DO, DOP
(Default) outputs.
READ_FIRST Data from specified RAM location appears on DO, | Data from specified RAM location appears
Read Before Write | DOP outputs. on DO, DOP outputs.
(Recommended) | Data on DI, DIP inputs written into specified
location.
NO_CHANGE Data on DO, DOP outputs remains unchanged. Invalidates data on DO, DOP outputs.
No Read on Write | Data on DI, DIP inputs written into specified

location.

Mode selection is set by configuration. One of these three modes is set individually for
each port by an attribute. The default mode is WRITE_FIRST.

WRITE_FIRST or Transparent Mode (Default)

The WRITE_FIRST mode is the default operating mode for backward compatibility
reasons. For new designs, READ_FIRST mode is recommended.

In this mode, the input data is written into the addressed RAM location memory and
simultaneously stored in the data output latches, resulting in a transparent write
operation, as shown in Figure 4-11. The WRITE_FIRST mode provides backwards
compatibility with the 4 Kbit block RAMs on Virtex/Virtex-E and Spartan-II/Spartan-IIE
FPGAs and is also the default mode for Virtex-1I/Virtex-II Pro FPGA block RAMs.

Data_in
WE

EN

CLK
Address

-r—P= Data_out

| RAM Location

L

WRITE_MODE =WRITE_FIRST X463_11_062503
Figure 4-11: Data Flow during a WRITE_FIRST Write Operation

172

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Attributes

Figure 4-12 demonstrates that a valid write operation during a valid read operation results
in the write data appearing on the data output.

| | |
| | | |
WE f I I f
| | | |
Data_in | XXXX X | 1111~ X | 2222~ X | XXXX
| | } | } |
adgress W1 X1 w [X« [X w_
I / I | I | I /
Dataout om0 1 Xovemem | X wun | X =z 1 X ven
ENABLE _/ : : : :
DISABLED I READ I WRITE I WRITE I READ
: : MEM(bb)=1111 : MEM(cc)=2222 :

X463_12_020503

Figure 4-12: WRITE_FIRST Mode Waveforms

READ_FIRST or Read-Before-Write Mode

In READ_FIRST mode, data previously stored at the write address appears on the output
latches, while the new input data is stored in memory, resulting in a read-before-write
operation shown in Figure 4-13. The older RAM data appears on the data output while the
new RAM data is stored in the specified RAM location. READ_FIRST mode is the
recommended operating mode.

Data_in ——» — Data_out
WE —
EN ——

CLK —

Address —T| RAM Location

WRITE_MODE = READ_FIRST X463_13_062503
Figure 4-13: Data Flow during a READ_FIRST Write Operation

Figure 4-14 demonstrates that the older RAM data always appears on the data output,
regardless of a simultaneous write operation.

Spartan-3 Generation FPGA User Guide www.xilinx.com 173
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

CLK

| | |
| yau | A\
WE T | | T
Data_in i XXXX X i 1111 X i 2222 X i XXXX

| | | |

Address D(! aa—~ X ! bb— X ! €€~ X ! dd—~

| / | L/ | /

Data_out 0000 | X' mEmG@a) | old MEMB) Moe-old MEMEco) X -MEM(dd)
| | | |
ENABLE ' ' ' '
/ | | | |
DISABLED I READ I WRITE I WRITE I READ

! I Mempp=1111 | MEM(eo)=2222 |

X463_14_020503

Figure 4-14: READ_FIRST Mode Waveforms

This mode is particularly useful for building circular buffers and large, block-RAM-based
shift registers. Similarly, this mode is useful when storing FIR filter taps in digital signal
processing applications. Old data is copied out from RAM while new data is written into
RAM.

NO_CHANGE Mode

In NO_CHANGE mode, the output latches are disabled and remain unchanged during a
simultaneous write operation, as shown in Figure 4-15. This behavior mimics that of
simple synchronous memory where a memory location is either read or written during a
clock cycle, but not both.

Data_in =P \ Data_out
WE —
EN ——
CLK ——
Address —T| RAM Location
WRITE_MODE = NO_CHANGE X463_15 062503

Figure 4-15: Data Flow during a NO_CHANGE Write Operation

The NO_CHANGE mode is useful in a variety of applications, including those where the
block RAM contains waveforms, function tables, coefficients, and so forth. The memory
can be updated without affecting the memory output.

Figure 4-16 shows that the data output retains the last read data if there is a simultaneous
write operation on the same port.

174 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Attributes

axk — N S S

| | |
| | | |
WE t / | | \ t
| | | |
Data_in | XK X | 1 X | 2222 X | XXXX

| | | |

Address >< : aa — X : bb X : cc X : dd

| / | | | /

Data_out D, CEE | D, CERS
T T T T
ENABLE _/ : : : :
pisABLED | READ I WRITE I WRITE I READ

| | MEM@b=1111 | MEM(cc)=2222 |
I I I I

X463_16_020503

Figure 4-16: NO_CHANGE Mode Waveforms

CORE Generator System — Write Mode

To specify the WRITE_MODE in the CORE Generator system, locate the settings for Write
Mode as shown in Figure 4-17. Select between Read After Write (WRITE_FIRST), Read
Before Write (READ_FIRST) or No Read On Write (NO_CHANGE).

Write Mode
’7 7~ Read After Write 7@ Read Before Write "~ No Read On Write

Figure 4-17: Selecting the Write Mode in CORE Generator System

VHDL or Verilog Instantiation — WRITE_MODE

When instantiating block RAM, specify the write mode via the WRITE_MODE attribute.
Acceptable values include WRITE_FIRST, READ_FIRST, and NO_CHANGE, as
demonstrated in the examples in the appendices.

Location Constraints (LOC)

In general, it is best to allow the Xilinx ISE® software to assign a block RAM location.
However, block RAMs can be constrained to specific locations on a Spartan-3 device using
an attached LOC property. Block RAM placement locations are device-specific and differ
from the convention used for naming CLB locations, allowing LOC properties to transfer
easily from array to array.

The LOC properties use the following form:
LOC = RAMBL6_X#Y#

The RAMB16_X0YO is the lower-left block RAM location on the device, as shown in
Figure 4-18. The upper-right block RAM location depends on n, the number of block RAM
columns, and m the number of block RAM rows, as provided in Table 4-1, page 153. The
Spartan-3A DSP platform has four or five columns of block RAM, similar to the XC354000
and XC355000 devices.

Spartan-3 Generation FPGA User Guide www.xilinx.com 175
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

iy ot

e

RAMB16_X0Y(m-1) . . H = z | RAMB16_X(n-1)Y(m-1)

0

i H i ol LB g
0o o, ®*®® (0 o0
00 0 0 aag XC3S50/A/AN
oo 0 0 oag XC3S100E
0o ad 0 aag

n = total columns

[X X J
m = total rows

XC3S200/A/AN XC3S4000
XC3S400/A/AN XC3S5000
XC3S700A/AN XC3SD1800A
XC3S1400A/AN XC3SD3400A
XC3S250E

XC3S500E

XC3S1200E

XC3S1600E

XC3S1000

XC3S1500

XC352000

RAMB16_X(n-1)YO
Figure 4-18: Block RAM LOC Coordinates

o o
o o o
o | o
o o o
o o o

RAMB16_X0YO —| LI [J H

UG331_c4_13_033007

Location attributes cannot be specified directly in the CORE Generator system. However,
location constraints can be added to VHDL or Verilog instantiations.

Block RAM Operation

Table 4-12 describes the behavior of block RAM and assumes that all control signals use
their default, active-High behavior. However, the control signals can be inverted in the
design if necessary. The table and following text describe the behavior for a single memory
port. In dual-port mode, both ports perform as independent single-port memories.

All read and write operations to block RAM are synchronous. All inputs have a set-up time
relative to clock and all outputs have a clock-to-output time.

Table 4-12: Block RAM Function Table
Input Signals Output Signals RAM Contents
GSR | EN |SSR/RST| WE | CLK |[ADDR| DIP DI DOP DO Parity Data
Immediately After Configuration
Loaded During Configuration X X INITP_ xx? INIT xx?
Global Set/Reset Immediately after Configuration
1 X X X X X X X INIT3 INIT No Chg No Chg
RAM Disabled
0 0 X X X X X X No Chg No Chg No Chg No Chg
Synchronous Set/Reset

0 1 1 0 0 X X X SRVAL* SRVAL No Chg No Chg

176 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Block RAM Operation

Table 4-12: Block RAM Function Table (Cont’d)

Input Signals Output Signals RAM Contents
GSR| EN |SSR/RST| WE | CLK |ADDR| DIP DI DOP DO Parity Data

Synchronous Set/Reset during Write RAM

0 1 1 1 A | addr | pdata | Data SRVAL SRVAL RAM(addr) | RAM(addr)
<pdata €< data
Read RAM, no Write Operation
0 1 0 0 N | addr X X | RAM(pdata) | RAM(data) No Chg No Chg
Write RAM, Simultaneous Read Operation
0 1 0 1 A | addr | pdata | Data WRITE_MODE = WRITE_FIRSTS (default)
pdata data RAM(addr) | RAM(addr)
<pdata < data

WRITE_MODE = READ_FIRST® (recommended)
RAM(data) | RAM(data) | RAM(addr) | RAM(addr)

<pdata <pdata
WRITE_MODE = NO_CHANGE?
No Chg No Chg RAM(addr) | RAM(addr)
<pdata <pdata
Notes:
1. No Chg = No Change, addr = address to RAM, data = RAM data, pdata = RAM parity data.
2. Refer to “Content Initialization,” page 169.
3. Refer to “Data Output Latch Initialization,” page 170.
4. Refer to “Data Output Latch Synchronous Set/Reset Value,” page 171.
5. Refer to “WRITE_FIRST or Transparent Mode (Default),” page 172.
6. Refer to “READ_FIRST or Read-Before-Write Mode,” page 173.
7. Refer to “NO_CHANGE Mode,” page 174.

RAM Contents Initialized During Configuration

The initial RAM contents, if specified, are loaded during the Spartan-3 FPGA configuration
process. If no contents are specified, the RAM cells are loaded with zero. The RAM
contents are protected against spurious writes during configuration.

Global Set/Reset Initializes Data Output Latches Immediately After
Configuration or Global Reset
Immediately following configuration, the Spartan-3 device begins its start-up procedure
and asserts the global set/reset signal, GSR, to initialize the state of all flip-flops and

registers. The initial contents of the block RAM output latches, INIT, are asynchronously
loaded at this time. The GSR signal does not change or re-initialize the RAM contents.

Enable Input Activates or Disables RAM

If the block RAM is disabled—i.e., EN is Low—then the block RAM retains its present
state. The enable input must be High for any other operations to proceed.

Spartan-3 Generation FPGA User Guide www.xilinx.com 177
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

Synchronous Set/Reset Initializes Data Output Latches

If the block RAM is enabled (EN is High) and the Synchronous Set/Reset signal is asserted
High, then the data output latches are initialized at the next rising clock edge. The SRVAL
attribute defines the synchronous set/reset state for the data output latches. This operation
is different the operation caused by the global set/reset signal, GSR, immediately after
configuration. The synchronous set/reset input affects the specific RAM block whereas the
GSR signal affects the entire device.

Simultaneous Write and Synchronous Set/Reset Operations

If a simultaneous write operation occurs during the synchronous set/reset operation, then
the data on the DI and DIP inputs is stored at the RAM location specified by the ADDR
input. However, the data output latches are initialized to the SRVAL attribute value as
described immediately above.

Read Operations Occur on Every Clock Edge When Enable is Asserted

Read operations are synchronous and require a clock edge and an asserted clock enable.
The data output behavior depends on whether or not a simultaneous write operation
occurs during the read cycle.

If no simultaneous write cycle occurs during a valid read cycle, then the read address is
registered on the read port and the data stored in RAM at that address is simply loaded
into the output latches after the RAM access interval passes.

However, if there is a simultaneous write cycle during the read cycle, then the output
behavior depends on which of the three write modes is selected, as described immediately
below.

Write Operations Always Have Simultaneous Read Operation, Data
Output Latches Affected

During a Write operation, a simultaneous Read operation occurs. The WRITE_MODE
attribute determines the behavior of the data output latches during the Write operation
(refer to “Read Behavior During Simultaneous Write — WRITE_MODE,” page 171). By
default, WRITE_MODE is WRITE_FIRST and the data output latches and the addressed
RAM locations are updated with the input data during a simultaneous Write operation.
When WRITE_MODE is READ_FIRST, the output latches are updated with the data
previously stored in the addressed RAM location and the new data on the DI and DIP
inputs is stored at the address RAM location. When WRITE_MODE is NO_CHANGE, the
data output latches are unaffected by a simultaneous Write operation and retain their
present state.

General Characteristics

e A write operation requires only one clock edge.
* A read operation requires only one clock edge.

¢ Allinputs are registered with the port clock and have a setup-to-clock timing
specification.

e All outputs have a read-through function or one of three read-during-write functions,
depending on the state of the WE pin. The outputs relative to the port clock are
available after the clock-to-out timing interval.

178

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Dual-Port RAM Conflicts and Resolution

¢ Block RAM cells are true synchronous RAMs and do not have a combinatorial path
from the address to the output.

e The ports are completely independent of each other without arbitration. Each port has
its own clocking, control, address, read /write functions, initialization, and data
width.

* Output ports are latched with a self-timed circuit, guaranteeing glitch-free read
operations. The state of the output port does not change until the port executes
another read or write operation.

Functional Compatibility with Other Xilinx FPGA Families

The block RAM on Spartan-3 generation FPGAs is functionally identical to block RAM on
the Xilinx Virtex-1I/ Virtex-1I Pro FPGA families. Consequently, design tools that support
Virtex-1I and Virtex-II Pro FPGA block RAM also support with Spartan-3 generation
FPGAs.

Extended Spartan-3A family FPGAs, while remaining fully backwards compatible with
Spartan-3/3E FPGAs, also add byte-level write enable controls, similar to those found on
Virtex-4 FPGAs. The Spartan-3A DSP FPGAs also include a block RAM output register
similar to those found in the Virtex-4 FPGAs.

Dual-Port RAM Conflicts and Resolution

As a dual-port RAM, the block RAM allows both ports to simultaneously access the same
memory cell. Potentially, conflicts arise under the following conditions:

1. If the clock inputs to the two ports are asynchronous, then conflicts occur if clock-to-
clock setup time requirements are violated.

2. Bothmemory ports write different data to the same RAM location during a valid write
cycle.

3. If a port uses WRITE_MODE=NO_CHANGE or WRITE_FIRST, a write to the port
invalidates the read data output latches on the opposite port.

If Port A and Port B different memory organizations and consequently different widths,
only the overlapping bits are invalid when conflicts occur.

Timing Violation Conflicts

When one port writes to a given memory cell, the other port must not address that memory
cell—either for a write or a read operation—within the clock-to-clock setup window,
which is equivalent to the block RAM minimum clock period (Tgpwy + Tepwi.), specified
in the Spartan-3 generation FPGA family data sheets. Figure 4-19 describes this situation
where both ports operate from asynchronous clock inputs.

Spartan-3 Generation FPGA User Guide www.xilinx.com 179
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

B A B A
[| |
|

aa bb

WE_A

Data_out_A

2222

X
X cc

Data_in_B

|

Il

X |

Address_B >< |
T

I

|

|

wes _/

MEM(aa)= MEM(bb)= MEM(cc)=
3333 4444 2222
Clock-to-clock
setup violation X463_19_020503

Figure 4-19: Clock-to-Clock Timing Conflicts

The first rising edge on CLK_A violates the clock-to-clock setup parameter, because it
occurs too soon after the last CLK_B clock edge. The write operation on port B is valid
because Data_in_B, Address_B, and WE_B all had sufficient setup time before the rising
edge on CLK_B. Unfortunately, the read operation on port A is invalid because it depends
on the RAM contents being written to Address_B and the read clock, CLK_A, happened
too soon after the write clock, CLK_B.

On the second rising edge of CLK_B, there is another valid write operation to port B. The
memory location at address (bb) contains 4444. Data on the Data_out_A port is still invalid
because there has not been another rising clock edge on CLK_A. The second rising edge of
CLK_A reads the new data at location (bb), which now contains 4444. This time, the read
operation is valid because there has been sufficient setup time between CLK_B and
CLK_A.

Simultaneous Writes to Both Ports with Different Data Conflicts

If both ports write simultaneously into the same memory cell with different data, then the
data stored in that cell becomes invalid, as outlined in Table 4-13.

Table 4-13: RAM Conflicts During Simultaneous Writes to Same Address

Input Signals
Port A Port B RAM Contents
WEA | CLKB | DIPA DIA WEB | CLKA | DIPB DIB Parity Data
1 N DIPA | DIA 1 . DIPB | DIB ? ?

Notes:
1. ADDRA=ADDRB, ENA=1, ENB=1, DIPA # DIPB, DIA # DIB, ?=Unknown or invalid data.

180

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Block RAM Design Entry

Write Mode Conflicts on Output Latches

Potential conflicts occur when one port writes to memory and the opposite port reads from
memory. Write operations always succeed, and the write port’s output data latches behave
as described by the port’s WRITE_MODE attribute. If the write port is configured with
WRITE_MODE set to NO_CHANGE or WRITE_FIRST, then a write operation to the port
invalidates the data output latches on the opposite port, as shown in Table 4-14.

Using the READ_FIRST mode does not cause conflicts on the opposite port.

Table 4-14: Conflicts to Output Latches Based on WRITE_MODE
Input Signals Output Signals

Port A Port B Port A Port B
WEA | CLKA | DIPA DIA WEB CLKB DIPB DIB DOPA DOA DOPB DOB
WRITE_MODE_A=NO_CHANGE

1 AN | DIPA | DIA 0 A DIPB | DIB | NoChg | NoChg ? ?
WRITE_MODE_B=NO_CHANGE

0 N | DIPA | DIA 1 N DIPB | DIB ? ? No Chg | No Chg
WRITE_MODE_A=WRITE_FIRST

1 0 DIPA | DIA 0 ™ DIPB DIB DIPA DIA ? ?
WRITE_MODE_B=WRITE_FIRST

0 0 DIPA | DIA 1 N DIPB DIB ? ? DIPB DIB
WRITE_MODE_A=WRITE_FIRST, WRITE_MODE_B=WRITE_FIRST

1 0 DIPA | DIA 1 T DIPB DIB ? ? ? ?

Notes:
1. ADDRA=ADDRB, ENA=1, ENB=1, ?=Unknown or invalid data

Conflict Resolution

There is no dedicated monitor to arbitrate the result of identical addresses on both ports.
The application must time the two clocks appropriately. However, conflicting
simultaneous writes to the same location never cause any physical damage.

Block RAM Design Entry

Various tools help create Spartan-3 FPGA block RAM designs, two of which are the Xilinx
CORE Generator system and VHDL or Verilog instantiation of the appropriate Xilinx
library primitives.

Xilinx CORE Generator System

The Xilinx CORE Generator system provides both a Single Port Block Memory and a Dual
Port Block Memory module generator, as shown in Figure 4-5. Both module generators
support RAM, ROM, and Write Only functions, according to the control signals that are
selected. Any size memory that can be created in the architecture is supported.

Spartan-3 Generation FPGA User Guide www.xilinx.com 181
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

Both modules are parameterizable as with most CORE Generator modules. To create a
module, specify the component name and choose to include or exclude control inputs, and
choose the active polarity for the control inputs. For the Dual-Port Block Memory, once the
organization or aspect ratio for Port A is selected, only the valid options for Port B are
displayed.

Optionally, specify the initial memory contents. Unless otherwise specified, each memory
location initializes to zero. Enter user-specified initial values via a Memory Initialization
File, consisting of one line of binary data for every memory location. A default file is
generated by the CORE Generator system. Alternatively, create a coefficients file (.coe),
which not only defines the initial contents in a radix of 2, 10, or 16, but also defines all the
other control parameters for the CORE Generator system.

The output from the CORE Generator system includes a report on the options selected and
the device resources required. If a very deep memory is generated, some external
multiplexing might be required, and these resources are reported as the number of logic
slices required. In addition, the software reports the number of bits available in block RAM
that are less than 100% utilized. For simulation purposes, the CORE Generator system
creates VHDL or Verilog behavioral models.

¢ CORE Generator: Single-Port Block Memory module (RAM or ROM)
¢ CORE Generator: Dual-Port Block Memory module (RAM or ROM)

VHDL and Verilog Instantiation

VHDL and Verilog synthesis-based designs can either infer or directly instantiate block
RAM, depending on the specific logic synthesis tool used to create the design.

Inferring Block RAM

Some VHDL and Verilog logic synthesis tools, such as the Xilinx Synthesis Tool (XST) and
Synplicity Synplify both infer block RAM based on the hardware described. The Xilinx ISE
Project Navigator includes templates for inferring block RAM in your design. To use the
templates within Project Navigator, select Edit - Language Templates from the menu,
and then select VHDL or Verilog, followed by Synthesis Templates > RAM from the
selection tree. Finally, select the preferred block RAM template.

It is still possible to directly instantiate block RAM, even if portions of the design infer
block RAM.

Instantiation Templates

For VHDL- and Verilog-based designs, various instantiation templates are available to
speed development. Within the Xilinx ISE Project Navigator, select Edit - Language
Templates from the menu, and then select VHDL or Verilog, followed by Component
Instantiation > Block RAM from the selection tree.

The appendices include example code showing how to instantiate block RAM in both
VHDL and Verilog.

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template must be inserted within the VHDL design file. The port map of
the architecture section must include the signal names used in the application.

The SelectRAM_Ax templates (with x =1, 2, 4, 9, 18, or 36) are single-port modules and
instantiate the corresponding RAMB16_Sx module.

182

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/ip_documentation/sp_block_mem.pdf
http://www.xilinx.com/support/documentation/ip_documentation/dp_block_mem.pdf
http://www.xilinx.com

XX"JNX@ Block RAM Applications

SelectRAM_Ax_By templates (withx=1,2,4,9,18,or36 andy =1, 2, 4, 9, 18, or 36) are
dual-port modules and instantiate the corresponding RAMB16_Sx_Sy module.

Initialization in VHDL or Verilog Codes

Block RAM structures can be initialized in VHDL or Verilog code for both synthesis and
simulation. For synthesis, the attributes are attached to the block RAM instantiation and
are copied within the EDIF output file compiled by Xilinx tools. The VHDL code
simulation uses a generi ¢ parameter to pass the attributes. The Verilog code simulation
uses a def par am parameter to pass the attributes.

The VHDL and Verilog examples in the appendices illustrate these techniques.

Block RAM Applications

Typically, block RAM is used for a variety of local storage applications. However, the
following section describes additional, perhaps less obvious block RAM capabilities,
illustrating some powerful capabilities to spur the imagination.

Creating Larger RAM Structures

Block SelectRAM columns have specialized routing to allow cascading blocks with
minimal routing delays. Wider or deeper RAM structures incur a small delay penalty. For
examples of how to create wider block memories, see application note

XAPP229: Wider Block Memories, which includes a reference design.

Block RAM as Read-Only Memory (ROM)

By tying the write enable input Low, block RAM optionally functions as registered block
ROM. The ROM outputs are synchronous and require a clock input and perform exactly

like a block RAM read operation. The ROM contents are defined by the initial contents at
design time.

After design compilation, the ROM contents can also be updated using the Data2BRAM
utility described below.

FIFOs

First-In, First-Out (FIFO) memories, also known as elastic stores, are perhaps the most
common application of block RAM, other than for random data storage. FIFOs typically
resynchronize data, either between two different clock domains, or between two parts of a
system that have different data rates, even though they operate from a single clock. The
Xilinx CORE Generator system provides two parameterizable FIFO modules, one a
synchronous FIFO where both the read and write clocks are synchronous to one another
and the other an asynchronous FIFO where the read and write clocks are different.

Application note XAPP261 demonstrates that the FIFO read and write ports can be
different data widths, integrating the data width converter into the FIFO.

Application note XAPP291 describes a self-addressing FIFO that is useful for throttling
data in a continuous data stream.

¢ CORE Generator: Synchronous FIFO module
e CORE Generator: Asynchronous FIFO module
e XAPP258: FIFOs Using Block RAM, includes reference design

Spartan-3 Generation FPGA User Guide www.xilinx.com 183
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/sync_fifo.pdf
http://www.xilinx.com/support/documentation/ip_documentation/async_fifo.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp258.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp229.pdf
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

e XAPP261: Data-Width Conversion FIFOs Using Block RAM Memory, includes reference
design

e XAPP291: Self-Addressing FIFO

Storage for Embedded Processors

Block RAM also enables efficient embedded processor applications. RAM performs a
variety functions in an embedded processor such as those listed below.

* Register file for processor register set, although for some processors, distributed RAM
might be a preferred solution.
e Stack or LIFO for stack-based architectures and for call stacks.

¢ Fast, local code storage. The fast access time to internal block RAM significantly
boosts the performance of embedded processors. However, on-chip storage is limited
by the number of available block RAMs.

¢ Large dual-ported mailbox memory shared with external processor or DSP device.

e Temporary trace buffers (see “Circular Buffers, Shift Registers, and Delay Lines”) to
ease and enhance application debugging.

Updating Block RAM/ROM Content by Directly Modifying Device
Bitstream

In a typical design flow, the initial contents of block RAM/ROM is defined at design time
and compiled into the device bitstream that is downloaded to and configures a Spartan-3
FPGA.

However, for some applications, the actual memory contents might not be known when
the bitstream is created or might change later. One example is if a processor embedded
with the Spartan-3 FPGA uses block RAM to store program code. To avoid recompiling the
FPGA design just to incorporate a code change, Xilinx provides a utility called Data2MEM
that updates an existing FPGA bitstream with new block RAM/ROM contents.

As shown in Figure 4-20, the inputs to Data2MEM include the new RAM contents—
typically the output from the embedded processor compiler/linker, the present FPGA
bitstream, and a file that describes the mapping between the system address space and the
addressing used on the individual block RAMs and the physical location of each block
RAM.

Present FPGA Bitstream

(. bi t file))
New Block RAM Data ngplng getween gyletenll
i i ress Space an oc
(elf Cg';npr'lg%'}'i?éer output, RAM. Block RAM Location
) (. brmfile)
Data2MEM
Utility

New FPGA Bitstream with
Updated Block RAM Contents

(. bi t file) UG331_c4_14_ 111006

Figure 4-20: The Data2BRAM Utility Updates Block RAM Contents in a Bitstream

184

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://toolbox.xilinx.com/docsan/xilinx10/books/docs/d2m/d2m.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp261.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp291.pdf
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/d2m/d2m.pdf
http://www.xilinx.com

XX"JNX@ Block RAM Applications

Two Independent Single-Port RAMs Using One Block RAM

Some applications might require more single-port RAMs than there are RAM blocks on the
device. However, a simple trick allows a single block RAM to behave as if it were two,
completely independent single-port memories, effectively doubling the number of RAM
blocks on the device. The penalty is that each RAM block is only half the size of the original
block, up to 9K bits total.

Figure 4-21 shows how to create two independent single-port RAMs from one block RAM.
Tie the most-significant address bit of one port High and the most-significant address bit of
the other port Low. Both ports evenly split the available RAM between them.

T— ADDR[m]
 —»| ADDR[m -1:0]
—»| DIA DOA (—m
—| WEA
—| ENA

SSRA
CLKA

Single-Port A

Single-Port B

—»| DB DOB
—| ADDR[n-1:0]

ADDR([n]
<£ X463_21_062503

Figure 4-21: One Block RAM Becomes Two Independent Single-Port RAMs

Both ports are independent, each with its own memory organization, data inputs and
outputs, clock input, and control signals. For example, Port A could be 256x36 while Port
B is 2Kx4.

Figure 4-21 splits the available memory evenly between the two ports. With additional
logic on the upper address lines, the memory can be split into other ratios.

Spartan-3 Generation FPGA User Guide www.xilinx.com 185
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM

SXILINX®

A 256x72 Single-Port RAM Using One Block RAM

Figure 4-22 illustrates how to create a 256-deep by 72-bit wide single-port RAM using a
single block RAM. As in the previous example, the memory array is split into halves. One
half contains the lower 36 bits, and the upper half stores the upper 36 bits, effectively
creating a 72-bit wide memory.

L ADDR8]
ADDR[7:0] ————| ADDRA[7:0]
DI[71:36] =f——®|DIA
WE WEA
ENA ENA
SSR SSRA
CLK CLKA
— |
—
CLKB
SSRB
ENB
WEB
DI[35:0] =—f—————|DIB
| ADDRB[7:0]
r ADDRBI[8]

DOA

DOB

— DO[71:36]

— DO[35:0]

X463_22_062403

Figure 4-22: A 256x72 Single-Port RAM Using a Single Block RAM

The most-significant address line, ADDR[8] is tied High on one port and Low on the other.
Both ports share the same the address inputs, control inputs, and clock input.

186

www.xilinx.com

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Block RAM Applications

Circular Buffers, Shift Registers, and Delay Lines

Circular buffers are used in a variety of digital signal processing applications, such as finite
impulse response (FIR) filters, multi-channel filtering, plus correlation and cross-
correlation functions. Circular buffers are also useful simply for delaying data to
resynchronize it with other parts of a data path.

Figure 4-23 conceptually describes how a circular buffer operates. Data is written into the
buffer. After n clock cycles, that same data is clocked out of the buffer while new data is

written to the same location.

ouT

ﬁa X463_20_020503

Figure 4-23: Circular Buffer

Figure 4-24 describes the hardware implementation to create a circular buffer using block
RAM. A modulo-n counter drives the address inputs to a single-port block RAM. For
simple data delay lines, the block RAM writes new data on every clock cycle.

The circular buffer also reads the delayed data value on every clock edge. Using block
RAM’s READ_FIRST write mode, both the incoming write data and the outgoing read
data use the same clock input and the same clock edge, both simplifying the design and
improving overall performance. The actual write and read behavior is described in
Figure 4-17.

DI DO —=[ouT)>
| ADDR

WE
EN

— SSR
r CLK

Counter

WRITE_MODE=READ_FIRST

X463_24_020503

Figure 4-24: Circular Buffer Implementation Using Block RAM and Counter

In Figure 4-24, the width of the IN and OUT data ports is identical, although they do not
need be. Using dual-port mode, the ports can be different widths. Figure 4-25 shows an
example where byte-wide data enters the block RAM and a 32-bit word exits the block
RAM. Furthermore, the data can be delayed up to 2,048 byte-clock cycles.

Spartan-3 Generation FPGA User Guide www.xilinx.com 187
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

Byte 3
Byte 2
Byte 1
Byte O

@

Block RAM
Circular Buffer/
Delay Buffer

| Byte3 [Byte2 [Byte1 [Byteo |

X463_25_020503

Data delayed up to
2,048 clock cycles

Figure 4-25: Merge Circular Buffer and Port-Width Converter into a Single Block
RAM

A single block RAM is configured as dual-port memory. The incoming byte-wide data
feeds Port B, which is configured as a 2Kx9 memory. The outgoing 32-bit data appears on
Port A and consequently, Port A is configured as a 512x36 memory.

512x36

-n p ADDRA[8:0]

EN DOA[31:0] [—#»
< | WEA

ENA

CLKA

P | S——

CLKB

ENB
WEB

»| DIB[7:0]

TC »| ADDRB[11:2]
4 »| ADDRBI[L:0]

Lo 2Kx9

X463_26_062503

Figure 4-26: Incoming Byte-Wide Data is Delayed 4n Clock Cycles, Converted to
32-Bit Data

Manipulating the addresses that feeds both ports creates the 4n-byte clock delay. Every
32-bit output word requires four incoming bytes. Consequently, a divide-by-4 counter
feeds the two lower address bits, ADDRB[1:0]. After four bytes are stored, a terminal
count, TC, from the lower counter enables Port A plus a separate divide-by-n counter. The
enable signal latches the 32-bit output data on Port B and increments the upper counter.
The combination of the divide-by-4 counter and the divide-by-n counter effectively create
a divide-by-4n counter. The output from the divide-by-n counter forms the more-
significant address bits to Port B, ADDRB[11:2] and the entire address to Port A,
ADDRA[9:0].

188

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Block RAM Applications

Fast Complex State Machines and Microsequencers

Because block RAMs can be configured with any set of initial values, they also make
excellent dual-ported registered ROMs that can be used as state machines. For example, a
128-state, 8-way branch finite state machine with 38 total state outputs, fits in a single block
RAM, as shown in Figure 4-27.

L\ [\
_ 7 bits 1Kx9 7+2 bits
o —/| State Machine
‘g or Sequencer
O
<
% 7 State Bits
& 38 Output Bits

256x36
[\
7 bits State Outputs 36 bits >

—— —
=g
[oXp=]
8 § X463_27_062503

Figure 4-27: 128-State Finite State Machine with 38 Outputs in a Single Block RAM

A dual-port block RAM is divided into two completely independent half-size, single-port
memories by tying the most-significant address bit of one port High and the other one
Low, similar to Figure 4-21. Port A is configured as 2Kx9 but used as a 1Kx9 single-port
ROM. Seven outputs feed back as address inputs, stepping through the 128 states. The
1Kx9 ROM has ten total address lines, seven of which are the current-state inputs and the
remaining three address inputs determine the eight-way branch. Any of the 128 states can
conditionally branch to any set of eight new states, under the control of these three address
inputs.

Port B is configured as 512 x 36 and used as a 256 x 36 single-port ROM. It receives the same
7-bit current-state value from Port A, and drives 36 outputs that can be arbitrarily defined
for each state. However, due to the synchronous nature of block ROM, the 36 outputs from
the 256x36 ROM are delayed by one clock cycle. The eighth address input can invoke an
alternate definition of the 36 outputs. Two additional state bits are available from the 1Kx9
block, but are not delayed by one clock.

This same basic architecture can be modified to form a 256-state finite state machine with
four-way branch, or a 64-state state machine with 16-way branch.

If additional branch-control inputs are needed, they can be combined using an input
multiplexer. The advantages of this design are its low cost (a single block RAM), its high
performance (125+ MHz), the absence of layout or routing issues, and complete design
freedom.

Spartan-3 Generation FPGA User Guide www.xilinx.com 189
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM

SXILINX®

Fast, Long Counters Using RAM

A counter is an example of a simple state machine, where the next state depends only on
the current state. A binary up counter, for example, simply increments the current state to
create the next state. Figure 4-28 shows a 20-bit binary up counter, with clock enable and
synchronous reset, implemented in a single block RAM.

| 1Kx18
TC —— ADDRBJ[9:0]
DOA[9:0] P COUNT[19:10]
CNT[9:0] |—pp DOA[10] TERM_COUNT
DOA[17:11] f=—=<
WEA (unused)
EN :D—' ENA
SSR SSRA
CLK CLKA
— | !
— = -
TC _J CLKB
ENA EEEB]:I'erminal Count o
. rom Port B enables
CNT[9:0] ——» WEB Port A every 1024
J (unused) | clock cycles.
DOB[17:11]
DOBJ[10]
EN DOBJ[9:0] = COUNT[9:0]

ADDRB[9:0]
| 1Kx18

UG331_c4_15_120406

Figure 4-28: Two 10-Bit Counters Create a 20-Bit Binary Counter Using a Single Block RAM

A 20-bit binary counter can be constructed from two identical 10-bit binary counters, with
the lower 10-bit counter enabling the upper 10-bit counter every 1024 clock cycles. In this
example, Port B is a 1Kx18 ROM (WEB is Low) that forms the lower 10-bit counter. The 10
less-significant data outputs, representing the current state, connect directly to the 10
address inputs, ADDRB[9:0]. The next state is looked up in the ROM using the current state
applied to the address pins. The 11th data bit, D[10], forms the terminal-count output from
the counter. In this example, the upper seven data bits, DOB[17:11] are unused.

The next-state logic for a binary counter appears in Table 4-15. The counter starts at state
O0—or the value specified by the INIT or SRVAL attributes—and counts through to 0x3FF
(1023 decimal) at which time the terminal count, D[10], is active and the counter rolls over
back to 0.

190

www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Block RAM Applications

Table 4-15: Next-State Logic for Binary Up Counter

Current State State Outputs Next State
TC COUNT
ADDRJ[9:0] D[9:0]
(Hex) D[10] (Hex)
0 0 1
1 0 2
2 0 3
3FFF 1 0

Port A is configured nearly identically to Port B, except that Port A is enabled by the
terminal count output from Port B. The 10-bit counter in Port A has the identical counting
pattern as Port B, except that it increments at 1/1024th the rate of Port B.

With a simple modification, the 20-bit up counter becomes an 18-bit up/down counter.
Using the most-significant address input as a direction control, the same basic counter
architecture either increments or decrements its count, as shown in Table 4-16. In this
example, the counter increments when the Up/Down control is Low and decrements
when High. The ROM is split between the incrementing and decrementing next-state logic.

Table 4-16: Next-State Logic for Binary Up/Down Counter
Up/Down Control Present State State Outputs Next State
TC COUNT
ADDRJ[8:0] D[9:0]
ADDR[9] (Hex) D[10] (Hex)
0 0 0 1
(Up)
1 0 2
2 0 3
1FFF 1 0
1 1FFF 0 1FFE
(Down)
1FFE 0 1FFD
1FFD 0 1FFC
0 1 1FFF

Various other counter implementations are possible including the following:

¢ Binary up and up/down counters of various modulos determined by the
combinations of the modulos of the counters implemented in Port A and Port B.

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

www.xilinx.com 191

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

¢ Counters with other incrementing and decrementing patterns including fast gray-
code counters.

e A six-digit BCD counter in one block ROM, configured as 512x36, plus one CLB.

Four-Port Memory

Each block RAM is physically a dual-port memory. However, due to the block RAM'’s fast
access performance, it is possible to create multi-port memories by time-division
multiplexing the signals in and out of the memory. A block RAM with some additional
logic easily supports up to four ports but at the cost of additional access latency for each
port. The following application note provides additional details and a reference design.

e XAPP228: Quad-Port Memories in Virtex Devices, includes reference design

Content-Addressable Memory (CAM)

Content-Addressable Memory (CAM), sometimes known as associative memory, is used

in a variety of networking and data processing applications. In most memory applications,
content is referenced by an address. In CAM applications, the content is the driving input
and the output indicates whether or not the content exists in memory and, if so, provides
a reference to its location.

An easy way to envision how a CAM operates is to think of an index to a book. Looking up
an item, i.e., the content, first determines whether the item exists in the index, and if it does,
provides a reference to its location, i.e., the page number of where the item can be found.
e CORE Generator: Content-Addressable Memory module

e XAPP260: Using Block RAM for High-Performance Read/Write CAMs

o XAPP201: An Overview of Multiple CAM Designs, written for Virtex/Virtex-E and

Spartan-1I/Spartan-IIE architectures but provides a useful overview to the techniques
involved

Implementing Logic Functions Using Block RAM

Inside every Spartan-3 FPGA logic cell, there is a four-input RAM/ROM called a look-up
table or LUT. The LUT performs any possible logic function of its four inputs and forms the
basis of the Spartan-3 logic architecture.

Another possible application for block RAM is as a much larger look-up table. In one of its
organizations, a block RAM—used as ROM in this case—has 14 inputs and a single output.
Consequently, block RAM is capable of implementing any possible arbitrary logic function
of up to 14 inputs, regardless of the complexity and regardless of inversions. There are a
few restrictions, however.

¢ There cannot be any asynchronous feedback paths in the logic, such as those that
create latches.

e The logic output must be synchronized to a clock input. Block RAM does not support
asynchronous read outputs.

If the logic function meets these requirements, then a single block RAM implements the
following functions.

* Any possible Boolean logic function of up to 14 inputs.

¢ Nine separate arbitrary Boolean logic functions of 11 inputs, as long as the inputs are
shared.

192 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/application_notes/xapp228.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cam.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp260.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp201.pdf
http://www.xilinx.com

XX"JNX@ Block RAM Applications

¢ Various other combinations are possible, but might have restrictions to the number of
inputs, the number of shared inputs, or the complexity of the logic function.

Due to the flexibility and speed of CLB logic, block RAM might not be faster or more
efficient for simple wide functions like an address decoder, where multiple inputs are
ANDed together. Block RAM is faster and more efficient for complex logic functions, such
as majority decoders, pattern matching, and correlators.

Fuzzy Pattern Matching Circuit Example

For example, Figure 4-29 illustrates a fuzzy pattern matching circuit that detects both exact
matches and those patterns that are close enough. Each incoming bit is matched against the
required MATCH pattern. Then, any “don’t care” bits are masked off, indicating that the
specific bit should always match. Then, the number of matching bits is counted and
compared against an activation threshold. If the number of matching bits is greater than
the activation threshold, then the input data mostly matches the required pattern and the

MATCH output goes High.
Compare bit to MASK any don't
MATCH pattern care bits

MATCH
% Is number of
< matching bits
o greater than
e ?
= threshold?
Number of bits
that must match X463_29_040403

Figure 4-29: A 14-Input Fuzzy Pattern Matching Circuit Implemented in a Single
Block RAM

If the application requires a new matching pattern or different logic function, it could be
loaded via the second memory port.

Implemented in CLB logic, this function would require numerous logic cells and multiple
layers of logic. However, because the MATCH, MASK, and Threshold values are known in
advance, the function can be pre-computed and then stored in block RAM. For each input
condition, i.e., starting at address 0 and incremented through the entire memory, the
output condition can be precomputed. A 14-input fuzzy pattern matching circuit requires
a single block RAM and performs the operation in a single clock cycle.

Mapping Logic into Block RAM Using MAP —bp Option

The Xilinx ISE software does not automatically attempt to map logic functions into block
RAM. However, there is a mapping option to aid the process.

The block RAM mapping option is enabled when using the VAP —bp option. If so enabled,
the Xilinx ISE logic mapping software attempts to place LUTs and attached flip-flops into
an unused single-output, single-port block RAM. The final flip-flop output is required as

block RAMs have a synchronous, registered output. The mapping software packs the flip-

Spartan-3 Generation FPGA User Guide www.xilinx.com 193
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

flop with whatever LUT logic is driving it. No register is packed into block RAM without
LUT logic, and vice versa.

To specify which register outputs are converted to block RAM outputs, create a file
containing a list of the net names connected to the register output(s). Set the environment
variable XI L_MAP_BRAM FI LE to the file name, which instructs the mapping software to
use this file. The MAP program looks for this environment variable whenever the -bp
option is specified. Only those output nets listed in the file are converted into block RAM
outputs.

e PCs:
set XIL_MAP_BRAM FI LE=fil e_nane
e Workstations:
setenv XIL_MAP BRAM FI LE fil e_nane

Waveform Storage, Function Tables, Direct Digital Synthesis (DDS) Using
Block RAM

Another powerful block RAM application is waveform storage, including function tables
such as trigonometric functions like sine and cosine. Sine and cosine form the backbone of
other functions such as direct digital synthesis (DDS) to generate output waveforms. The
Xilinx CORE Generator system provides parameterizable modules for both:

¢ CORE Generator: Sine/Cosine Look-Up Table module
¢ CORE Generator: Direct Digital Synthesizer (DDS) module

Another potential application of waveform storage is in various signal companders
(compressors/expanders) and normalization circuits used to boost important parts of a
signal within the available bandwidth. Examples include converters between linear data,
u-Law encoded data, and A-Law encoded data commonly used in telecommunications.

The dual-port nature of block RAM not only facilitates waveform storage, it also enables an
application to update the waveform, either with a completely new waveform or with
corrected or normalized waveform data. In the example shown in Figure 4-30, Port A
initially contains the currently active waveform. The application can load a new waveform
on Port B.

_ PortA
Active Waveform

DOA [—

dll

—| ADDRA

—-(DIB
—p-(ADDRB
Port B

Update Waveform xass_30_os2503
Figure 4-30: Dual-Port Block RAM Facilitates Waveform Storage and Updates

194

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/ip_documentation/sincos.pdf
http://www.xilinx.com/support/documentation/ip_documentation/dds.pdf
http://www.xilinx.com

XX"JNX@ Related Materials and References

As in real-world engineering, sometimes it is faster to look up an answer than deriving it.
The same is true in digital designs. Block RAM is also useful for storing pre-computed
function tables where the output, y, is a function of the input, X, or y=f (X) .

For example, instead of creating the CLB logic that implements the following polynomial
equation, the function can be precomputed and stored in a block RAM.

Y=A3 -Bx2+ XX +D

The values A, B, C, and Dare all constants. The output, y, depends only on the input, X. The
output value can be precomputed for each input value of x and stored in memory. There
are obvious limitations as the function might not fit in a single logic block either because of
the range of values for X, or the magnitude of the output, y. For example, a 512x36 block
ROM implements the above equation for input values between 0 and 511. The range of X is
limited by its exponential effect on y. With x at its maximum value for this specific
example, y requires at least 28 output bits.

Some other look-up functions possible in a single block RAM/ROM include the following:

e Various complex arithmetic functions of a single input, including mixtures of
functions such as log(x), square-root(x). Multipliers of two values are possible but are
typically limited by the number of block RAM inputs. The Spartan-3 FPGA embedded
18x18 multipliers are a better solution for pure multiplication functions.

e Two independent 11-bit binary to 4-digit BCD converters with the block ROM
configured as 1Kx18. The least-significant bit (LSB) of each converter bypasses the
ROM as the converted result is the same as the original value, i.e., the LSB indicates
whether the value is odd or even.

¢ Two independent 3-digit BCD to 10-bit binary converters with the block ROM
configured as 2Kx9 and the LSBs bypass the converters.

* Sine-cosine look-up tables using one port for sine and the other one for cosine with 90
degree-shifted addresses, 18-bit amplitude, and 10-bit angular resolution.

e Two independent 10-bit binary to three-digit, seven-segment LED output converter
with the block ROM configured as 1Kx18. Leading zeros are displayed as blanks.
Because input values are limited to 1023, the LED digits display from “0” to “3FF”.
Consequently, the logic for the most-significant digit requires only four inputs
(segment a=d=g, segment f is always High).

Related Materials and References

* Creative Uses of Block RAM by Peter Alfke, Xilinx, Inc.

® The Myriad Uses of Block RAM by Jan Gray, Gray Research, LLC.
http:/ /www.fpgacpu.org/usenet/bb.html

e Spartan-3A and Spartan-3A DSP FPGA Libraries Guide for HDL Designs, by Xilinx, Inc.
http:/ /www.xilinx.com/support/documentation/dt_ise.htm
This document is also located within Project Navigator by selecting Help->Software
Manuals. When the Acrobat document appears, click on a Libraries Guide from the
table of contents on the left.

Conclusion
The Spartan-3 generation FPGA’s abundant, fast, and flexible block RAMs provide
invaluable on-chip local storage for scratchpad memories, FIFOs, buffers, look-up tables,
Spartan-3 Generation FPGA User Guide www.xilinx.com 195

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/white_papers/wp335.pdf
http://www.fpgacpu.org/usenet/bb.html
http://www.xilinx.com/support/documentation/dt_ise.htm
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

and much more. Using unique capabilities, block RAM implements such functions as shift
registers, delay lines, counters, and wide, complex logic functions.

Block RAM is supported in applications using the broad spectrum of Xilinx ISE
development software, including the CORE Generator system and can be inferred or
directly instantiated in VHDL or Verilog synthesis designs.

Appendix A: VHDL Instantiation Example

The following VHDL instantiation example XC35_RAMB_1_PORT uses the

Sel ect RAM A36. vhd VHDL template. This and other templates are available for
download from the following Web link. The following example is a VHDL code snippet
and will not compile as is.

e xapp463_vhdl.zip

-- Mdul e: XC3S_RAMB_1_ PORT

-- Description: 18Kb Bl ock Sel ect RAM exanpl e
-- Single Port 512 x 36 bits

-- Use tenpl ate “Sel ect RAM_A36. vhd"

-- Device: Spartan-3 Famly
library | EEE;

use | EEE. std_| ogi c_1164. al | ;
-- pragma translate_off
library UNI SI M

use UNI SI M VCOVPONENTS. ALL;
-- pragma translate_on

entity XC3S_RAMB 1 PORT is

port (

DATA IN in std_|logic_vector (35 downto 0);
ADDRESS in std_l ogic_vector (8 downto 0);
ENABLE in std_| ogic;

WRI TE_EN in std_| ogic;

SET_RESET in std_|ogic;

CLK : in std_l ogic;

DATA_QUT : out std_logic_vector (35 downto 0)

)
end XC3S_RAMB_1 PORT;

architecture XC3S_RAMB_1 PORT_arch of XC3S_RAMB 1 PORT is

-- Conponents Decl arations:
conponent BUFG
port (
I @ in std_logic;
O: out std_logic
)
end comnponent;
conmponent RAMB16_S36
-- pragma translate_off

generic (

-- "Read during Wite" attribute for functional sinmulation

WRI TE_MODE : string := "READ_FI RST" ; -- WRITE_FIRST(default)/ READ_FIRST/
NO_CHANGE

-- Qutput value after configuration
INIT : bit_vector(35 downto 0) := X'000000000";
-- Qutput value if SSR active

196

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

https://secure.xilinx.com/webreg/clickthrough.do?cid=102524
http://www.xilinx.com

XX"JNX@ Appendix A: VHDL Instantiation Example

SRVAL : bit_vector (35 downto 0) := X"'012345678"

-- Initialize parity menory content

INl TP_00 : bit_vector (255 downto 0) :=

X" 00FEDCBA9876543210"

INITP_O1 : bit_vector(255 downto 0) :=

X" 00"
('snip)

INI TP_O7 : bit_vector(255 downto 0) :=

X" 00"

-- Initialize data nmenory content

INIT_0O0 : bit_vector(255 downto 0) :=

X"00FEDCBA9876543210"

INIT_O1 : bit_vector (255 downto 0) :=

X" 00"
('snip)

INIT_3F : bit_vector (255 downto 0) :=

X" 00"

)

-- pragma translate_on

port (
DI in std_|logic_vector (31 downto 0);
Dl P in std_|logic_vector (3 downto 0);
ADDR in std_|logic_vector (8 downto 0);
EN : in STD_LQOA G
VE in STD LOG G
SSR in STD LOG C
CLK in STD LOA C,
DO : out std_logic_vector (31 downto 0);
DOP : out std_logic_vector (3 downto 0)

)
end conponent;
-- Attribute Declarations
attribute WRITE_MODE : string;
attribute INIT: string
attribute SRVAL: string
-- Parity nenory initialization attributes
attribute INITP_00: string
attribute INITP_O1l: string
(snip)
attribute INITP_07: string
-- Data nenory initialization attributes
attribute INIT_00: string
attribute INIT_O1: string
(snip)
attribute INIT_3F: string
-- Attribute "Read during Wite node" = WRI TE_FI RST(default)/ READ_FI RST/
NO_CHANGE
attribute WRI TE_MODE of U RAMB16_S36: |abel is "READ FI RST";
attribute INIT of U RAMB16_S36: |abel is "000000000";
attribute SRVAL of U RAMB16_S36: |abel is "012345678";
-- RAMB16 nenory initialization for Alliance
-- Default value is "0" / Partial initialization strings are padded
-- With zeros to the left
attribute INITP_00 of U RAMB16_S36: |abel is
" 00FEDCBA9876543210"
attribute INITP_O01 of U RAMB16_S36: |abel is
" 00"
('snip)
attribute INITP_07 of U RAMB16_S36: |abel is
" 00"

attribute INIT_00 of U RAMB16_S36: |abel is

Spartan-3 Generation FPGA User Guide www.xilinx.com 197
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM

SXILINX®

"00FEDCBA9876543210" ;

attribute INNT_01 of U RAMB16_S36: |abel is

" 00" ;
(snip)

attribute INNT_3F of U RAMB16_S36: |abel is

" 00" ;

-- Signal Declarations:
-- signal VCC: std_logic;
-- signal G\D : std_logic;
signal CLK BUFG std_l ogic;
signal | NV_SET_RESET : std_logic;
begi n
-- VCC <= "1";
-- G\D <="0";
-- Instantiate the clock buffer
U BUFG BUFG
port map (

| => CLK,

O => CLK_BUFG

-- Use of the free inverter on SSR pin
I NV_SET_RESET <= NOT SET_RESET;

-- Block Sel ect RAM I nstantiation
U_RAMB16_S36: RAMB16_S36

port map (
Dl => DATA IN (31 downto 0), --insert 32 bits data-in bus (<31 downto 0>)
DIP => DATA_ IN (35 downto 32), --insert4 bits parity data-in bus (or <35
- downto 32>)
ADDR => ADDRESS (8 downto 0), -- insert 9 bits address bus
EN => ENABLE, -- insert enable signal
VE => WRI TE_EN, -- insert write enable signal
SSR => | NV_SET_RESET, -- insert set/reset signal
CLK => CLK BUFG -- insert clock signal
DO => DATA QUT (31 downto 0), --insert 32 bits data-out bus (<31 downto 0>)
DOP => DATA QUT (35 downto 32) --insert 4 bits parity data-out bus (or <35
-- downto 32>)
)
end XC3S_RAMB_1_PORT_ar ch;
198 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Appendix B: Verilog Instantiation Example

Appendix B: Verilog Instantiation Example

The following Verilog instantiation example XC35_RAMB_1_PORT uses the

Sel ect RAM_A36. v Verilog template. This and other templates are available for
download from the following Web link. The following example is a Verilog code snippet
and will not compile as is.

e xapp463_verilog.zip

/1 Modul e: XC3S_RAMB_1_ PORT

/1 Description: 18Kb Bl ock Sel ect RAMI | exanple
/1 Single Port 512 x 36 bits

/'l Use tenplate "Sel ect RAM A36. v"

/1

/'l Device: Spartan-3 Fanily

Jf = e i

modul e XC3S_RAMB_1_PORT (CLK, SET_RESET, ENABLE, WRI TE_EN, ADDRESS, DATA IN,
DATA_OUT) ;

i nput CLK, SET_RESET, ENABLE, WRI TE_EN,
input [35:0] DATA IN,
i nput [8:0] ADDRESS;
out put [35:0] DATA _OUT;
wire CLK BUFG | NV_SET_RESET;
//Use of the free inverter on SSR pin
assign | NV_SET_RESET = ~SET_RESET;
/1 initialize block ramfor sinulation
def param
//"Read during Wite” attribute for functional sinmulation
U_RAMB16_S36. WRI TE_MODE = “READ_FI RST", //WRITE_FIRST(default)/ READ_FIRST/
NO_CHANGE
//Qutput value after configuration
U RAMB16_S36. I NIT = 36' h000000000,
//Qutput value if SSR active
U _RAMB16_S36. SRVAL = 36' h012345678,
/llnitialize parity nenmory content
U RAMB16_S36. I NI TP_00 =
256' h0123456789ABCDEF00,
U RAMB16_S36. I NI TP_ 01 =
256' h00,
('sni p)
U RAMB16_S36. I NI TP_07 =
256' h00,
/llnitialize data menory content
U RAMB16_S36. I NI T_00 =
256' h0123456789ABCDEF00,
U RAMB16_S36. INIT_01 =
256' h00,
(sni p)
U RAMB16_S36. I NI T_3F =
256' h00;
/llnstantiate the clock Buffer
BUFG U BUFG (.I(CLK), .Q(CLK_BUFG);
/1Bl ock Sel ect RAM | nstanti ation
RAMB16_S36 U RAMB16_S36 (
. DI (DATA IN31:0]),
. DI P(DATA_| N- PARI TY[35: 32]),
. ADDR(ADDRESS) ,
. EN(ENABLE) ,
. VE(WRI TE_EN) ,
. SSR(I NV_SET_RESET),
. CLK(CLK_BUFG) ,
. DO(DATA_QUT[31:0]),
. DOP(DATA_OUT- PARI TY[35: 32]));
/1 synthesis attribute declarations

Spartan-3 Generation FPGA User Guide www.xilinx.com 199
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=102525
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 4: Using Block RAM XX"JNX@

/* attribute

WRI TE_MODE " READ_FI RST"

I'Nl' T "000000000"

SRVAL "012345678"

I Nl TP_00

"0123456789ABCDEF00"

I NI TP_O1

" 00"
(snip)

I NI TP_O7

" 00"

I' NI T_0O0

"0123456789ABCDEF00"

INIT_O1

" 00"
('sni p)

INIT_3F

" 00"

*/

endnodul e

200

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

&7 XILINX®

Chapter 5

Using Configurable Logic Blocks (CLBs)

CLB Overview

The Configurable Logic Blocks (CLBs) constitute the main logic resource for implementing
synchronous as well as combinatorial circuits. Each CLB contains four slices, and each slice
contains two Look-Up Tables (LUTs) to implement logic and two dedicated storage
elements that can be used as flip-flops or latches. The LUTs can be used as a 16x1 memory
(RAM16) or as a 16-bit shift register (SRL16), and additional multiplexers and carry logic
simplify wide logic and arithmetic functions. Most general-purpose logic in a design is
automatically mapped to the slice resources in the CLBs. The details of the CLB resources
are helpful when estimating the number of resources required for an application or when
optimizing a design to the architecture.

CLB Array

The CLBs are arranged in a regular array of rows and columns as shown in Figure 5-1.
Each density varies by the number of rows and columns of CLBs (see Table 5-1).

/
R -
/ e _ . __°__°* __°_
4 |1 I |
// — I] XOY3 || X1Y3 |lI| X2Y3 || X3Y3 |l e e e
Yz L1 I |
1 | I |
// 1 |] XOY2 || X1Y2 ||| X2Y2 || X3Y2 || e e e
/ [| S | SN)| S S—

7 e I e o (L e T [
Sp&frtan-3E — : X0Y1 || X1Y1 ” X2Y1 || X3Y1 : ooo
/ FPGA 1 I |
/ — 1| xovo || xayo ||| x2vo || x3Y0 || eee

N) W | IS (1) I | B
A
/‘III\\IIIIIIOlelllll see

/

CLB

\

Slice

Figure 5-1: CLB Locations

DS312-2_31_021205

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

www.xilinx.com

201

http://www.xilinx.com

Chapter 5: Using Configurable Logic Blocks (CLBs) XX"JNX@

Table 5-1: CLB Resources

Device CLB CLB CLB Slices !_UTs / Equ_ivalent RAM16 / Distribu_ted
Rows | Columns Total Flip-Flops | Logic Cells SRL16 RAM Bits
Spartan®-3A DSP FPGA CLB Resources
XC3SD1800A 88 48 4,160 16,640 33,280 37,440 16,640 266,240
XC3SD3400A 104 58 5,968 23,872 47,744 53,712 23,872 381,952

Spartan-3A/3AN FPGA CLB Resources

XC3S50A /AN 16 12 176 704 1,408 1,584 704 11,264
XC3S200A /AN 32 16 448 1,792 3,584 4,032 1,792 28,672
XC35400A /AN 40 24 896 3,584 7,168 8,064 3,584 57,344
XC3S700A /AN 48 32 1,472 5,888 11,776 13,248 5,888 94,208

XC3S1400A /AN 72 40 2,816 11,264 22,528 25,344 11,264 180,224
Spartan-3E FPGA CLB Resources

XC3S100E 22 16 240 960 1,920 2,160 960 15,360

XC3S250E 34 26 612 2,448 4,896 5,508 2,448 39,168

XC3S500E 46 34 1,164 4,656 9,312 10,476 4,656 74,496

XC351200E 60 46 2,168 8,672 17,344 19,512 8,672 138,752

XC3S1600E 76 58 3,688 14,752 29,504 33,192 14,752 236,032

Spartan-3 FPGA CLB Resources

XC3550 16 12 192 768 1,536 1,728 768 12,288
XC35200 24 20 480 1,920 3,840 4,320 1,920 30,720
XC35400 32 28 896 3,584 7,168 8,064 3,584 57,344
XC351000 48 40 1,920 7,680 15,360 17,280 7,680 122,880
XC351500 64 52 3,328 13,312 26,624 29,952 13,312 212,992
XC352000 80 64 5,120 20,480 40,960 46,080 20,480 327,680
XC354000 96 72 6,912 27,648 55,296 62,208 27,648 442,368
XC355000 104 80 8,320 33,280 66,560 74,880 33,280 532,480

CLB Differences between Spartan-3 Generation Families

Each CLB is identical within a family, and the CLBs are identical among all

Spartan-3 generation families. The performance varies slightly between families due to
minor variations in processing and characterization. The only difference between families
is how the number of CLBs relates to the number of rows and columns. In the Spartan-3E
and Extended Spartan-3A family, the number of CLBs is less than the multiple of the
number of rows and columns. This difference is because in the Extended Spartan-3A
family, the DCMs are embedded in the array, and in the Spartan-3E family, both the DCMs
and the block RAM/multiplier blocks are embedded in the array. See Module 1 of the
Spartan-3E, Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGA data sheets for a figure
showing the array structure.

202

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Slices

Slices

Each CLB comprises four interconnected slices, as shown in Figure 5-3. These slices are
grouped in pairs. Each pair is organized as a column with an independent carry chain. The
left pair supports both logic and memory functions and its slices are called SLICEM. The
right pair supports logic only and its slices are called SLICEL. Therefore half the LUTs
support both logic and memory (including both RAM16 and SRL16 shift registers) while
half support logic only, and the two types alternate throughout the array columns. The
SLICEL reduces the size of the CLB and lowers the cost of the device, and can also provide
a performance advantage over the SLICEM.

Spartan-3 Generation FPGA User Guide www.xilinx.com 203
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

. . . ®
Chapter 5: Using Configurable Logic Blocks (CLBs) XXlLlNX
SHIFTIN couT
CYSELG YBMUX
1—INT A — YB
iMux@
FXINA > I'\' FiIMUX .
FXINB = "]J GYMUX
XORG
\
- — v
4
Gl[4:1] “ Al4:1] D
: i G-LUT X
: [
] o waesn Mets D =Y
i G| |G2] FEy
DIG_MUX
. WS I?I CE
o : CK
ALTDIG L0=r-1 Lo ¢ SR_REV
[m==d " —|
. I
P GAND | 1
e 0 £ DIG
BY > CvoG : £=5% BYOUT
Top Portion
CEC>— |
CLK>—
SR=>—— *
[H
] ' WSG 1
: =--4WE H
CK i
WSGEN }
SLICEWET {ibe==-4 WE1 H
) WEO H
:
wer i Common Logic
XBMUX
) CYMUXF h — x5
o 1\
LN F5MUX —
! CYSELF | I — F5
; XORF
ws DI u) > x
Fl4:1] Al4:1] D
FXMUX
F-LUT — | |PMUX TSR ReY
WF[4:1] MC15 D af——T=xa
— FFX
CE
CYOF oK
— -
FAND 1 CYINIT
0] ﬁ
= . 4222+ BXOUT
Bottom Portion
M
LEGEND: Logic Functions '\‘,'
----- Distributed RAM and SHIFTOUT CIN
Shift Register Functions UG331 ¢7 02 110708

Notes:

1. Options to invert signal polarity as well as other options that enable lines for various functions are not shown.

2. The index i can be 6, 7, or 8, depending on the slice. The upper SLICEL has an FSMUX, and the upper SLICEM has an
F7MUX. The lower SLICEL and SLICEM both have an FeMUX.

Figure 5-2: Simplified Diagram of the Left-Hand SLICEM

204

www.xilinx.com

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Slice Overview

Left-Hand SLICEM Right-Hand SLICEL
(Logic or Distributed RAM (Logic Only)
or Shift Register)
COouT
I cB e]
< L > SLICE <:l|:>
T X1Y1l
| I
I |
< I > SLICE <:I>
| X1Y0 |
Switch| | cout t I Interconnect
Matrix | | T CIN | to Neighbors
:‘ SLICE < '
| X0Y1l i
| SHIFTOUT |
| SHIFTIN |
) Sove K '
X0YO T
| I

CIN DS099-2_05_082104

Figure 5-3: Arrangement of Slices within the CLB

Slice Location Designations

The Xilinx development software designates the location of a slice according to its X and Y
coordinates, starting in the bottom left corner, as shown in Figure 5-1. The letter ‘X’
followed by a number identifies columns of slices, incrementing from the left side of the
die to the right. The letter “Y” followed by a number identifies the position of each slice in
a pair as well as indicating the CLB row, incrementing from the bottom of the die.

Figure 5-3 shows the CLB located in the lower left-hand corner of the die. The SLICEM
always has an even ‘X’ number, and the SLICEL always has an odd "X’ number.

Slice Overview

A slice includes two LUT function generators and two storage elements, along with
additional logic, as shown in Figure 5-4.

Both SLICEM and SLICEL have the following elements in common to provide logic,
arithmetic, and ROM functions:

¢ Two 4-input LUT function generators, F and G
* Two storage elements
¢ Two wide-function multiplexers, FSMUX and FiIMUX

e Carry and arithmetic logic

Spartan-3 Generation FPGA User Guide www.xilinx.com 205
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 5: Using Configurable Logic Blocks (CLBs) XX"JNX@

SRL16 FiMUX FiMUX
|__RAMm16 c c
arr arr
LUT4 (G) Y Register LUT4 (G) Y Register
F5MUX F5MUX

SRL16
[_RAM16 Carry Register Carry Register
LUT4 (F)

))

Arithmetic Logic Arithmetic Logic

SLICEM SLICEL DS312-2_13_020905
Figure 5-4: Resources in a Slice

The SLICEM pair supports two additional functions:

e Two 16x1 distributed RAM blocks, RAM16
e Two 16-bit shift registers, SRL16

Logic Cells

The combination of a LUT and a storage element is known as a “Logic Cell”. The
additional features in a slice, such as the wide multiplexers, carry logic, and arithmetic
gates, add to the capacity of a slice, implementing logic that would otherwise require
additional LUTs. Benchmarks have shown that the overall slice is equivalent to 2.25 simple
logic cells. This calculation provides the equivalent logic cell count shown in Table 5-1.

Slice Details

Figure 5-2 is a detailed diagram of the SLICEM. It represents a superset of the elements and
connections to be found in all slices. The dashed and gray lines (blue when viewed in
color) indicate the resources found only in the SLICEM and not in the SLICEL.

Each slice has two halves, which are differentiated as top and bottom to keep them distinct
from the upper and lower slices in a CLB. The control inputs for the clock (CLK), Clock
Enable (CE), Slice Write Enable (SLICEWEL1), and Reset/Set (RS) are shared in common
between the two halves.

The LUTs located in the top and bottom portions of the slice are referred to as "G" and "F",
respectively, or the "G-LUT" and the "F-LUT". The storage elements in the top and bottom
portions of the slice are called FFY and FFX, respectively.

Each slice has two multiplexers with FSMUX in the bottom portion of the slice and FiMUX
in the top portion. Depending on the slice, the FiIMUX takes on the name F6EMUX, F7MUX,
or F8MUX, according to its position in the multiplexer chain. The lower SLICEL and
SLICEM both have an FeMUX. The upper SLICEM has an F7MUX, and the upper SLICEL
has an FSMUX.

The carry chain enters the bottom of the slice as CIN and exits at the top as COUT. Five
multiplexers control the chain: CYINIT, CYOF, and CYMUXEF in the bottom portion and

206 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Slice Details

Table 5-2: Slice Inputs and Outputs

CYO0G and CYMUXG in the top portion. The dedicated arithmetic logic includes the
exclusive-OR gates XORF and XORG (bottom and top portions of the slice, respectively) as
well as the AND gates FAND and GAND (bottom and top portions, respectively).

See Table 5-2 for a description of all the slice input and output signals.

Name Location Direction Description

F[4:1] SLICEL/M Bottom Input F-LUT and FAND inputs

G[4:1] SLICEL/M Top Input G-LUT and GAND inputs or Write Address (SLICEM)

BX SLICEL /M Bottom Input Bypass to or output (SLICEM) or storage element, or control
input to FSMUX, input to carry logic, or data input to RAM
(SLICEM)

BY SLICEL/M Top Input Bypass to or output (SLICEM) or storage element, or control
input to FIMUX, input to carry logic, or data input to RAM
(SLICEM)

BXOUT SLICEM Bottom Output BX bypass output

BYOUT SLICEM Top Output BY bypass output

ALTDIG SLICEM Top Input Alternate data input to RAM

DIG SLICEM Top Output ALTDIG or SHIFTIN bypass output

SLICEWE1 | SLICEM Common Input RAM Write Enable

F5 SLICEL /M Bottom Output | Output from FSMUX; direct feedback to FIMUX

FXINA SLICEL/M Top Input Input to FIMUX; direct feedback from FEMUX or another FiIMUX

FXINB SLICEL/M Top Input Input to FIMUX; direct feedback from F5SMUX or another FiIMUX

Fi SLICEL/M Top Output | Output from FIMUX; direct feedback to another FIMUX

CE SLICEL/M Common Input FFX/Y Clock Enable

SR SLICEL/M Common Input FFX/Y Set or Reset or RAM Write Enable (SLICEM)

CLK SLICEL/M Common Input FEX/Y Clock or RAM Clock (SLICEM)

SHIFTIN SLICEM Top Input Data input to G-LUT RAM

SHIFTOUT | SLICEM Bottom Output | Shift data output from F-LUT RAM

CIN SLICEL /M Bottom Input Carry chain input

CcouTt SLICEL/M Top Output | Carry chain output

X SLICEL /M Bottom Output | Combinatorial output

Y SLICEL/M Top Output | Combinatorial output

XB SLICEL /M Bottom Output | Combinatorial output from carry or F-LUT SRL16 (SLICEM)

YB SLICEL/M Top Output Combinatorial output from carry or G-LUT SRL16 (SLICEM)

XQ SLICEL/M Bottom Output FFX output

YQ SLICEL/M Top Output FFY output

Spartan-3 Generation FPGA User Guide www.xilinx.com 207

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 5: Using Configurable Logic Blocks (CLBs) XX"JNX@

Main Logic Paths

Central to the operation of each slice are two nearly identical data paths at the top and
bottom of the slice. The description that follows uses names associated with the bottom
path. (The top path names appear in parentheses.) The basic path originates at an
interconnect switch matrix outside the CLB. See Chapter 12, “Using Interconnect,” for
more information on the switch matrix and the routing connections.

Four lines, F1 through F4 (or G1 through G4 on the upper path), enter the slice and connect
directly to the LUT. Once inside the slice, the lower 4-bit path passes through a LUT ‘F’ (or
‘G’) that performs logic operations. The LUT Data output, ‘D’, offers five possible paths:

1. Exit the slice via line "X" (or "Y") and return to interconnect.

2. Inside theslice, "X" (or "Y") serves as an input to the DXMUX (or DYMUX) which feeds
the data input, "D", of the FFX (or FFY) storage element. The "Q" output of the storage
element drives the line XQ (or YQ) which exits the slice.

3. Control the CYMUXF (or CYMUXG) multiplexer on the carry chain.

With the carry chain, serve as an input to the XORF (or XORG) exclusive-OR gate that
performs arithmetic operations, producing a result on "X" (or "Y").

5. Drive the multiplexer FSMUX to implement logic functions wider than four bits. The
"D" outputs of both the F-LUT and G-LUT serve as data inputs to this multiplexer.

In addition to the main logic paths described above, there are two bypass paths that enter
the slice as BX and BY. Once inside the FPGA, BX in the bottom half of the slice (or BY in the
top half) can take any of several possible branches:

1. Bypass both the LUT and the storage element, and then exit the slice as BXOUT (or
BYOUT) and return to interconnect.

2. Bypass the LUT, and then pass through a storage element via the D input before
exiting as XQ (or YQ).

Control the wide function multiplexer FSMUX (or FIMUX).
Via multiplexers, serve as an input to the carry chain.
Drive the DI input of the LUT.

BY can control the REV inputs of both the FFY and FFX storage elements. See “Storage
Element Functions,” page 326.

7. Finally, the DIG_MUX multiplexer can switch BY onto the DIG line, which exits the
slice.

ARSI)

The control inputs CLK, CE, SR, BX, and BY have programmable polarity. The LUT inputs
do not need programmable polarity because their function can be inverted inside the LUT.

The sections that follow provide more detail on individual functions of the slice.

Look-Up Tables

The Look-Up Table or LUT is a RAM-based function generator and is the main resource for
implementing logic functions. Furthermore, the LUTs in each SLICEM pair can be
configured as Distributed RAM or a 16-bit shift register, as described later.

Each of the two LUTs (F and G) in a slice have four logic inputs (A1-A4) and a single output
(D). Any four-variable Boolean logic operation can be implemented in one LUT. Functions
with more inputs can be implemented by cascading LUTs or by using the wide function
multiplexers that are described later.

208

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Wide Multiplexers

The output of the LUT can connect to the wide multiplexer logic, the carry and arithmetic
logic, or directly to a CLB output or to the CLB storage element. See Figure 5-5.

=Y
4
Gl4:1] I/)|A41] D ey YR
G-LUT S
— X
4
Fl4:1] WIpEp{ Al4:1] D ey [XQ
F-LUT
P>

DS312-2_33_111105

Figure 5-5: LUT Resources in a Slice

Wide Multiplexers

Wide-function multiplexers effectively combine LUTs in order to permit more complex
logic operations. Each slice has two of these multiplexers with FSMUX in the bottom
portion of the slice and FIMUX in the top portion. The FSMUX multiplexes the two LUTs in
a slice. The FIMUX multiplexes two CLB inputs which connect directly to the FSMUX and
FiMUX results from the same slice or from other slices. For more information on the wide
multiplexers, see Chapter 8, “Using Dedicated Multiplexers.”

Carry and Arithmetic Logic

The carry chain, together with various dedicated arithmetic logic gates, support fast and
efficient implementations of math operations. The carry logic is automatically used for
most arithmetic functions in a design. The gates and multiplexers of the carry and
arithmetic logic can also be used for general-purpose logic, including simple wide Boolean
functions. For more information on the carry and arithmetic logic, see Chapter 9, “Using
Carry and Arithmetic Logic.”

Storage Elements

The storage element, which is programmable as either a D-type flip-flop or a level-
sensitive transparent latch, provides a means for synchronizing data to a clock signal,
among other uses. The storage elements in the top and bottom portions of the slice are
called FFY and FEX, respectively. FFY has a fixed multiplexer on the D input selecting
either the combinatorial output Y or the bypass signal BY. FEX selects between the
combinatorial output X or the bypass signal BX.

The functionality of a slice storage element is identical to that described earlier for the I/O
storage elements. All signals have programmable polarity; the default active-High
function is described.

Spartan-3 Generation FPGA User Guide www.xilinx.com 209
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 5: Using Configurable Logic Blocks (CLBs) XX"JNX@

Table 5-3: Storage Element Signals

Signal Description
D Input. For a flip-flop data on the D input is loaded when R and S (or CLR and PRE) are Low and CE is High
during the Low-to-High clock transition. For a latch, Q reflects the D input while the gate (G) input and gate
enable (GE) are High and R and S (or CLR and PRE) are Low. The data on the D input during the High-to-
Low gate transition is stored in the latch. The data on the Q output of the latch remains unchanged as long as
G or GE remains Low.
Q Output. Toggles after the Low-to-High clock transition for a flip-flop and immediately for a latch.
C Clock for edge-triggered flip-flops.
Gate for level-sensitive latches.
CE Clock Enable for flip-flops.
GE Gate Enable for latches.
S Synchronous Set (Q = High). When the S input is High and R is Low, the flip-flop is set, output High, during
the Low-to-High clock (C) transition. A latch output is immediately set, output High.
R Synchronous Reset (Q = Low); has precedence over Set.
PRE Asynchronous Preset (Q = High). When the PRE input is High and CLR is Low, the flip-flop is set, output
High, during the Low-to-High clock (C) transition. A latch output is immediately set, output High.
CLR Asynchronous Clear (Q = Low); has precedence over Preset to reset Q output Low
SR CLB input for R, S, CLR, or PRE
REV CLB input for opposite of SR. Must be asynchronous or synchronous to match SR.
The control inputs R, S, CE, and C are all shared between the two flip-flops in a slice.
S
]
FDRSE
_D] Q
CE |
_cy
R]
DS312-2_40_021305
Figure 5-6: FD Flip-Flop Component with Synchronous Reset, Set, and Clock
Enable
Table 5-4: FD Flip-Flop Functionality with Synchronous Reset, Set, and Clock
Enable
Inputs Outputs
R S CE D C Q
1 X X X T 0
0 1 X X T 1
0 0 0 X X No Change
0 0 1 1 T 1
0 0 1 0 T 0
210 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Storage Elements

Initialization

The CLB storage elements are initialized at power-up, during configuration, by the global
GSR signal, and by the individual SR or REV inputs to the CLB. The storage elements can
also be re-initialized using the GSR input on the STARTUP primitive. See “Global
Controls,” page 399.

Table 5-5: Slice Storage Element Initialization

Signal Description

SR Set/Reset input. Forces the storage element into the state specified by the attribute
SRHIGH or SRLOW. SRHIGH forces a logic “1” when SR is asserted. SRLOW
forces a logic “0”. For each slice, set and reset can be set to be synchronous or
asynchronous.

REV Reverse of Set/Reset input. A second input (BY) forces the storage element into the
opposite state. The reset condition is predominant over the set condition if both are
active. Same synchronous/asynchronous setting as for SR.

GSR Global Set/Reset. GSR defaults to active High but can be inverted by adding an
inverter in front of the GSR input of the STARTUP element. The initial state after
configuration or GSR is defined by a separate INITO and INIT1 attribute. By
default, setting the SRLOW attribute sets INITO, and setting the SRHIGH attribute
sets INIT1.

Timing Parameters

There are several possible paths through the CLB. For any timing parameter, examine the
source and destination to help define the path. Most timing parameters have names based
on the source and destination. Setup time parameters typically are named according to the
input pin followed by “CK”, such as tcgci for setup from CE to CLK. Hold time
parameters are named with “CK” followed by the input pin, such as tcgcg for hold time
from CLK to CE. Table 5-6 defines the most common CLB timing parameters.

Table 5-6: Slice (LUT and Storage Element) Timing Parameters

Parameter Description

Tcko When reading from the FFX (FFY) flip-flop, the time from the active transition
at the CLK input to data appearing at the XQ (YQ) output.

Tas Time from the setup of data at the F or G input to the active transition at the
CLK input of the CLB; also referred to as Tgcy or Tgek.

Tan Time from the active transition at the CLK input to the point where data is last
held at the F or G input; also referred to as Tcgg or Tekg.

Tpick Time from the setup of data at the BX or BY input to the active transition at the
CLK input of the CLB.

Texpr Time from the active transition at the CLK input to the point where data is last
held at the BX or BY input.

Tcrck Time from the setup of the CE input to the active transition at the CLK input of
the CLB.

Tckcr Time from the active transition at the CLK input to the point where data is last
held at the CE input.

Ten The High pulse width of the CLK signal.

Spartan-3 Generation FPGA User Guide www.xilinx.com 211

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 5: Using Configurable Logic Blocks (CLBs)

SXILINX®

Table 5-6: Slice (LUT and Storage Element) Timing Parameters

Parameter

Description

Tcr

The Low pulse width of the CLK signal

Froc

Toggle frequency (for export control)

Tio

The time it takes for data to travel from the CLB’s F (G) input to the X (Y) output

Trew_c1B

The minimum allowable pulse width, High or Low, to the CLB’s SR input

Distributed RAM

The LUTs in the SLICEM can be programmed as distributed RAM. This type of memory
affords moderate amounts of data buffering anywhere along a data path. One SLICEM
LUT stores 16 bits (RAM16). For more information on the distributed RAM, see Chapter 6,
“Using Look-Up Tables as Distributed RAM.”

Shift Registers

It is possible to program each SLICEM LUT as a 16-bit shift register. Used in this way, each
LUT can delay serial data anywhere from 1 to 16 clock cycles without using any of the

dedicated flip-flops. The resulting programmable delays can be used to balance the timing
of data pipelines. For more information on the shift registers, see Chapter 7, “Using Look-
Up Tables as Shift Registers (SRL16).”

Related Materials

The following documents provide supplementary information useful with this chapter:

o WP272: Get Smart About Reset: Think Local, Not Global
Applying a global reset to your FPGA designs is not a very good idea and should be
avoided. This is a controversial issue, so this white paper looks at the reasons why
such a design policy should be considered.

e WP273: Performance + Time = Memory (Cost Saving with 3-D Design)
Operating logic at a higher rate than the processing rate allows operations to be
achieved sequentially. As with a processor, logic is timeshared over multiple clock
cycles. Memory holds values not being used on a given clock cycle. The FPGA can be
considered to be a three-dimensional volume to be filled. "Performance + Time =
Memory" is a strange formula, but when understood, it can often result in
significantly lower cost implementations with Xilinx devices.

o WRP275: Get Your Priorities Right - Make Your Design up to 50% Smaller
This white paper describes a rarely noticed design technique that can make a
difference in the size and the performance of your FPGA design. Control signals on
FPGA flip-flops have a built-in priority. If you can learn to write code that is
sympathetic to the priorities, the results will be rewarding. This white paper provides
some simple VHDL and Verilog examples to explain key points.

212

www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/white_papers/wp272.pdf
http://www.xilinx.com/support/documentation/white_papers/wp273.pdf
http://www.xilinx.com/support/documentation/white_papers/wp275.pdf
http://www.xilinx.com

&7 XILINX®

Chapter 6

Using Look-Up Tables as Distributed

RAM

Summary

Introduction

Each Spartan®-3 generation Configurable Logic Block (CLB) contains up to 64 bits of
single-port RAM or 32 bits of dual-port RAM. This RAM is distributed throughout the
FPGA and is commonly called “distributed RAM” to distinguish it from the 18-Kbit block
RAM. Distributed RAM is also referred to as LUT RAM. Distributed RAM is fast, localized,
and ideal for small data buffers, FIFOs, or register files. This chapter describes the features
and capabilities of distributed RAM and illustrates how to specify the various options
using the Xilinx CORE Generator system or via VHDL or Verilog instantiation.

In addition to the embedded 18-Kbit block RAMs, Spartan-3 generation FPGAs feature
distributed RAM within each Configurable Logic Block (CLB). Each SLICEM function
generator or LUT within a CLB resource optionally implements a 16-deep x 1-bit
synchronous RAM. The LUTs within a SLICEL slice do not have distributed RAM.

Distributed RAM writes synchronously and reads asynchronously. However, if required
by the application, use the register associated with each LUT to implement a synchronous
read function. Each 16 x 1-bit RAM is cascadable for deeper and/or wider memory
applications, with a minimal timing penalty incurred through specialized logic resources.

Spartan-3 generation CLBs support various RAM primitives up to 64-deep by 1-bit-wide.
Two LUTs within a SLICEM slice combine to create a dual-port 16x1 RAM—one LUT with
a read /write port, and a second LUT with a read-only port. One port writes into both 16x1
LUT RAMSs simultaneously, but the second port reads independently.

Distributed RAM is crucial to many high-performance applications that require relatively
small embedded RAM blocks, such as FIFOs or small register files. The Xilinx

CORE Generator software automatically generates optimized distributed RAMs for the
Spartan-3 generation architecture. Similarly, the CORE Generator system creates
Asynchronous and Synchronous FIFOs using distributed RAMs.

Single-Port and Dual-Port RAMs

Data Flow

Distributed RAM supports the following memory types:

Spartan-3 Generation FPGA User Guide www.xilinx.com 213
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

Chapter 6: Using Look-Up Tables as Distributed RAM XX"JNX@

¢ Single-port RAM with synchronous write and asynchronous read. Synchronous reads
are possible using the flip-flop associated with distributed RAM.

® Dual-port RAM with one synchronous write and two asynchronous read ports. As
above, synchronous reads are possible.

As illustrated in Figure 6-1, dual-port distributed RAM has one read/write port and an
independent read port.

Single-Port RAM Dual-Port RAM
D — D —
R/WPort | o R/W Port | SPO
Address =< Address =<
Write p Read Write - Read
WCLK —> WCLK —
Read Port
Address =< — DPO
——- Read

X464_01_062503

Figure 6-1: Single-Port and Dual-Port Distributed RAM

Any write operation on the D input and any read operation on the SPO output can occur
simultaneously with and independently from a read operation on the second read-only
port, DPO.

Write Operations

The write operation is a single clock-edge operation, controlled by the write-enable input,
WE. By default, WE is active High, although it can be inverted within the distributed RAM.
When the write enable is High, the clock edge latches the write address and writes the data
on the D input into the selected RAM location.

When the write enable is Low, no data is written into the RAM.

Read Operation

A read operation is purely combinatorial. The address port—either for single- or dual-port
modes—is asynchronous with an access time equivalent to a LUT logic delay.

Read During Write

When synchronously writing new data, the output reflects the data as it is written to the
addressed memory cell, which is similar to the WRITE_MODE=WRITE_FIRST
(transparent) mode on the Spartan-3 generation block RAMs. The timing diagram in
Figure 6-2 illustrates a write operation with the previous data read on the output port,
before the clock edge, followed by the new data.

214

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Characteristics

WCLK P _
onmn i XXXXXXXK XXXXXXXXXX
wooress XXXXXXXX = XXXXXXXXXX

/

WRITE_EN 7
fwrite

le— tread fread —m
Previous
Data

New
Data

x464_02_070303

Figure 6-2: Write Timing Diagram

Characteristics

¢ A write operation requires only one clock edge.
* A read operation requires only the logic access time.
¢ Outputs are asynchronous and dependent only on the LUT logic delay.

¢ Data and address inputs are latched with the write clock and have a setup-to-clock
timing specification. There is no hold time requirement.

e For dual-port RAM, the A[#:0] port is the write and read address, and the DPRA[#:0]
port is an independent read-only address.

Distributed RAM in the CLB

The distributed RAM takes advantage of the resources described in Chapter 5, “Using
Configurable Logic Blocks (CLBs).” One SLICEM LUT stores 16 bits (RAM16). The four
LUT inputs F[4:1] or G[4:1] become the address lines labeled A[4:1] in the device model
and A[3:0] in the design components, providing a 16x1 configuration in one LUT. Multiple
SLICEM LUTs can be combined in various ways to store larger amounts of data, including
16x4, 32x2, or 64x1 configurations in one CLB. The fifth and sixth address lines required for
the 32-deep and 64-deep configurations, respectively, are implemented using the BX and
BY inputs, which connect to the write enable logic for writing and the F5SMUX and FeMUX
for reading.

Writing to distributed RAM is always synchronous to the SLICEM clock (WCLK for
distributed RAM) and enabled by the SLICEM SR input which functions as the active-
High write enable (WE). The read operation is asynchronous, and, therefore, during a
write, the output initially reflects the old data at the address being written.

The distributed RAM outputs can be captured using the flip-flops within the SLICEM
element. The WE control for the RAM and the clock-enable (CE) control for the flip-flop are
independent, but the WCLK and CLK clock inputs are shared. Because the RAM read
operation is asynchronous, the output data always reflects the currently addressed RAM
location.

A dual-port option combines two LUTs so that memory access is possible from two
independent data lines. The same data is written to both 16x1 memories but they have
independent read address lines and outputs. The dual-port function is implemented by

Spartan-3 Generation FPGA User Guide www.xilinx.com 215
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 6: Using Look-Up Tables as Distributed RAM XX"JNX@

cascading the G-LUT address lines, which are used for both read and write operations, to
the F-LUT write address lines (WF[4:1] in Figure 5-2, page 204), and by cascading the
G-LUT data input DI through the DIF_MUX in Figure 5-2 and to the DI input on the
F-LUT. One CLB provides a 16x1 dual-port memory as shown in Figure 6-5, page 222.

The INIT attribute can be used to preload the memory with data during FPGA
configuration. The default initial contents for RAM is all zeros. If WE is held Low, the
element can be considered a ROM. The ROM function can be implemented in the SLICEL.

Distributed RAM Differences between Spartan-3 Generation

Families
The distributed RAM is identical among all Spartan-3 generation families. There are
different amounts of distributed RAM per device (see Table 6-1). The performance varies
slightly between families due to minor variations in processing and characterization.
Table 6-1: Distributed RAM Resources by FPGA Family and Device
Feature Distributed RAM Blocks Distributed RAM Bits
Extended Spartan-3A Family
XC3SD1800A 16,640 266,240
XC3SD3400A 23,872 381,952
XC3S50A /AN 704 11,264
XC35200A/AN 1,792 28,672
XC3S400A /AN 3,584 57,344
XC3S700A /AN 5,888 94,208
XC3S1400A /AN 11,264 180,224
Spartan-3E Family
XC3S100E 960 15,360
XC3S250E 2,448 39,168
XC3S500E 4,656 74,496
XC3S1200E 8,672 138,752
XC3S1600E 14,752 236,032
Spartan-3 Family
XC3S50 768 12,288
XC35200 1,920 30,720
XC35400 3,584 57,344
XC351000 7,680 122,880
XC351500 13,312 212,992
XC352000 20,480 327,680
216 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Compatibility with Other Xilinx FPGA Families

Table 6-1: Distributed RAM Resources by FPGA Family and Device (Cont'd)

Feature Distributed RAM Blocks Distributed RAM Bits
XC354000 27,648 442,368
XC3S5000 33,280 532,480

Compatibility with Other Xilinx FPGA Families

Each Spartan-3 generation distributed RAM operates identically to the distributed RAM
found in Virtex®, Virtex-E, Spartan-II, Spartan-1IE, Virtex-II, and Virtex-II Pro FPGAs.

Table 6-2 shows the basic memory capabilities embedded within the CLBs on various
Xilinx FPGA families. Like Virtex-1I/ Virtex-1I Pro FPGAs, Spartan-3 generation CLBs have
eight LUTs and implement 128 bits of ROM memory. Like the Virtex/Virtex-E and
Spartan-11/Spartan-IIE FPGAs, Spartan-3 generation CLBs have 64 bits of distributed
RAM. Although the Spartan-3 and Virtex-II/Virtex-II Pro FPGA CLBs are identical for
logic functions, the Spartan-3 generation CLBs have half the amount of distributed RAM
within each CLB.

Table 6-2: Distributed Memory Features by FPGA Family

Virtex/Virtex-E, Virtex-l, . .
Feature Spartan-3 Spartan-ll/Spartan-IlE | Virtex-Il Pro Virtex-4 Virtex-5
Generation " - Family Family
Families Families
LUTs per CLB 8 4 8 8 8
ROM bits per CLB 128 64 128 128 256
Single-port RAM bits per CLB 64 64 128 64 256
Dual-port RAM bits per CLB 32 32 64 32 128
Table 6-3 lists the various single- and dual-port distributed RAM primitives supported by
the different Xilinx FPGA families. For each type of RAM, the table indicates how many
instances of a particular primitive fit within a single CLB. For example, two 32x1 single-
port RAM primitives fit in a single Spartan-3 generation CLB. Similarly, two 16x1 dual-
port RAM primitives fit in a Spartan-3 generation CLB but a single 32x1 dual-port RAM
primitive does not.
Table 6-3: Single- and Dual-port RAM Primitives Supported in a CLB by Family
Single-Port RAM Dual-Port RAM
Family
16x1 | 32x1 | 64x1 | 128x1 | 16x1 | 32x1 | 64x1
Spartan-3 Generation FPGAs 4 2 1 - 2 - -
Spartan-II/Spartan-IIE FPGAs 4 2 1 - 2 - -
Virtex/ Virtex-E FPGAs
Virtex-11/Virtex-II Pro FPGAs 8 4 2 1 4 2 1
Virtex-4 FPGAs 4 2 1 - 2 - -
Virtex-5 FPGAs 8 6 4 2 4 4 2
Spartan-3 Generation FPGA User Guide www.xilinx.com 217

UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 6: Using Look-Up Tables as Distributed RAM XX"JNX@

Library Primitives

There are four library primitives that support Spartan-3 generation distributed RAM,
ranging from 16 bits deep to 64 bits deep. All the primitives are one bit wide. Three
primitives are single-port RAMs and one primitive is dual-port RAM, as shown in
Table 6-4.

Table 6-4: Single-Port and Dual-Port Distributed RAMs

Primitive (De?)/tA\thSViVZi?ith) Type Address Inputs
RAM16X1S 16x1 Single-port A3, A2, A1, A0
RAM32X1S 32x1 Single-port A4, A3, A2, A1, A0
RAM64X1S 64x1 Single-port A5, A4, A3, A2, A1, A0
RAM16X1D 16x1 Dual-port A3, A2, A1, A0

The input and output data are one bit wide. However, several distributed RAMs,
connected in parallel, easily implement wider memory functions.

Figure 6-3 shows generic single-port and dual-port distributed RAM primitives. The
A[#:0] and DPRA[#:0] signals are address buses.

RAMyX1S RAMyX1D
D — D —
WE — — © WE — — SPO
WCLK — WCLK —
R/W Port
Af#:0] =< A#:0] —<
il C
— DPO
DPRA[#:0] =<
Read Port

X464_03_062503

Figure 6-3: Single-Port and Dual-Port Distributed RAM Primitives

Table 6-5: Dual-Port RAM Function

Inputs Outputs
WE (mode) | WCLK D SPO DPO
0 (read) X X data_a data_d
1 (read) 0 X data_a data_d
1 (read) 1 X data_a data_d
1 (write) T D D data_d
1 (read) 2 X data_a data_d
Notes:

1. data_a = word addressed by bits A#-AQ.
2. data_d = word addressed by bits DPRA#-DPRAO.

218 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Signal Ports

As shown in Table 6-6, wider library primitives are available for 2-bit and 4-bit RAMs.
Table 6-6: Wider Library Primitives

oo RAM Size
Primitive (Depth x Width) Data Inputs Address Inputs Data Outputs
RAM16X25 16 x 2 D1, DO A3,A2,Al, A0 01, 00
RAM32X25 32x2 D1, DO A4, A3,A2,Al, AO 01, 00
RAM16X45 16 x4 D3, D2, D1, DO A3,A2,Al1, A0 03,02,01, 00
Signal Ports
Each distributed RAM port operates independently of the other while reading the same set
of memory cells.
Clock — WCLK
The clock is used for synchronous writes. The data and the address input pins have setup
times referenced to the WCLK pin. Active on the positive edge by default with built-in
programmable polarity.
Enable — WE

The enable pin affects the write functionality of the port. An inactive Write Enable prevents
any writing to memory cells. An active Write Enable causes the clock edge to write the data
input signal to the memory location pointed to by the address inputs. Active High by
default with built-in programmable polarity.

Address — AQ, Al, A2, A3 (A4, A5, A6, A7)

The address inputs select the memory cells for read or write. The width of the port
determines the required address inputs.

Note: The address inputs are not a bus in VHDL or Verilog instantiations.

Dual-Port Read Address — DPRAO, DPRA1, DPRA2, DPRA3

On the RAM16X1D, the dual-port address inputs select the memory cells for reading on
the DPO output. Does not affect the write process.

Data In — D

The data input provides the new data value to be written into the RAM.

Data Out — O, SPO, and DPO

The data output O on single-port RAM or the SPO and DPO outputs on dual-port RAM
reflects the contents of the memory cells referenced by the address inputs. Following an
active write clock edge, the data out (O or SPO) reflects the newly written data. Registered
outputs use the available flip-flop within the SLICEM element.

Spartan-3 Generation FPGA User Guide www.xilinx.com 219
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 6: Using Look-Up Tables as Distributed RAM XX"JNX@

Inverting Control Pins

The two control pins, WCLK and WE, each have an individual inversion option. Any
control signal, including the clock, can be active at logic level 0 (negative edge for the clock)
or at logic level 1 (positive edge for the clock) without requiring other logic resources.

Global Set/Reset — GSR
The global set/reset (GSR) signal does not affect distributed RAM modules.

Global Write Enable — GWE

The global write enable signal, GWE, is asserted automatically at the end of device
configuration to enable all writable elements. The GWE signal guarantees that the
initialized distributed-RAM contents are not disturbed during the configuration process.
GWE is also used to ensure that Distributed RAM maintains its value during the
Extended Spartan-3A family FPGA Suspend mode.

Because GWE is a global signal and automatically connected throughout the device, the
distributed RAM primitive does not have a GWE input pin.

Attributes

Content Initialization — INIT

By default, distributed RAM is initialized with all zeros during the device configuration
sequence. To specify [non-zero] initial memory contents after configuration, use the INIT
attributes. Each INIT is a hexadecimal-encoded bit vector, arranged from most-significant
to least-significant bit. In other words, the right-most hexadecimal character represents
RAM locations 3, 2, 1, and 0. Table 6-7 shows the length of the INIT attribute for selected
primitives.

Table 6-7: INIT Attributes Length

Primitive Template INIT Attribute Length
RAM16X1S RAM_16S 4 digits
RAM32X1S RAM_32S 8 digits
RAM64X1S RAM_64S 16 digits
RAM16X1D RAM_16D 4 digits

The INIT attribute is required for any ROM instantiation. The ROM is initialized to the
INIT value at configuration and does not change during operation. For example, on a
ROM16X1, the parameter INIT = 10A7 produces the following datastream:

0001 0000 1010 0111

220 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Attributes

Placement Location — LOC

Each Spartan-3 generation CLB contains four slices, each with its own location coordinate,
as shown in Figure 6-4. Distributed RAM fits only in SLICEM slices. The ‘M’ in SLICEM
indicates that the slice supports memory-related functions and distinguishes SLICEMs
from SLICELs. The ‘L’ indicates that the slice supports logic only although the SLICEL can

also support ROM.

— Configurable Logic Block (CLB)
Tt I |
| [|
I | LUT Reg : | | LUT Reg :
| |
| I |
: LUT | | Reg : I | LuT | | Reg :
| [|
AL LR I DA S
|_________| |_________|
| I |
| | LUT Reg | I | | LUT Reg | 1
| I |
| I |
I | LUT Reg : I | LuT Reg :
| |
! X0Y0] X1Y0 |

SLICEM SLICEL
Logic/ROM Logic/ROM only
Distributed RAM
Shift Register x464_04_070803

Figure 6-4: SLICEM Slices within a Spartan-3 Generation CLB

When a LOC property is assigned to a distributed RAM instance, the Xilinx ISE® software
places the instance in the specified location. Figure 6-4 shows the X,Y coordinates for the
slices in a Spartan-3 generation CLB. Again, only SLICEM slices support memory.

Distributed RAM placement locations use the slice location naming convention, allowing
LOC properties to transfer easily from array to array.

For example, the single-port RAM16X1S primitive fits in any LUT within any SLICEM. To
place the instance U_RAMLG in slice X0Y0, use the following LOC assignment:

I NST "U _RAML6" LOC = "SLI CE_X0OY0";

The 16x1 dual-port RAM16X1D primitive requires both 16x1 LUT RAMs within a single
SLICEM slice, as shown in Figure 6-5. The first 16x1 LUT RAM, with output SPO,
implements the read /write port controlled by address A[3:0] for read and write. The
second LUT RAM implements the independent read-only port controlled by address
DPRA[3:0]. Data is presented simultaneously to both LUT RAMs, again controlled by
address A[3:0], WE, and WCLK.

Spartan-3 Generation FPGA User Guide www.xilinx.com 221
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 6: Using Look-Up Tables as Distributed RAM XX"JNX@

SLICEM

—r————————————————— 1
| |
| I

D H 16x1 ‘ — SPO
[LUT | [
A[3:0] i RAM ‘ |
R . |

| (Wﬁ?g)/ - Optional -1 -

WE : Register :
WCLK i !
| |
| |
! I

t — DPO
1| 16ex1 | |
i LUT ‘ |
_ RAM |

DPRA[3:0] ! (Read - Optional [~ 1T~

: Only) Register :
| I
I I
| |
e -

X464_05_062603

Figure 6-5: RAM16X1D Placement

A 32x1 single-port RAM32X1S primitive fits in one slice, as shown in Figure 6-6. The 32 bits
of RAM are split between two 16x1 LUT RAMs within the SLICEM slice. The A4 address
line selects the active LUT RAM via the FSMUX multiplexer within the slice.

SLICEM
[—
| |
| .
D—e I Optional [~ ‘Ir -
| 16x1 Register
Al3:0] | LuT ’ :
A4 Y : RAM I
| |
WE @ | \ :
WCLK L [
| é |
: > =0
Lo
[s :
I
|| 16x1 // :
: IF\;XIT/I Optional +—
L I Register :
| |
I |
I |
I |
[
x464_06_062603
Figure 6-6: RAM32X1S Placement
222 www.xilinx.com Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Distributed RAM Design Entry

The 64x1 single-port RAM64X1S primitive occupies both SLICEM slices in the CLB. The
read path uses both F5SMUX and F6MUX multiplexers within the CLB.

Table 6-8 shows all Distributed RAM design elements and the number of slices required in
the Spartan-3 generation FPGA families.

Table 6-8: Distributed RAM Design Element and Required Slices

Element Slices Element Slices Element Slices

RAM16X1D 1 RAM32X1S_1 1 RAM128X1S_1 4
RAM16X1D_1 1 RAM32X2S 2 ROM16X1 0.5

RAM16X1S 0.5 RAM32X4S 4 ROM32X1 1
RAM16X1S_1 0.5 RAM32X8S 8 ROM64X1 2

RAM16X2S 1 RAM64X1S 2 ROM128X1 4

RAM16X4S 2 RAM64X1S_1 2 ROM256X1 8

RAM16X8S 4 RAM64X2S 4

RAM32X1S 1 RAM128X1S 4

Distributed RAM Design Entry

To specify distributed RAM in an application, use one of the various design entry tools,
including the Xilinx CORE Generator software or VHDL or Verilog.

Xilinx CORE Generator System

The Xilinx CORE Generator system creates distributed memory designs for both single-
port and dual-port RAMs, ROMs, and even SRL16 shift-register functions.

The Distributed Memory module is parameterizable; the depth can range from 16 to 65536
words in multiples of 16, and the width of each word can be anywhere in the range of 1 bit
to 1024 bits. To create a module, specify the component name and choose to include or
exclude control inputs, then choose the active polarity for the control inputs. Options are
available for simple registering of inputs and outputs. Optional asynchronous and
synchronous resets are available for the output registers.

Optionally, specify the initial memory contents. Unless otherwise specified, each memory
location initializes to zero. Enter user-specified initial values via a Memory Initialization
File, consisting of one line of binary data for every memory location. A default file is
generated by the CORE Generator system. Alternatively, create a coefficients file (. coe) as
shown in Figure 6-7, which not only defines the initial contents in a radix of 2, 10, or 16, but
also defines all the other control parameters for the CORE Generator system.

menory_initialization_radi x=16;
menory_initialization_vector= 80, OF, 00, 0B, 00, OC, .., 81;

Figure 6-7: A Simple Coefficients File (. coe) Example for a Byte-Wide Memory

The output from the CORE Generator system includes a report on the options selected and
the device resources required. If a very deep memory is generated, then some external
multiplexing might be required; these resources are reported as the number of logic slices

Spartan-3 Generation FPGA User Guide www.xilinx.com 223
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 6: Using Look-Up Tables as Distributed RAM XX"JNX@

required. For simulation purposes, the CORE Generator system creates VHDL or Verilog
behavioral models.

The CORE Generator FIFO Generator supports both distributed and block RAMs.
¢ CORE Generator: Distributed Memory Module

http:/ /www.xilinx.com/support/documentation /ip_documentation/dist_mem_gen_ds322.pdf

e CORE Generator: FIFO Generator

http:/ /www.xilinx.com/support/documentation /ip_documentation/fifo_generator_ds317.pdf

VHDL and Verilog

VHDL and Verilog synthesis-based designs can either infer or directly instantiate
distributed RAM, depending on the specific logic synthesis tool used to create the design.

Inferring Distributed RAM

Most VHDL and Verilog logic synthesis tools, such as the Xilinx Synthesis Tool (XST) and
Synplicity Synplify, infer distributed RAM based on the hardware described. The Xilinx
ISE Project Navigator includes templates for inferring distributed RAM in your design. To
use the templates within Project Navigator, select Edit = Language Templates from the
menu, and then select VHDL or Verilog, followed by Synthesis Constructs > Coding
Examples > RAM from the selection tree. Finally, select the preferred distributed RAM
template. Cut and paste the template into the source code for the application and modify it
as appropriate.

VHDL Inference Template Example

process (<cl ock>)

begi n
if (<clock> event and <clock> = '1") then
if (<swite_enable> ="'1") then
<ram _name>(conv_i nt eger (<addr ess>)) <= <input_dat a>;
end if;
end if;

end process;
<ram_ out put > <= <ram nanme>(conv_i nt eger (<address>));

Verilog Inference Template Example

paraneter RAM W DTH = <ram wi dt h>;
paramet er RAM ADDR BI TS = <ram addr _bi t s>;

reg [RAM W DTH-1: 0] <ram nane> [(2**RAM _ADDR BITS)-1:0];
wire [RAM W DTH 1: 0] <out put _dat a>;

<reg_or_wi re> [RAM ADDR BI TS-1: 0] <address>;
<reg_or_wire> [RAMWDTH 1: 0] <i nput_dat a>;

al ways @ posedge <cl ock>)
if (<wite_enable>)

<ram name>[<addr ess>] <= <i nput_dat a>;

assi gn <out put _data> = <ram nanme>[<addr ess>];

224

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen_ds322.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ds317.pdf
http://www.xilinx.com

XX"JNX@ Distributed RAM Design Entry

It is still possible to directly instantiate distributed RAM, even if portions of the design
infer distributed RAM.

Instantiation Templates

For VHDL- and Verilog-based designs, various instantiation templates are available to
speed development. Within the Xilinx ISE Project Navigator, select Edit - Language
Templates from the menu, and then select VHDL or Verilog, followed by Device
Primitive Instantiation > FPGA > RAM/ROM -> Distributed RAM from the selection
tree. Cut and paste the template into the source code for the application and modify it as
appropriate.

There are also downloadable VHDL and Verilog templates available for all single-port and
dual-port primitives. The RAM_XS templates (where x = 16, 32, or 64) are single-port
modules and instantiate the corresponding RAMxX1S primitive. The ‘S” indicates single-
port RAM. The RAM_16D template is a dual-port module and instantiates the
corresponding RAM16X1D primitive. The ‘D’ indicates dual-port RAM.

e VHDL Distributed RAM Templates
xapp464_vhdl.zip

¢ Verilog Distributed RAM Templates
xapp464_verilog.zip

The following are single-port templates:

e RAM_16S
e RAM 325
e RAM_64S

The following is a dual-port template:
e RAM_16D

In VHDL, each template has a component declaration section and an architecture section.
Insert both sections of the template within the VHDL design file. The port map of the
architecture section must include the design signal names.

Templates for the RAM_165 module are provided below as examples in both VHDL and
Verilog code.

VHDL Instantiation Template Example

--- RAML6X1S : In order to incorporate this function into the design,
-- VHDL : the follow ng instance decl aration needs to be placed
-- instance : in the architecture body of the design code. The

-- declaration : instance nane (RAML6X1S inst) and/or the port

-- code : declarations after the "=>" assignment maybe changed
-- : to properly reference and connect this function to the
-- : design. Al inputs and outputs nust be connect ed.

-- Li brary : In addition to adding the instance declaration, a use
-- declaration : statement for the UN SI M vconponents library needs to
-- f or : be added before the entity declaration. This library
-- Xil'inx : contains the component declarations for all Xilinx

-- primtives : primtives and points to the nodels that will be used
-- : for simulation.

-- Copy the following two statenents and paste them before the
-- Entity declaration, unless they already exist.

Spartan-3 Generation FPGA User Guide www.xilinx.com 225
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/webreg/clickthrough.do?cid=102524
https://secure.xilinx.com/webreg/clickthrough.do?cid=55804
http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 6: Using Look-Up Tables as Distributed RAM XX"JNX@

Li brary UNI SI M
use UNI SI M vconponents. al | ;

<----- Cut code below this Iine and paste into architecture body---->

-- RAML6X1S: 16 x 1 posedge wite distributed => Distributed RAM
Xi l'inx HDL Language Tenpl ate

RAML6X1S i nst : RAML6X1S
generic map (
INIT => X"0000")

port map (
O = -- RAM out put
A0 => AOQ, -- RAM address[0] i nput
Al => Al, -- RAM address[1] i nput
A2 => A2, -- RAM address[2] input
A3 => A3, -- RAM address[3] input
D => D, -- RAM dat a i nput
WCLK => WCLK, -- Wite clock input
VE => VE -- Wite enabl e i nput
)

-- End of RAML6X1S inst instantiation

Verilog Instantiation Template Example

/1
/1
/1
/1
11
11
/1

/1

I

RAML6X1S : In order to incorporate this function into the design,
Veri | og : the follow ng instance decl aration needs to be pl aced
i nstance : in the body of the design code. The instance name
declaration : (RAML6X1S inst) and/or the port declarations within
code : the parenthesis may be changed to properly reference and
connect this function to the design. Al inputs

and out puts nust be connect ed.
<----- Cut code below this line---->

/1 RAML6X1S: 16 x 1 posedge wite distributed (LUT) RAM
Xi l'inx HDL Language Tenpl ate

RAMLEX1S #(
.INI'T(16' h0O00) // Initial contents of RAM
) RAML6X1S inst (

.0, /1 RAM out put

. AO(AOD) , /1 RAM addr ess[0] i nput
.AL(AL), /1 RAM addr ess[1] i nput
.A2(A2), /1 RAM addr ess[2] i nput
. A3(A3), /1 RAM addr ess[3] i nput
.D(D), /1 RAM dat a i nput
.MCLK(WCLK), // Wite clock input

. VEE(VIE) /1 Wite enable input

)

/1 End of RAML6XL1S inst instantiation

226

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Conclusion

Wider Distributed RAM Modules

Table 6-9 shows the VHDL and Verilog distributed RAM examples that implement n-bit-
wide memories.

Table 6-9: VHDL and Verilog Submodules

Submodules Primitive Size Type
XC3S_RAMI16XN_S_SUBM RAM16X1S 16 words x n-bit Single-port
XC3S_RAMB32XN_S_SUBM RAM32X1S 32 words x n-bit Single-port
XC3S_RAM64XN_S_SUBM RAM64X1S 64 words x n-bit Single-port
XC35_RAM16XN_D_SUBM RAM16X1D 16 words x n-bit Dual-port

Initialization in VHDL or Verilog Codes

Distributed RAM structures can be initialized in VHDL or Verilog code for both synthesis
and simulation. For synthesis, the attributes are attached to the distributed RAM
instantiation and are copied in the EDIF output file to be compiled by Xilinx ISE Series
tools. The VHDL code simulation uses a gener i ¢ parameter to pass the attributes. The
Verilog code simulation uses a def par amparameter to pass the attributes.

Conclusion

Frequently FPGA designs require multiple small, fast, and flexible memories for system
configuration, control, and status functions. These memories are usually distributed
throughout the design. The distributed RAM in the Spartan-3 generation FPGAs is ideal
for such applications, and allows the CLBs to be changed from logic to memory "on
demand". These memories can then be linked together for various data width or depth
requirements. The Xilinx tools automatically use distributed RAM for small arrays or they
can be instantiated in a design.

Related Materials and References

The following list provides additional information:

¢ Chapter 4, “Using Block RAM”

e Chapter 5, “Using Configurable Logic Blocks (CLBs)”

¢ Chapter 7, “Using Look-Up Tables as Shift Registers (SRL16)”
¢ RAM and ROM Application Notes

www.xilinx.com /support/documentation/anmeminterfacestorelement_ram-
rom.htm

e Distributed Memory Generator Xilinx IP Core
www.xilinx.com/xInx/xebiz /designResources/ip_product_details.jsp?key=DIST_MEM_GEN
e Xilinx ISE Software Manuals

www.xilinx.com/support/documentation/dt_ise.htm

Spartan-3 Generation FPGA User Guide www.xilinx.com 227
UG331 (v1.8) June 13, 2011

http://www.xilinx.com/support/documentation/dt_ise.htm
http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DIST_MEM_GEN
www.xilinx.com/support/documentation/anmeminterfacestorelement_ram-rom.htm

Chapter 6: Using Look-Up Tables as Distributed RAM XX"JNX@

228 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

&7 XILINX®

Chapter 7

Using Look-Up Tables as Shift Registers

(SRL16)

Summary

The SRL16 is an alternative mode for the look-up tables where they are used as 16-bit shift
registers. Using this Shift Register LUT (SRL) mode can improve performance and rapidly
lead to cost savings of an order of magnitude. Although the SRL16 can be automatically
inferred by the software tools, considering their effective use can lead to more cost-
effective designs.

Shift Register Differences between Spartan-3 Generation Families

Introduction

This chapter applies to all Spartan®-3 generation FPGA families. Each SRL16 shift register
is identical within a family, and the SRL16 function is identical among all

Spartan-3 generation families. The performance varies slightly between families due to
minor variations in processing and characterization. The number of SRL16 shift registers is
the same as the number of distributed RAM blocks, as shown in Table 6-1, page 216.

Spartan-3 generation FPGAs can configure the look-up table (LUT) in a SLICEM slice as a
16-bit shift register without using the flip-flops available in each slice. Shift-in operations
are synchronous with the clock, and output length is dynamically selectable. A separate
dedicated output allows the cascading of any number of 16-bit shift registers to create
whatever size shift register is needed. Each CLB resource can be configured using four of
the eight LUTs as a 64-bit shift register.

This document provides generic VHDL and Verilog submodules and reference code
examples for implementing from 16-bit up to 64-bit shift registers. These submodules are
built from 16-bit shift-register primitives and from dedicated MUXF5, MUXF6, and
MUXEF7 multiplexers.

These shift registers enable the development of efficient designs for applications that
require delay or latency compensation. Shift registers are also useful in synchronous FIFO
and Content-Addressable Memory (CAM) designs. To quickly generate a Spartan-3 shift
register without using flip-flops (i.e., using the SRL16 element(s)), use the CORE Generator
RAM-based Shift Register module.

Spartan-3 Generation FPGA User Guide www.xilinx.com 229
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

Chapter 7: Using Look-Up Tables as Shift Registers (SRL16) XX"JNX@

Shift Register Architecture

The structure of the SRL16 is described from the bottom up, starting with the shift register
and then building up to the surrounding FPGA structure.

LUT Structure

The LUT can be described as a 16:1 multiplexer with the four inputs serving as binary
select lines, and the values programmed into the LUT serving as the data being selected
(see Figure 7-1).

1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 1

A[3:0] 0000 0001 0010 0011 0100 0101 01100111 1000 1001 1010 1011 1100 1101 1110 1111

D x465_01_070603

Figure 7-1: LUT Modeled as a 16:1 Multiplexer

With the SRL16 configuration, the fixed LUT values are configured instead as an
addressable shift register (see Figure 7-2). The shift register inputs are the same as those for
the synchronous RAM configuration of the LUT: a data input, clock, and clock enable (not
shown). A special output for the shift register is provided from the last flip-flop, called Q15
on the library primitives or MC15 in the FPGA Editor. The LUT inputs asynchronously (or
dynamically) select one of the 16 storage elements in the shift register.

Q15 or

.

A[3:0] A\ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 11101111 /

D X465_02_040203

Figure 7-2: LUT Configured as an Addressable Shift Register

Dynamic Length Adjustment

The address can be thought of as dynamically changing the length of the shift register. If D
is used as the shift register output instead of Q15, setting the address to 7 (0111) selects Q7
as the output, emulating an 8-bit shift register. Note that since the address lines control the
mux, they provide an asynchronous path to the output.

Logic Cell Structure

The F-LUT and the G-LUT in the SLICEM are used as the basis of the SRL16 (see the details
of the CLB structure in Figure 5-2, page 204). The SLICEM LUTs cascade from the G-LUT
MC15 output to the F-LUT DI input through the DIFMUX. The SHIFTIN and SHIFTOUT
lines cascade a SLICEM to the SLICEM below through the DIGMUX to form larger shift
registers.

230 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Shift Register Architecture

Each shift register provides a shift output MC15 for the last bit in each LUT, in addition to
providing addressable access to any bit in the shift register through the normal D output
(Figure 7-3). The address inputs A[3:0] are the same as the distributed RAM address lines,
which come from the LUT inputs F[4:1] or G[4:1].

SHIFTIN ¥ SRLC16
Ll i
|
[
| m SHIFT-REG
A[3:0] : %ol A[3:0] D = Output
I MC15 L b o} Registered
| Output

|
CE (SR) —L——={WE
CLK -

|
|
|
|
|
|
| ws DI :
DI (BY) Hﬂ—‘—‘ I —
' WSG : (optional)
|
|
|
|

Y SHIFTOUT

orYB X465_03_040203

Figure 7-3: Logic Cell SRL Structure

Registered Output

Each SRL16 LUT has an associated flip-flop that makes up the overall logic cell. The
addressable bit of the shift register can be stored in the flip-flop for a synchronous output
or can be fed directly to a combinatorial output of the CLB. When using the register, it is
best to have fixed address lines selecting a static shift register length to avoid timing
hazards. The CLB flip-flop can be used to provide one more shift delay for the addressable
bit. Since the clock-to-output delay of the flip-flop is faster than the shift register,
performance can be improved by addressing the second-to-last bit and then using the flip-
flop as the last stage of the shift register. Using the flip-flop also allows for asynchronous or
synchronous set or reset of the output.

The shift register input can come from a dedicated SHIFTIN signal, and the Q15/MC15
signal from the last stage of the shift register can drive a SHIFTOUT output. The
addressable D output is available in all SRL primitives, while the Q15/MC15 signal that
can drive SHIFTOUT is only available in the cascadable SRLC16 primitive.

The SRL16 can shift from either LSB to MSB or MSB to LSB according to the application.
Although the device arbitrarily names the output MC15, it can be the LSB of the user
function.

Slice Structure

The two logic cells within a slice are connected for cascading a shift register up to 32 bits
(see Figure 7-4). These connect the Q15/MC15 of the first shift register to the DI (or QO flip-
flop) of the second shift register.

Spartan-3 Generation FPGA User Guide www.xilinx.com 231
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 7: Using Look-Up Tables as Shift Registers (SRL16) XX"JNX@

SLICEM

LC
SRL16
MC15

DI

SRL16
LC

UG331_c9_04_072406

Figure 7-4: Shift Register Connections Between Logic Cells in a Slice

If dynamic addressing (or "dynamic length adjustment") is desired, the two separate data
outputs from each SRL16 must be multiplexed together. One of the two SRL16 bits can be
selected by using the FSMUX to make the selection (see Figure 7-5).

|

SRL16
— Lc F5MUX
A[3:0] —]
SRL16
— c
A4

X465_05_070703

Figure 7-5: Using F5MUX for Addressing Multiple SRL16 Components

CLB Structure

The Spartan-3 generation CLB contains four slices, each with two LUTs, but only two allow
LUTs to be used as SRL16 components or distributed RAM. The two left-hand SLICEM
components allow their two LUTs to be configured as a 16-bit shift register. SHIFTOUT to
SHIFTIN connections are available to cascade the two SLICEM components. The four left-
hand LUTs of a single CLB can be combined to produce delays up to 64 clock cycles (see
Figure 7-6). It is also possible to combine shift registers across more than one CLB.

232 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Shift Register Architecture

1 Shift Chain
in CLB
IN - DI D |FF
SRLC16
MC15]
DI pl |FF
SRLC16
MC15 |+
SLICEM S1
SHIFTOUT
\i
SHIFTIN
L i
SRLC16
MC15]
DI Dl |FF
SRLC16
MC15
—| SLICEM S0

lOUT
CASCADABLE OUT

X465_06_040503

Figure 7-6: Cascading Shift Register LUTs in a CLB

The multiplexers can be used to address multiple SLICEMs similar to the description for
combining the two LUTs within a SLICEM. The F6oMUX can be used to select from three or
four SRL16 components in a CLB, providing up to 64 bits of addressable shift register (see
Figure 7-7).

Spartan-3 Generation FPGA User Guide www.xilinx.com 233
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 7: Using Look-Up Tables as Shift Registers (SRL16)

SXILINX®

LUT

LUT

SLICEM S1

LUT

LUT

SLICEM SO

)=

CLB

X465_07_040203

Figure 7-7: Using F6MUX to Address a 64-Bit Shift Register

Library Primitives

The shift register element is known as the SRL16 (Shift Register LUT 16-bit), with a C
added to signify a cascade ability (Q15 output) and E to indicate a clock enable. See
Figure 7-8 for an example of the SRLC16E component.

D |
CE
CLK
A0
Al
A2
A3

SRLC16E

Q15

X465_19_040503

Figure 7-8: SRLCI16E Primitive

Eight library primitives are available that offer optional clock enable (CE), inverted clock

(CLK), and cascadable output (Q15) combinations.

234 www.xilinx.com

Spartan-3 Generation FPGA User Guide

UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Library Primitives

Table 7-1 lists all of the available primitives for synthesis and simulation.
Table 7-1: Shift Register Primitives

Primitive Length Control Address Inputs Output
SRL16 16 bits CLK A3, A2, A1, A0 Q
SRL16E 16 bits CLK, CE A3, A2, Al, A0 Q
SRL16_1 16 bits CLK A3, A2, Al, A0 Q
SRL16E_1 16 bits CLK, CE A3, A2, A1, A0 Q
SRLC16 16 bits CLK A3, A2, A1, AO Q, Q15
SRLC16E 16 bits CLK, CE A3, A2, A1, AO Q, Q15
SRLC16_1 16 bits CLK A3, A2, A1, AO Q, Q15
SRLC16E 1 16 bits CLK, CE A3, A2, A1, A0 Q, Q15

Initialization in VHDL and Verilog Code

A shift register can be initialized in VHDL or Verilog code for both synthesis and
simulation. For synthesis, the INIT attribute is attached to the 16-bit shift register
instantiation and is copied in the EDIF output file to be compiled by Xilinx tools. The
VHDL code simulation uses a generic parameter to pass the attributes. The Verilog code
simulation uses a defparam parameter to pass the attributes.

The S3_SRL16E shift register instantiation code examples (in VHDL and Verilog) illustrate
these techniques (see “VHDL and Verilog Templates,” page 243). S3_SRL16E. vhd and
S3_SRL16E. v files are not a part of the documentation.

Port Signals

Clock — CLK

Either the rising edge or the falling edge of the clock is used for the synchronous shift-in.
The data and clock enable input pins have set-up times referenced to the chosen edge of
CLK.

Data In—D

The data input provides new data (one bit) to be shifted into the shift register.

Clock Enable — CE (optional)

The clock enable pin affects shift functionality. An inactive clock enable pin does not shift
data into the shift register and does not write new data. Activating the clock enable allows
the data in (D) to be written to the first location and all data to be shifted by one location.

When available, new data appears on output pins (Q) and the cascadable output pin (Q15).

Address — A3, A2, A1, AO

Address inputs select the bit (range 0 to 15) to be read. The nth bit is available on the output
pin (Q). Address inputs have no effect on the cascadable output pin (Q15), which is always
the last bit of the shift register (bit 15).

Spartan-3 Generation FPGA User Guide www.xilinx.com 235
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 7: Using Look-Up Tables as Shift Registers (SRL16) XX"JNX@

Data Out — Q

The data output Q provides the data value (1 bit) selected by the address inputs.

Data Out — Q15 (optional)

The data output Q15 provides the last bit value of the 16-bit shift register. New data
becomes available after each shift-in operation.

Inverting Control Pins

The two control pins (CLK, CE) have an individual inversion option. The default is the
rising clock edge and active High clock enable.

GSR

The global set/reset (GSR) signal has no impact on shift registers.

Attributes

Content Initialization — INIT

The INIT attribute defines the initial shift register contents. The INIT attribute is a hex-
encoded bit vector with four digits (0000). The left-most hexadecimal digit is the most
significant bit. By default the shift register is initialized with all zeros during the device
configuration sequence, but any other configuration value can be specified.

Location Constraints

Figure 7-9 shows how the slices are arranged within a CLB. Each CLB has four slices, but
only the two at the bottom-left of the CLB can be used as shift registers. These are both
designated SLICEM in CLB positions SO and S1. The relative position coordinates are X0Y0
and X0Y1. To constrain placement, these coordinates can be used in a LOC property
attached to the SRL primitive. Note that the dedicated CLB shift chain runs from the top to
the bottom, but the start and end of the shift register can be in any of the four SLICEM
LUTs.

236 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Library Primitives

Left-Hand SLICEM Right-Hand SLICEL
(Logic or Distributed RAM (Logic Only)
or Shift Register)
CouT
jcLe e _

|
Switch | cout T : Interconnect
Matrix | 1 CIN | to Neighbors
<:::> SLICE

X0Y1 T

SHIFTOUT I

SHI ITIN |

SLICE '

K== Xoro |

CIN X465_08_040203

Figure 7-9: Arrangement of Slices within the CLB

Shift Register Operations

The functionality of the shift register is shown in Table 7-2. The SRL16 shifts on the rising
edge of the clock input when the Clock Enable control is High. This shift register cannot be
initialized either during configuration or during operation except by shifting data into it.
The clock enable and clock inputs are shared between the two LUTs in a SLICEM. The
clock enable input is automatically kept active if unused.

Table 7-2: SRL16 Shift Register Function

Inputs Outputs
Am | CLK | CE D Q Q15
Am X 0 X Q[Am] Q[15]
Am T 1 D Q[Am-1] Q[15]
Notes:
1. m=0,1,2,3.
Data Flow

Each shift register (SRL16 primitive) supports:
e Synchronous shift-in
¢ Asynchronous 1-bit output when the address is changed dynamically

* Synchronous shift-out when the address is fixed

Spartan-3 Generation FPGA User Guide www.xilinx.com 237
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 7: Using Look-Up Tables as Shift Registers (SRL16) XX"JNX@

In addition, cascadable shift registers (SRLC16) support synchronous shift-out output of
the last (16th) bit. This output has a dedicated connection to the input of the next SRLC16
inside the CLB resource. Two primitives are illustrated in Figure 7-10.

SRLC16E
D— L Q
Address =—m-
SRL16E
CE
CLK Q15
D— L Q
Address =l
CE SRLC16E
CLK > D — Q
Address =
CE
CLK Q15

X465_09_070703

Figure 7-10: Shift Register and Cascadable Shift Register

Shift Operation

The shift operation is a single clock-edge operation with an active-High clock enable
feature. When enable is High, the input (D) is loaded into the first bit of the shift register,
and each bit is shifted to the next highest bit position. In a cascadable shift register
configuration (such as SRLC16), the last bit is shifted out on the Q15 output.

The bit selected by the 4-bit address appears on the Q output.

Dynamic Read Operation

The Q output is determined by the 4-bit address. Each time a new address is applied to the
4-input address pins, the new bit position value is available on the Q output after the time
delay to access the LUT. This operation is asynchronous and independent of the clock and
clock enable signals.

238 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Shift Register Inference

Figure 7-11 illustrates the shift and dynamic read operations.

CE / \

Shift Timing Diagram

Address i 7 i 10
[S —— - - g——————
Q Position (7) Position (10)

taccess taccess

Dynamic Length Timing Diagram
X465_10_040203

Figure 7-11: Shift- and Dynamic-Length Timing Diagrams

Static Read Operation

If the 4-bit address is fixed, the Q output always uses the same bit position. This mode
implements any shift register length up 1 to 16 bits in one LUT. Shift register length is
(N+1) where N is the input address.

The Q output changes synchronously with each shift operation. The previous bit is shifted
to the next position and appears on the Q output.

Characteristics

* A shift operation requires one clock edge.

¢ Dynamic-length read operations are asynchronous (Q output).

¢ Static-length read operations are synchronous (Q output).

® The data input has a setup-to-clock timing specification.

® In a cascadable configuration, the Q15 output always contains the last bit value.

¢ The Q15 output changes synchronously after each shift operation.

Shift Register Inference

When a shift register is described in generic HDL code, synthesis tools infer the use of the
SRL16 component. Since the SRL16 does not have either synchronous or asynchronous set

Spartan-3 Generation FPGA User Guide www.xilinx.com 239
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 7: Using Look-Up Tables as Shift Registers (SRL16) XX"JNX@

or reset inputs, and does not have access to all bits at the same time, using such capabilities
precludes the use of the SRL16, and the function is implemented in flip-flops. The
cascadable shift register (SRLC16) might be inferred if the shift register is larger than 16 bits
or if only the Q15 is used.

In fact, adding a reset is one way to force a synthesis tool to use flip-flops instead of the
SRL16 when flip-flops are preferred for performance or other reasons. If a reset is not
needed, simply connect a dummy signal and use an appropriate KEEP attribute to prevent
the synthesis tool from optimizing it out of the design.

Although the SRL16 shift register does not have a parallel load capability, an equivalent
function can be implemented simply by anticipating the load requirement and shifting in
the proper data. This requires predictable timing for the load command.

VHDL Inference Code

The following code infers an SRL16 in VHDL.

architecture Behavioral of srl16 is
signal Q_INT: std_logic_vector(15 downto 0);
begin

process(Q)
begi n
if (Cevent and C="1") then
QINT <= QINT(14 downto 0) & D;
end if;
end process;

Q <= Q.INT(15);
end Behavi oral ;

An inverted clock (SRL16_1) is inferred by replacing C="1"' with C='0". A clock enable
(SRL16E) is inferred by inserting if (CE='1") then after the first if-then statement.

Verilog Inference Code

The following code infers an SRL16 in Verilog.

al ways @ (posedge Q)
begin

QINT <= {Q_INT[14: 0], D};
end

al ways @ Q_I NT)
begin
Q <= QINT[15];
end
An inverted clock (SRL16_1) is inferred by replacing (posedge C) with (negedge C). A
clock enable (SRL16E) is inferred by inserting if(CE) after the begin statement.

240

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Shift Register Submodules

Shift Register Submodules

In addition to the 16-bit primitives, two submodules that implement 32-bit and 64-bit
cascadable shift registers are provided in VHDL and Verilog code. Table 7-3 lists available
submodules.

Table 7-3: Shift Register Submodules

Submodule Length Control Address Inputs Output
SRLC32E_SUBM 32 bits CLK, CE A4, A3, A2, A1, A0 Q, Q31
SRLC64E_SUBM 64 bits CLK, CE A5, A4, A3, A2, A1, A0 Q, Q63

The submodules are based on SRLC16E primitives, which are associated with dedicated
multiplexers (MUXF5, MUXF6, and so forth). This implementation allows a fast static- and
dynamic-length mode, even for very large shift registers.

Figure 7-12 represents the cascadable shift registers (32-bit and 64-bit) implemented by the
submodules in Table 7-3.

Ad A5, A4 A5
Add.ﬁ54< AddAﬁGL<
A3, A2, AL, AO A3, A2, AL, AO "
D D Q D D Q
4e 1 AR:0] 4e 1 AE0]
CE CE
Q15 Q15
SRLC16E —‘ SRLC16E _‘
: }‘
MUXF5 MUXFS5
D Q D Q
4 1 az0) 4 | ao)
CE CE
QI5)——— Q31 Q15
SRLC16E SRLC16E _‘
. . . Q
32-bit Shift Register
MUXF6
D Q
4r 1 Az0]
CE
015
SRLC16E _‘
MUXF5
D Q
4 A[3:0]
CE
015 Q63
SRLC16E
64-bit Shift Register X465_11_051505

Figure 7-12: Shift-Register Submodules (32-bit, 64-bit)

Spartan-3 Generation FPGA User Guide www.xilinx.com 241
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 7: Using Look-Up Tables as Shift Registers (SRL16) XX"JNX@

All clock enable (CE) and clock (CLK) inputs are connected to one global clock enable and
one clock signal per submodule. If a global static- or dynamic-length mode is not required,
the SRLC16E primitive can be cascaded without multiplexers.

Fully Synchronous Shift Registers

All shift-register primitives and submodules do not use the register(s) available in the
same slice(s). To implement a fully synchronous read and write shift register, output pin Q
must be connected to a flip-flop. Both the shift register and the flip-flop share the same
clock, as shown in Figure 7-13.

FF
Synchronous
D SRLC16E Q D Q Output
Address
CE (Write Enable) >
CLK > — Q15

X465_12_040203

Figure 7-13: Fully Synchronous Shift Register

This configuration provides a better timing solution and simplifies the design. Because the
flip-flop must be considered to be the last register in the shift-register chain, the static or
dynamic address should point to the desired length minus one. If needed, the cascadable
output can also be registered in a flip-flop. The delay from the SRL16 to the flip-flop is a
fixed CLB setup time delay and is not controlled by a PERIOD constraint.

Static-Length Shift Registers

The cascadable 16-bit shift register implements any static length mode shift register
without the dedicated multiplexers (MUXF5, MUXF6, and so on). Figure 7-14 illustrates a
40-bit shift register. Only the last SRLC16E primitive needs to have its address inputs tied
to “0111”. Alternatively, shift register length can be limited to 39 bits (address tied to
“0110”) and a flip-flop can be used as the last register. (In an SRLC16E primitive, the shift
register length is the address input + 1.)

242

www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

SXILINX®

Shift Register Submodules

"0111" 4]

D——D
LUT LUT
Q15 > Q15
SRLC16 SRLC16
D
LUT LUT
Q15 > Q15
SRLC16 SRLC16
FF
Q}— OUT D Q D Q|l— OuT
A[3:0] (40-bit SRL) "0110" —= A[3:0] (40-bit SRL)
LUT LUT
Q15 Q15
SRLC16 SRLC16

X465_13_051505

Figure 7-14: 40-bit Static-Length Shift Register

VHDL and Verilog Instantiation

VHDL and Verilog instantiation templates are available for all primitives and submodules:

e xapp465_vhdl.zip

e xapp465_verilog.zip

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of
the architecture section should include the design signal names.

The ShiftRegister_C_x (with x = 16, 32, or 64) templates are cascadable modules and
instantiate the corresponding SRLCXE primitive (16) or submodule (32 or 64).

The ShiftRegister_16 template can be used to instantiate an SRL16 primitive.

VHDL and Verilog Templates

In template names, the number indicates the number of bits (for example,
SHIFT_SELECT_16 is the template for the 16-bit shift register) and the “C” extension
means the template is cascadable.

The following are templates for primitives:

e SHIFT_REGISTER_16

e SHIFT_REGISTER_16_C

The following are templates for submodules:

e SHIFT_REGISTER_32_C (submodule: SRLC32E_SUBM)

e SHIFT_REGISTER_64_C (submodule: SRLC64E_SUBM)

The corresponding submodules have to be synthesized with the design.

Templates for the SHIFT_REGISTER_16_C module are provided in VHDL and Verilog
code as an example.

Spartan-3 Generation FPGA User Guide www.xilinx.com 243
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=110376
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0
https://secure.xilinx.com/webreg/clickthrough.do?cid=110375

Chapter 7: Using Look-Up Tables as Shift Registers (SRL16)

SXILINX®

VHDL Template:

-~ Mbdul e: SHI FT_REG STER C 16

-- Description: VHDL instantiation tenplate
-- CASCADABLE 16-bit shift register with enable (SRLCL6E)

-- Device: Spartan-3 Generation Famly

-- Conponents Decl arati ons:

component SRLCL6E
-- pragma translate_off
generic (

-- Shift Register initialization ("0O"

si nmul ati on:

INIT : bit_vector := X"'0000"

)
-- pragnma translate_on
port (
D: in std_logic;
:in std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
n std_| ogic;

K

O 0000

n
n
n
n

CE i
CL i
A0 i
Al i
A2 i
A3 i
Q

: out std_logic;

QL5 : out std_logic
)

end conponent;

-- Architecture Section:

-- Attributes for Shift Register

attribute INIT: string;

attribute INNT of U SRLCI6E:

-- ShiftRegister Instantiation

U SRLC16E: SRLC16E

port map (

D => , -- insert input signal
CE =, --

CLK => , -- insert Cock signal
A0 =, --

A2 =, --

A3 =, --

Q => , -- insert output signal
as - = .-

)

Verilog Template:
/1 Modul e: SHI FT_REG STER 16

by default) for functional

initialization (“0" by default):

is “0000";

insert Cl ock Enable signal (optional)

i
i
i
insert Address 0 signal
Al => , -- insert Address 1 signal
i nsert Address 2 signal
i nsert Address 3 signal
i
i

i nsert cascadabl e out put si gnal

/1 Description: Verilog instantiation tenplate
/1l Cascadable 16-bit Shift Register with O ock Enable (SRLCL6E)

/1 Device: Spartan-3 Ceneration Famly

def par am

244 www.xilinx.com

Spartan-3 Generation FPGA User Guide
UG331 (v1.8) June 13, 2011

http://www.xilinx.com

XX"JNX@ Shift Register Submodules

/1Shift Register initialization ("0" by default) for functional
simul ation:
U SRLCI6E. INIT = 16' h000O;

/1 Sel ect Shift Regi ster-11 Instantiation

SRLCI6E U SRLCI6E (.D(),

- A0(),

-AL(),

-A2(),

-A3(),

- CLK() ,

- CE(),
Q)

: - QL5()

/1 synthesis attribute declarations
/* attribute
INIT "0000"
*/

CORE Generator System

The Xilinx CORE Generator system generates fast, compact, FIFO-style shift registers,
delay lines, or time-skew buffers using the SRL16. The RAM-based Shift Register module
shown in Figure 7-15 provides a very efficient multibit wide shift for widths up to 256 and
depths to 1024. Fixed-length shift registers and variable-length shift registers can be
created. An option is also provided to register the outputs of the module. If output
registering is selected, there are additional options for Clock Enable, Asynchronous Set,
Clear, and Init, and Synchronous Set, Clear, and Init of the output register. The module can
optionally be generated as a relationally placed macro (RPM) or as unplaced logic.

1

ASET SSET
DIN:0] QIN:0]

— AM:0]

CE
CLK

ACLR SCLR AINIT SINIT

]

x465_14 040203

Figure 7-15: CORE Generator RAM-Based Shift Register Module

Spartan-3 Generation FPGA User Guide www.xilinx.com 245
UG331 (v1.8) June 13, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0

Chapter 7: Using Look-Up Tables as Shift Registers (SRL16) XX"JNX@

Applications

Delay Lines

The register-rich nature of the Xilinx FPGA architecture allows for the addition of pipeline
stages to increase throughput. Data paths must be balanced to keep the desired
functionality. The SRL16 can be used when additional clock cycles of delay are needed
anywhere in the design (see Figure 7-16).

12 Cycles

T

Operation A Operation B

4 Cycles 8 Cycles L

Operation C

3 Cycles

;v_/\

3 Cycles

9-cycle imbalance

12 Cycles

T

Operation A Operation B

4 Cycles 8 Cycles _L

Operation C Pipeline

9 Cycles
3 Cycles using SRL16

;VJ \ Paths statically
balanced

12 Cycles X465_20_040603

Figure 7-16: Using SRL16 as a Delay Line

Linear Feedback Shift Registers

Linear Feedback Shift Registers (LFSRs) sequence through 2"-1 states