# SPIMD20



## Integrated motor drive

SPIMD20

This Shuttle version of the IMD is suitable for

synchronous motor (i.e. 6 Nm torgue) thanks to

with a surface temperature up to 100 °C. The IMD performs all motor driving required functions

the reduced dimensions 165x60x26 mm. The Shuttle Drive<sup>™</sup> is designed to operate on a motor

direct integration to the permanent magnet

including speed, position and current loop

flexible platform to execute any other

(Altera Cyclone III type) and the two

being synchronized to the fieldbus.

execution, plus connectivity. Connection to the master is performed via real time ethernet

fieldbus, including but not limited to EtherCAT<sup>®</sup> as

per IEC61158. However, the IMD is an open and

communication standard with the aboard FPGA

software package includes PWM driving, current

Order code

SPIMD20

microprocessors STM32F103 series. A basic software package is available with SPIMD20. This

loop and speed loop execution; all the above

**Device summary** 

Datasheet — production data

### **Features**

- Advanced brushless motor control in a single module easy to piggyback to the motor
- Extremely compact dimensions: 165x60x26 mm, <0.5 kg weight
- Up to 2 kW power with 800 Vdc supply, on 100°C motor surface, can withstand peak of current up to 40 A
- Can operate on a motor surface temperature up to 100°C
- Integrated drive with real time connectivity via Ethernet-based fieldbus (i.e. EtherCAT<sup>®</sup>) and CANopen<sup>®</sup> DS402
- Safe torque off to disable IGBT drivers via hardware
- CAN bus hand-shaking channel
- RS232 interface for programming
- 2 Mb Flash memory aboard; also support removable Flash memory card.
- Supports position feedback both with resolver or digital encoder EnDat 2.2
- Motor current sensing with shunt sensors (2) phases)
- Vibration analysis and thermal sensing
- IP65 compliant
- Safe architecture to apply to most popular safety standards IEC61800-5-1
- EMI: IEC61800 3 / A11 and UL508C
- Up to 800  $V_{DC}$  supply, auxiliary supply 18-48 V<sub>DC</sub>
- RoHS compliant

## Description

SPIMD20 is an integrated motor drive with real time connectivity enabling brushless motor manufacturers to create a proprietary motion control system based on a general purpose brick.

Doc ID 17527 Rev 3

Table 1.



# Contents

| 1 | Main  | Main features                                       |  |  |  |  |  |  |  |
|---|-------|-----------------------------------------------------|--|--|--|--|--|--|--|
|   | 1.1   | Block diagram                                       |  |  |  |  |  |  |  |
|   | 1.2   | Safe torque off diagram 6                           |  |  |  |  |  |  |  |
| 2 | Gen   | eral specifications                                 |  |  |  |  |  |  |  |
|   | 2.1   | Ambient conditions                                  |  |  |  |  |  |  |  |
|   | 2.2   | Vibrations and shocks                               |  |  |  |  |  |  |  |
| 3 | Pin o | out description                                     |  |  |  |  |  |  |  |
| 4 | Elec  | trical characteristics12                            |  |  |  |  |  |  |  |
|   | 4.1   | Absolute maximum ratings 12                         |  |  |  |  |  |  |  |
|   | 4.2   | Electrical data                                     |  |  |  |  |  |  |  |
|   |       | 4.2.1 Power supply                                  |  |  |  |  |  |  |  |
|   |       | 4.2.2 Power stage                                   |  |  |  |  |  |  |  |
| 5 | Mec   | nanical dimensions                                  |  |  |  |  |  |  |  |
|   | 5.1   | Mechanical data (dimensions in mm) 15               |  |  |  |  |  |  |  |
|   |       | 5.1.1 Technical specifications for surface coupling |  |  |  |  |  |  |  |
|   | 5.2   | The basic software package 17                       |  |  |  |  |  |  |  |
|   | 5.3   | Safety characteristics and connection requirements  |  |  |  |  |  |  |  |
|   | 5.4   | Installation and user's manual 18                   |  |  |  |  |  |  |  |
|   | 5.5   | Maintenance                                         |  |  |  |  |  |  |  |
| 6 | Revi  | sion history                                        |  |  |  |  |  |  |  |



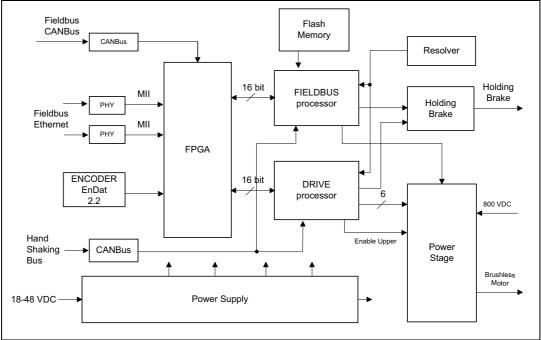
### 1 Main features

The SPIMD20 is the top level performing power drive system designed by STMicroelectronics in cooperation with ROBOX S.p.A. Coming in a very compact size and operating at very high temperature, the SPIMD20 is ideal for direct installation on a permanent magnet synchronous motor or nearby the motor.

The advantages of this system architecture are many, among them:

- SPIMD20 directly assembled to the motor permits a strong wiring reduction. The SPIMD20 just needs a DC power supply, a DC auxiliary supply, a fieldbus. All these connections can jump from one device to the other. The electrical cabinet will therefore result very compact.
- The distributed architecture allows faster designing and faster commissioning.
- The DC power supply shared between many SPIMD20s permits to realize sensible energy saving in a lot of applications.
- The fieldbus, Ethernet real-time, permits to make profit of all the advantages of flexible automation such as: recipes, fast switching among different previously saved menus, in-line behaviour optimization, centralized diagnostic and data logging. CANopen is optionally available in the development roadmap.
- A high performance FPGA Altera Cyclon III is available in the SPIMD20 to configure, among others, the Ethernet real-time bus according to your needs or preferences. The basic pack includes EtherCAT.
- Position read-out can be realized using the very popular resolver or other more performing devices such as EnDat 2.2 which are interfaced through the high performance FPGA. Different position transducers can be connected using their IP's.
- PWM driving is organized for operation at 4-8-16-32 kHz. All the devices connected to the same master are synchronized to the driving fieldbus. The synchronization involves position, speed, current loops and the PWM.
- A MEMS accelerometer permits to analyze the vibrations: abnormal behavior can be detected before a fatal crash occur
- An SPI channel is available to support a compact flash or similar device in order to store parameters, programs or other tools depending on the application.




- A basic software package is available with the SPIMD20. This software package includes:
  - torque speed position control
  - PWM driving 4-8-16-32 kHz
  - current loop closure 4-8-16 kHz (PI)
  - speed loop closure 1-2 kHz (PI)
  - position loop closure 1-2 kHz (P)
  - torque, speed, feed forward inputs provided
  - low pass or/and notch filters provided
  - All the above are synchronized to the fieldbus
  - Position transducers: resolver or encoder EnDat 2.2
  - EtherCat connectivity (CoE DSP402)
  - CANopen (DS301, DSP402) is also in the development roadmap
- Two powerful development environments are available:
  - IAR's Embedded WorkBench to work at source code level (C, C++)
  - Robox's RDE to work at system level, permitting debugging and performance optimization under real operating conditions.

A third one, QUARTUS II Altera development environment, should be used to implement other real time Ethernet standards or other digital transducers into the FPGA.



## 1.1 Block diagram

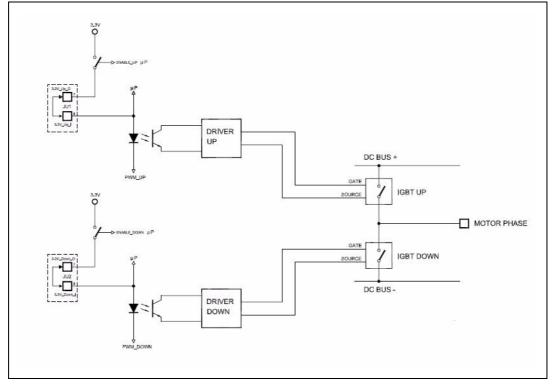






### 1.2 Safe torque off diagram

The module is equipped with four pins, available at JU1 and JU2 connectors, aimed to disable the IGBT drivers via hardware.


The schematic architecture is showed in Figure 2.

Once the pins 7 of JU1 and JU2 are respectively let opened versus the pins 8 of JU1 and JU2, the IGBT drivers are disabled.

If the pin 7 is shorted with the pin 8 on both the connectors JU1 and JU2, the module is properly working.

The current flowing on those connections is less than 5 mA.

Figure 2. Safe torque off diagram



# 2 General specifications

### 2.1 Ambient conditions

| Table 2. | Ambient conditions |
|----------|--------------------|
|          |                    |

|                   | operation (Ambient)         | 0 +40°C              |
|-------------------|-----------------------------|----------------------|
|                   | operation ( <i>Motor</i> )  | 0 +100°C             |
| Temperature       | operation (Bottom Heatsink) | 0 +100°C             |
| remperature       | operation (Top Heatsink)    | 0 +70°C              |
|                   | storage                     | -30 +70°C            |
|                   | transportation              | -25 +70°C            |
|                   | operation                   | 5 95% <sup>(1)</sup> |
| Relative humidity | storage                     | 5 95% <sup>(1)</sup> |
|                   | transportation              | 5 95% <sup>(1)</sup> |
| Altitude          |                             | 4000mt               |
| Protection degree |                             | IP 65 & IP 67        |

1. Without ice and condensation

## 2.2 Vibrations and shocks

|  | Table 3. | Vibrations | and | shocks |
|--|----------|------------|-----|--------|
|--|----------|------------|-----|--------|

| Description                         | Test conditions                          | Value       | Unit  |
|-------------------------------------|------------------------------------------|-------------|-------|
| Vibration sine: amplitude peak-peak | 1057Hz conforming to EN/IEC 60068-2-36   | 0.15 +/-15% | mm    |
| Vibration sine: acceleration        | 57150Hz conforming to EN/IEC 60068-2-6   | 1 +/-15%    | g     |
| Vibration noise (random)            | Frequency                                | 20 150      | Hz    |
| IEC 68-2-36                         | Spectral acceleration density, amplitude | 0,005 ±3dB  | g2/Hz |
| Vibration sine according to         | 10 2000Hz amplitude peak-peak            | 0.75        | mm    |
| EN 60068-2-6 and<br>EN 60068-2-37   | Acceleration at 10 2000Hz                | 5           | g     |

# 3 Pin out description

| Name        | JU1 | •  | Type            | Description                                                                                                                                                                                                      |
|-------------|-----|----|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Halle       |     |    | ishe            | Description                                                                                                                                                                                                      |
| PS_AUX+     | 1   | 1  | -               | Auxiliary input voltage                                                                                                                                                                                          |
|             | 3   | 3  | Power in        | 18 to 48Vdc                                                                                                                                                                                                      |
| PS_AUX-     | 4   | 4  |                 |                                                                                                                                                                                                                  |
| POW_OK      | -   | 2  | INP-48V         | Input power OK, PS_AUX- referred                                                                                                                                                                                 |
| IO_24V      | 5   | -  | Devenue         | O4Vela elisitat increta fa a dia a                                                                                                                                                                               |
| IO_GND      | 6   | -  | Power out       | 24Vdc digital inputs feeding                                                                                                                                                                                     |
| INP1        | -   | 5  | INP-24V         | Dig inputs 241/ds IO CND referred                                                                                                                                                                                |
| INP2        | -   | 6  | INP-24V         | Dig. inputs, 24Vdc, IO_GND referred                                                                                                                                                                              |
| 3.3V_UP_O   | 7   | -  |                 |                                                                                                                                                                                                                  |
| 3.3V_UP_I   | 8   | -  | Safe torque off | Disable the IGBT drivers via hardware. If the pin 7 is shorted with the pin 8 on both the connectors JU1 and JU2, the module is properly                                                                         |
| 3.3V_DOWN_O | -   | 7  |                 | working                                                                                                                                                                                                          |
| 3.3V_DOWN_I | -   | 8  |                 |                                                                                                                                                                                                                  |
| ETH1_TXD+   | 9   | -  | Ethernet        | CH1 ethernet 10/100 IEEE 802.3                                                                                                                                                                                   |
| ETH1_TXD-   | 10  | -  |                 |                                                                                                                                                                                                                  |
| ETH1_RXD+   | 11  | -  |                 |                                                                                                                                                                                                                  |
| ETH1_RXD-   | 12  | -  |                 |                                                                                                                                                                                                                  |
| ETH2_TXD+   | 13  | -  |                 |                                                                                                                                                                                                                  |
| ETH2_TXD-   | 14  | -  | Ethernet        | CH2 ethernet 10/100 IEEE 802.3                                                                                                                                                                                   |
| ETH2_RXD+   | 15  | -  | Luieniei        |                                                                                                                                                                                                                  |
| ETH2_RXD-   | 16  | -  |                 |                                                                                                                                                                                                                  |
| CANH        | -   | 9  |                 |                                                                                                                                                                                                                  |
| CANL        | -   | 10 | CanBus          | Fieldbus CAN                                                                                                                                                                                                     |
| CAN_GND     | -   | 11 |                 |                                                                                                                                                                                                                  |
| SB_GND      | -   | 12 |                 |                                                                                                                                                                                                                  |
| SB+         | -   | 13 | CanBus          | Service bus                                                                                                                                                                                                      |
| SB-         | -   | 14 |                 |                                                                                                                                                                                                                  |
| HBR_RLS#    | -   | 15 | INP-OD-3V3      | Holding brake release                                                                                                                                                                                            |
| PB#         | -   | 16 | INP-OD-3V3      | User push-button                                                                                                                                                                                                 |
| EXT_FLASH#  | -   | 17 | INP-OD-3V3      | Connect to GND to enable boot from external flash memory (type M25P16). External flash have to be connected to CRD_pins. (see next page) leave pin EXT_FLASH floating to enable boot from internal flash memory. |

| Table 4. | Pin | description | JU1/JU2 |
|----------|-----|-------------|---------|
|----------|-----|-------------|---------|



| Name      | JU1 | JU2 | Туре         | Description                                                         |  |
|-----------|-----|-----|--------------|---------------------------------------------------------------------|--|
| LED1#     | 17  | -   | OUT-LO-3V3   |                                                                     |  |
| LED2#     | 18  | -   | OUT-LO-3V3   | User Led                                                            |  |
| WS_SDA    | -   | 18  | BIDIR-3V3    | I <sup>2</sup> C line for WorkStation connection                    |  |
| WS_SCL    | 19  | -   | OUT-3V3      |                                                                     |  |
| JTMS      | 20  | -   | INP-3V3      |                                                                     |  |
| JTCK      | 21  | -   | INP-3V3      |                                                                     |  |
| JTDI      | 22  | -   | INP-3V3      | JTAG software debug port                                            |  |
| JTDO      | 23  | -   | OUT-3V3      | a rad soliware debug por                                            |  |
| JTRST#    | 24  | -   | INP-LO-3V3   |                                                                     |  |
| JRESET#   | 25  | -   | INP-OD-3V3   |                                                                     |  |
| IO3#      | -   | 19  | BIDIR-OD-3V3 | TTL digital I/O, GND referred                                       |  |
| IO4#      | -   | 20  | BIDIR-OD-3V3 | External decoupling required                                        |  |
| 3V3       | -   | 21  | Power out    | 3.3V power supply for outputs, LED and I <sup>2</sup> C - 100mA max |  |
| GND       | -   | 22  | Fower out    | 3.3V power supply for outputs, LED and T.C ToomA max                |  |
| CRD_CS#   | -   | 23  | OUT-LO-3V3   |                                                                     |  |
| CRD_CLK   | -   | 24  | OUT-3V3      |                                                                     |  |
| CRD_DI    | -   | 25  | OUT-3V3      | 3.3V external flash.                                                |  |
| CRD_DO    | -   | 26  | INP-3V3      | SPI Interface 50mA max.                                             |  |
| CRD_VCC   | -   | 27  | Power out    |                                                                     |  |
| CRD_GND   | -   | 28  | roweroul     |                                                                     |  |
| RS232_GND | 26  | -   |              |                                                                     |  |
| RS232_RXD | 27  | -   | RS232        | RS232 full duplex connection                                        |  |
| RS232_TXD | 28  | -   |              |                                                                     |  |

 Table 4.
 Pin description JU1/JU2 (continued)

- INP-48 V: 48 V digital input, active high
- INP-24 V: 24 V digital input, active high
- INP-3V3: 3.3 V digital input, active high
- INP-LO-3V3: 3.3 V digital input, active low
- INP-OD-3V3: 3.3 V dig. input (Internal pull-up) to be connected to open-drain output
- OUT-3V3: 3.3 V digital output, push-pull active high
- OUT-LO-3V3: 3.3 V digital output, push-pull active low
- BIDIR-3V3: 3.3 V digital input/output
- BIDIR-OD-3V3: 3.3 V digital input/output (Internal Pull-up) to be connected to opendrain output



| Name    | Pin | Туре       | Description                                      |
|---------|-----|------------|--------------------------------------------------|
| DC_BUS- | 1   | Power in   | 800VDC BusBar-                                   |
|         | 2   | TOwerin    |                                                  |
| -       | 3   | -          | Position not loaded                              |
| DC_BUS+ | 4   | Power in   | 800VDC BusBar+                                   |
|         | 5   |            |                                                  |
| -       | 6   | -          | Position not loaded                              |
| FE      | 7   | Functional | Connected to chassis and shield/FE pins of       |
|         | 8   | Earth      | JU1, JU2, JM3,JM7, JM9, JM10 and JM11 connectors |

Table 5.Pin description JU3

#### Table 6. Pin description JM3

| Name   | Pin | Туре   | Description                           |
|--------|-----|--------|---------------------------------------|
| TMOT-  | 1   | Analog | Connection to PTC motor thermal probe |
| TMOT+  | 2   | Analog | (KTY84-130)                           |
| -      | 3   | -      | N.C.                                  |
| SHIELD | 4   | -      | Connected to PE pins on JU3           |

#### Table 7.Pin description JM7

| Name    | Pin | Туре  | Description                        |
|---------|-----|-------|------------------------------------|
| PE      | 1   | -     | Connected to PE pins on JU3        |
| DC_BUS- | 2   | Power | 800VDC BusBar capacitor connection |
| PE      | 3   | -     | Connected to PE pins on JU3        |
| DC_BUS+ | 4   | Power | 800VDC BusBar capacitor connection |

#### Table 8.Pin description JM9

| Name    | Pin | Туре  | Description                 |
|---------|-----|-------|-----------------------------|
|         | 1   | -     |                             |
| PE      | 2   |       | Connected to PE pins on JU3 |
|         | 3   |       |                             |
| MOTOR_U | 4   | Motor | Motor U phase               |
| MOTOR_V | 5   | Motor | Motor V phase               |
| MOTOR_W | 6   | Motor | Motor W phase               |



| Table 9. Fill description JM10 |     |       |                                |
|--------------------------------|-----|-------|--------------------------------|
| Name                           | Pin | Туре  | Description                    |
| SHIELD                         | 1   | -     | Connected to PE pins on JU3    |
| -                              | 2   | -     | -                              |
| HBR+                           | 3   | Brake | 24VDC holding brake connection |
| HBR-                           | 4   | Brake | Current max 500mA              |

Table 9.Pin description JM10

Table 10.Pin description JM11

| Name     | Pin | Туре      | Description                     |
|----------|-----|-----------|---------------------------------|
| SHIELD   | 1   | _         | Connected to PE pins on JU3     |
| SHIELD   | 8   | _         |                                 |
| ENC_GND  | 2   | Power out |                                 |
| ENC_5V   | 9   | Fowerout  |                                 |
| ENC_CLK- | 3   | RS422     | 5V, 200mA max Encoder EnDat 2.2 |
| ENC_CLK+ | 10  | N3422     | v, 20011A max Encoder EnDat 2.2 |
| ENC_DAT- | 4   | RS485     |                                 |
| ENC_DAT+ | 11  | N3403     |                                 |
| RES_EXC- | 5   | Analog    |                                 |
| RES_EXC+ | 12  | Analog    |                                 |
| RES_SIN- | 6   | Analog    | Resolver                        |
| RES_SIN+ | 13  | Analog    |                                 |
| RES_COS- | 7   | Analog    |                                 |
| RES_COS+ | 14  | Analog    |                                 |



# 4 Electrical characteristics

## 4.1 Absolute maximum ratings

#### Table 11. Absolute maximum ratings

| Symbol     | Parameter                                                 | Value   | Unit |
|------------|-----------------------------------------------------------|---------|------|
| DC_BUS_MAX | MAX DC BusBar supply voltage (JU3 pin 1, 2, 4, 5)         |         | V    |
| DC_BUS_MIN | MIN DC BusBar supply voltage (JU3 pin 1, 2, 4, 5)         |         | V    |
| Pw_MAX     | Max continuous power (Output current = 6A rms MAX)        | 2000    | W    |
| I_OUT_MAX  | Max output current (RMS)                                  | 6       | А    |
| I_OUT      | Max output current peak (200ms on 1.5s period)            | 17      | Α    |
| PS_AUX     | DC auxiliary supply voltage (JU1 pin 1-4 JU2 pin 1, 3, 4) | 50      | V    |
| IO_24V     | DC logic supply voltage (JU1 pin 5, 6) 28                 |         | V    |
| Tstg       | Storage temperature range                                 | -30 +70 | °C   |

### 4.2 Electrical data

### 4.2.1 Power supply

#### Table 12.Power supply

| Symbol             | Parameter                             | Test conditions                                 |      | Value |      |      |
|--------------------|---------------------------------------|-------------------------------------------------|------|-------|------|------|
| Symbol             | Farameter                             |                                                 |      | Тур   | Max  | Unit |
| DC_AUX             | DC auxiliary supply voltage           | Power In ( JU1/JU2 pin 1-2 )                    | 18   | 24    | 48   | V    |
| DC_AUX_<br>MAX_CUR | DC auxiliary current BRAKE connected  | Vin ( JU1/JU2 pin 1-2 ) = 18V, BRAKE connected  |      |       | 1.6  | А    |
|                    |                                       | Vin ( JU1/JU2 pin 1-2 ) = 48V, BRAKE connected  |      |       | 0.8  | А    |
|                    | DC auxiliary current without<br>BRAKE | Vin ( JU1/JU2 pin 1-2 ) = 18V, without BRAKE    |      |       | 0.6  | А    |
|                    |                                       | Vin ( JU1/JU2 pin 1-2 ) = 48V, without BRAKE    |      |       | 0.3  | А    |
| DC_Brake           | 24 V DC Brake connection              | Current max 500mA (JM10 pin 3-4)                | 21.6 | 24    | 26.4 | V    |
| CRD_VCC            | Analogue supply for external Flash    | SPI max current 50mA ( JU2 pin 27 )             | 3.2  | 3.3   | 3.4  | V    |
| 3V3                | I <sup>2</sup> C power supply         | DC for Outputs, I2C & LEDs 100mA max JU2 pin 21 | 3.2  | 3.3   | 3.4  | V    |
| IO_24V             | 24 Vdc digital inputs feeding         | 100mA max JU1 pin 5-6                           | 21.6 | 24    | 26.4 | V    |



Test circuit for inductive load

#### 4.2.2 Power stage

#### Figure 3. Equivalent circuit

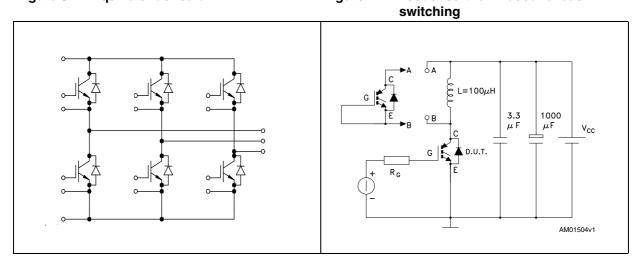



Figure 4.

#### Table 13. IGBT

| Symbol                         | Parameter                                     | Test conditions                                                                                    | Value |            |           | Unit     |
|--------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|-------|------------|-----------|----------|
| Symbol                         | Faidineter                                    | lest conditions                                                                                    |       | Тур        | Max       | Jiii     |
| V <sub>CE(sat)</sub>           | Collector-emitter saturation voltage          | $V_{GE}$ = 15V, I <sub>C</sub> = 30A<br>$V_{GE}$ = 15V, I <sub>C</sub> = 30A,<br>$T_j$ =125 °C     | -     | 2.8<br>2.7 | 3.85      | v        |
| I <sub>CES</sub>               | Collector cut-off current ( $V_{GE} = 0$ )    | V <sub>CE</sub> =1200V<br>V <sub>CE</sub> =1200V, T <sub>j</sub> =125 °C                           | -     |            | 500<br>10 | μA<br>mA |
| I <sub>GES</sub>               | Gate-emitter leakage current ( $V_{CE} = 0$ ) | $V_{GE} = \pm 20V$                                                                                 | -     |            | ± 100     | nA       |
| t <sub>d(on)</sub>             | Turn-on delay time                            | $V_{CC} = 960V, I_C = 30A$<br>$R_G = 10\Omega, V_{GE} = 15V,$<br>$T_j = 125^{\circ}C$ see Figure 6 | -     | 45         |           | ns       |
| t <sub>r</sub>                 | Current rise time                             |                                                                                                    | -     | 38         |           | ns       |
| t <sub>d(off)</sub>            | Turn-off delay time                           |                                                                                                    | -     | 420        |           | ns       |
| t <sub>f</sub>                 | Current fall time                             |                                                                                                    | -     | 360        |           | ns       |
| E <sub>on</sub> <sup>(1)</sup> | Turn-on switching losses                      |                                                                                                    | -     | 4.7        |           | mJ       |
| E <sub>off</sub>               | Turn-off switching losses                     |                                                                                                    | -     | 9.3        |           | mJ       |
| C <sub>ies</sub>               | Input capacitance                             | V <sub>CE</sub> = 25V, f = 1MHz, V <sub>GE</sub> =0                                                | -     | 2577       |           | pF       |
| C <sub>oes</sub>               | Output capacitance                            |                                                                                                    | -     | 196        |           | pF       |
| C <sub>res</sub>               | Reverse transfer capacitance                  |                                                                                                    | -     | 39.5       |           | pF       |
| Qg                             | Total gate charge                             | $V_{CE} = 960V, I_{C} = 20A, V_{GE} = 15V$                                                         | -     | 126        |           | nC       |

1. Eon is the turn-on losses when a typical diode is used in the test circuit in *Figure 6*.



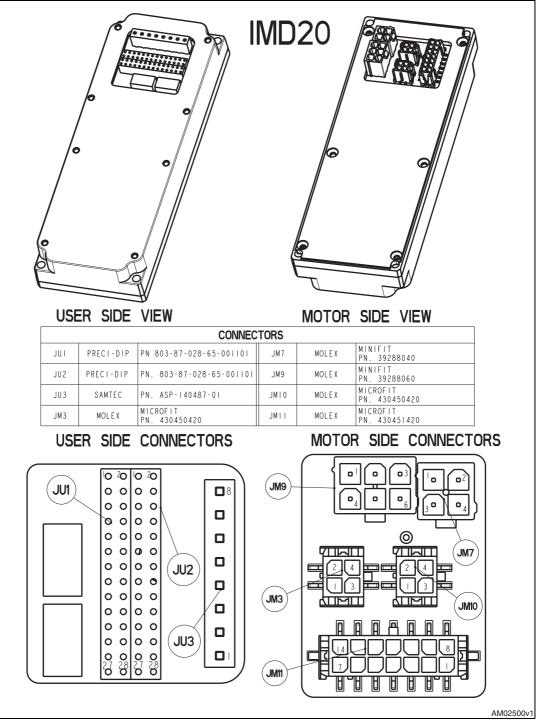
| Table | 14. | Diodes |
|-------|-----|--------|
|       |     |        |

| Symbol                        | Parameter                | Test conditions                                                           | Value |     |     | Unit |
|-------------------------------|--------------------------|---------------------------------------------------------------------------|-------|-----|-----|------|
|                               |                          |                                                                           | Min   | Тур | Max | Unit |
| V <sub>F</sub> <sup>(1)</sup> | Forward voltage drop     | $I_F = 8A T_j = 25^{\circ}C$                                              | -     |     | 2.2 | v    |
| VF                            | Forward voltage drop     | I <sub>F</sub> = 8A T <sub>j</sub> = 125°C                                | -     | 1.3 | 2.0 | v    |
| I <sub>RM</sub>               | Reverse recovery current | $I_F = 8A, d_{IF}/d_t = -200A/\mu s,$<br>$V_R = 600V, T_j = 125^{\circ}C$ | -     | 14  | 21  | А    |
| t <sub>rr</sub>               | Reverse recovery time    | $I_F = 1A, d_{IF}/d_t = -100A/\mu s, V_R = 30V, T_j = 25^{\circ}C$        | -     | 50  | 70  | ns   |

1.

Pulse test: tp = 380 µs,  $\delta$  < 2 % To evaluate the conduction losses use the following equation: P = 1.5 x I<sub>F(AV)</sub> + 0.05 IF <sup>2</sup> (RMS)

Table 15. **Thermal resistance** 


| Symbol               | Parameter          | Test conditions               | Value |     |      | Unit |
|----------------------|--------------------|-------------------------------|-------|-----|------|------|
| Symbol               |                    |                               |       | Тур | Max  | Unit |
| R <sub>th(j-c)</sub> |                    | IGBT                          | -     | -   | 0.42 | °C/W |
| R <sub>th(j-c)</sub> | Thermal resistance | Diode                         | -     | -   | 0.52 | °C/W |
| R <sub>th(CH)</sub>  |                    | Module with heatsink compound | -     | -   | TBD  | °C/W |



# 5 Mechanical dimensions

### 5.1 Mechanical data (dimensions in mm)

Figure 5. Mechanical data (dimensions in mm)





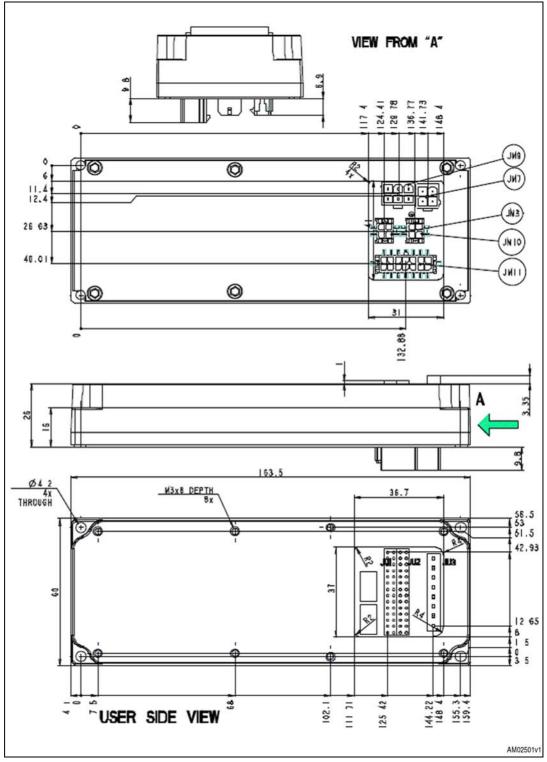



Figure 6. Mechanical data (dimensions in mm) continued



57

#### 5.1.1 Technical specifications for surface coupling

IMD module can be coupled with a plane surface finished with characteristics detailed below:

|                                      | · · ·  |
|--------------------------------------|--------|
| Parameter                            | Value  |
| Roughness                            | 3.2 Ra |
| Planarity                            | 0.1 mm |
| Max coupling torque on fixing screws | 3 N/m  |

 Table 16.
 Technical specifications for surface coupling

### 5.2 The basic software package

A basic software package is available on request, at source level. This software package is written in C language (not C++) by Robox and is supplied AS IS.

The comments are in English. It was developed using the IAR's Embedded WorkBench development tool.

In the design workspace each processor, the fieldbus processor and the drive processor, has its own project. The interface between them is defined in some common files.

The fieldbus processor main tasks are:

- building up of the whole system at power on
- communication handling with the external master fieldbus according to the EtherCat CoE profile (Ecat sync mode or Distributed clock mode)
- information exchange with the drive processor through the dual port ram implemented into the FPGA
- handling of the I<sup>2</sup>C port to get application parameters
- holding brake management

The drive processor main tasks are:

- PWM driving performed at the same frequency of the current loop or at double frequency (4-8-16-32 kHz).
- current loop closure (4-8-16 kHz). The control algorithm is PI
- speed loop closure (1-2 kHz). The control algorithm is PI
- position loop closure (1-2 kHz). The control algorithm is P

The system is able to work in torque control or in speed control or in position control.

The feed forward inputs are provided for the two inner loops. The PWM driving, and the loops closure, are synchronized to the external master fieldbus sync event.

- DC bus reading An optically coupled reading of the DC bus voltage allows its monitoring. Moreover the gains of the current loop are independent from the DC bus level.
- Filtering: 3 optional 2nd order filter stages (LowPass/Notch) can be activated on SpeedReference



3 optional 2nd order filter stages (LowPass/Notch) can be activated on TorqueReference.

Triple sampling on the resolver reading is provided

- Position or time capture on the two digital inputs
- Self tuning

a complete self tuning procedure is available. It includes:

- motor characteristics (correct wiring, number of motor and transducer poles)
- current loop gains
- speed loop gains
- EnDat offset position read-out and storage in the e2prom
- resolver adjustment (amplitude, sample phase, position offset and alarm threshold)
- Self test

built-in self test allowing to generate square or synusoidal waveforms on the speed or torque reference with adjustable frequency, amplitude, offset and TT cycle.

A complete library to access all the involved peripherals is included.

The EtherCAT  $^{\ensuremath{\mathbb{R}}}$  entries manual of the basic software package is available at Robox on request.

### 5.3 Safety characteristics and connection requirements

The IMD module is designed to comply with the IEC61800-5-1 norms, applicable to the D.C. drive systems connected to the line voltage up to 800 V D.C.

The earthing connections are intended as TN or TT having the voltage between phase and Earth 300 V r.m.s. maximum.

In case this voltage is higher than 300 V r.m.s. the user shall provide the system with protective device (varistor, voltage discharger, etc.) in order to reduce the impulse voltage to 2500 V max.

The P.E. connections, available at JU3 pins 7, 8 and/or JM9 pins 1, 2, 3 shall be connected to the protective bonding before supplying the system.

Please note that Earth leakage current is > 3.5 mA. Automatic disconnection of thesupply in case of discontinuity of the protective conductor must be provided.

#### 5.4 Installation and user's manual

For installation on a system or motor please ask end user.

Specifications for surface coupling can be find in this document section *Section 5.1.1*.

#### 5.5 Maintenance

The IMD module doesn't require maintenance. In case of failure module is not repairable and have to be replaced.



# 6 Revision history

#### Table 17. Document revision history

| Date        | Revision                  | Changes                                                                           |
|-------------|---------------------------|-----------------------------------------------------------------------------------|
| 31-May-2010 | -May-2010 1 First release |                                                                                   |
| 26-Jan-2011 | 2                         | Updated coverpage, <i>Table 4 on page 8</i><br>Added <i>Section 1.2 on page 6</i> |
| 25-Jul-2012 | 3                         | Updated Table 5 on page 10 and Table 11 on page 12.                               |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 17527 Rev 3

