
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Description

Atmel® QTouch® Peripheral Touch Controller (PTC) offers built-in hardware for
buttons, sliders, and wheels. PTC supports both mutual and self capacitance
measurement without the need for any external component. It offers superb
sensitivity and noise tolerance, as well as self-calibration and minimizes the
sensitivity tuning effort by the user.

The PTC is intended for acquiring capacitive touch sensor signals. The external
capacitive touch sensor is typically formed on a PCB, and the sensor electrodes
are connected to the analog charge integrator of the PTC using the device I/O
pins. The PTC supports mutual capacitance sensors organized as capacitive
touch matrices in different X-Y configurations, including Indium Tin Oxide (ITO)
sensor grids. In mutual capacitance mode, the PTC requires one pin per X line
(drive line) and one pin per Y line (sense line). In self capacitance mode, the PTC
requires only one pin with a Y-line driver for each self-capacitance sensor.

The PTC supports two sets of libraries, the QTouch Library and the QTouch
Safety Library. The QTouch Library supports both mutual and self capacitance
methods. The QTouch Safety Library is available for both GCC and IAR. The
QTouch Safety Library also supports both the mutual capacitance method and self
capacitance method along with the additional safety features.

Atmel QTouch Safety Library

Peripheral Touch Controller

USER GUIDE

1. Development Tools . 8
1.1 Device Variants Supported . 8

2. QTouch Safety Library . 9
2.1 API Overview. 9

2.2 Sequence of Operation . 11

2.3 Program Flow . 12

2.4 Configuration Parameters . 13

2.4.1 Pin Configuration . 16

2.4.2 Sensor Configuration . 18

2.4.3 Acquisition Parameters . 18

2.4.4 Sensor Global Parameters . 20

2.4.5 Common Parameters . 20

2.4.6 Noise Immunity Global Parameters . 21

2.4.7 Noise Immunity Features . 22

2.4.8 Sensor Lockout . 25

2.4.9 Frequency Auto Tune . 25

2.5 Touch Library Error Reporting Mechanism . 27

2.6 Touch Library Program Counter Test . 27

2.6.1 Logical Program Flow Test . 27

2.6.2 Program Counter Test . 29

2.7 CRC on Touch Input Configuration . 30

2.8 Double Inverse Memory Check . 32

2.8.1 Application to Touch Library . 32

2.8.2 Touch Library to Application . 33

2.9 Application Burst Again Mechanism . 36

2.10 Memory Requirement . 36

2.10.1 Memory Requirement for IAR Safety library . 37

2.11 API Execution Time. 38

2.11.1 Mutual Capacitance API Execution Time . 38

2.11.2 Self Capacitance API Execution Time . 40

2.12 Error Interpretation . 43

2.12.1 Error Codes Returned Synchronously . 43

2.12.2 Error Codes Returned Through Callback . 45

2.13 Data and Function Protection . 46

2.14 Moisture Tolerance . 46

2.14.1 Moisture Tolerance Group . 46

2.14.2 Multi-touch Group . 46

2.15 Quick Re-burst . 47

2.15.1 Synchronizing Quick Re-burst and Application Burst again . 48

2.16 Reading Sensor States . 48

2.17 Touch Library Suspend Resume Operation . 48

2.18 Drifting on Disabled Sensors. 50

3. QTouch Safety Library API . 51
3.1 Typedefs . 51

3.2 Macros. 51

3.2.1 Touch Library Acquisition Status Bit Fields. . 51

3.2.2 Sensor State Configurations. 52

3.3 Enumerations . 53

3.3.1 Touch Library GAIN Setting(tag_gain_t) 53
3Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

3.3.2 Filter Level Setting (tag_filter_level_t) 53

3.3.3 Touch Library AUTO OS Setting (tag_auto_os_t) 53

3.3.4 Library Error Code (tag_touch_ret_t) 54

3.3.5 Sensor Channel (tag_channel_t) 55

3.3.6 Touch Library State (tag_touch_lib_state_t) 55

3.3.7 Sensor Type (tag_sensor_type_t) 55

3.3.8 Touch Library Acquisition Mode (tag_touch_acq_mode_t) 55

3.3.9 AKS Group (tag_aks_group_t) 56

3.3.10 Channel Gain Setting (tag_gain_t) 56

3.3.11 Sensor Recalibration Threshold (tag_recal_threshold_t) 57

3.3.12 Rotor Slider Resolution (tag_resolution_t) 57

3.3.13 Auto Tune Setting (tag_auto_tune_type_t) 57

3.3.14 PTC Clock Prescale Setting (tag_prsc_div_sel_t) 58

3.3.15 PTC Series Resistor Setting (tag_rsel_val_t) 58

3.3.16 PTC Acquisition Frequency Delay Setting (freq_hop_sel_t) 59

3.3.17 PTC Acquisition Frequency Mode Setting (tag_freq_mode_sel_t) 59

3.3.18 PTC Sensor Lockout Setting (nm_sensor_lockout_t) 60

3.3.19 Moisture Group Setting (moisture_grp_t) 60

3.3.20 Multi-touch Group Setting (mltch_grp_t) 60

3.4 Data Structures . 62

3.4.1 Touch Library Configuration Type . 62

3.4.2 Touch Library Safety Type . 63

3.4.3 Touch Library Double Inverse Type . 64

3.4.4 Touch Library Parameter Type . 65

3.4.5 Touch Library Measurement Data Type . 67

3.4.6 Touch Library Filter Data Type . 67

3.4.7 Touch Library Time Type . 68

3.4.8 Touch Library Info Type . 68

3.4.9 Touch Library Version . 69

3.5 Global Variables . 69

3.5.1 touch_lib_fault_test_status . 69

3.5.2 touch_error_app_cb . 69

3.5.3 touch_suspend_app_cb . 69

3.6 Functions. 70

3.6.1 Touch Library Initialization . 70

3.6.2 Touch Library Sensor Configuration . 70

3.6.3 Touch Library Sensor Calibration . 70

3.6.4 Touch Library Sensor Measurement . 71

3.6.5 Touch Library Sensor Specific Touch Delta Read . 71

3.6.6 Touch Library Sensor Specific Parameter Configuration Read-write 72

3.6.7 Touch Library Sensor Specific Acquisition Configuration Read-write 72

3.6.8 Touch Library Sensor Global Parameter Configuration Read-write 73

3.6.9 Touch Library Info Read . 74

3.6.10 Touch Library Program Counter . 74

3.6.11 Touch Library CRC Configuration Check . 74

3.6.12 Touch Library Double Inverse check . 75

3.6.13 Touch Library Enable Disable Sensor . 75

3.6.14 Touch Library Version Information . 76

3.6.15 Touch Library Moisture Tolerance . 76

3.6.16 Touch PTC Peripheral Enable Disable . 77

3.6.17 Touch Library Suspend Resume . 78
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

4

3.6.18 Touch Library Re-Initialization . 78

4. FMEA . 80
4.1 Double Inverse Memory Check . 80

4.1.1 Application to FMEA . 80

4.1.2 FMEA to Application . 80

4.2 Memory Requirement . 80

4.2.1 Memory Requirement for IAR Library . 80

4.3 API Execution Time. 82

4.3.1 Mutual Capacitance API Execution Time . 82

4.3.2 Self Capacitance API Execution Time . 83

4.4 Error Interpretation . 84

4.5 Data and Function Protection . 85

4.6 FMEA Considerations . 85

5. FMEA API . 86
5.1 Typedefs . 86

5.2 Enumerations . 86

5.2.1 sf_fmea_faults_t . 86

5.3 Data Structures . 87

5.3.1 sf_xxxxcap_fmea_open_test_config_t . 87

5.3.2 sf_xxxxcap_fmea_input_config_t . 88

5.3.3 sf_mutlcap_fmea_fault_report_t . 88

5.3.4 sf_selfcap_fmea_fault_report_t . 90

5.4 Global Variables . 93

5.4.1 sf_xxxxcap_fmea_fault_report_var . 93

5.5 Functions. 93

5.5.1 sf_xxxxcap_fmea_init . 93

5.5.2 sf_xxxxcap_fmea_test . 93

5.5.3 sf_xxxcap_fmea_test_open_pins_per_channel . 95

5.5.4 sf_xxxxcap_fmea_stop . 100

5.6 Macros. 101

6. System . 102
6.1 Relocating Touch Library and FMEA RAM Area. 102

6.1.1 Modifying the IAR Linker File . 102

6.1.2 Modifying GCC Linker File . 103

6.2 API Rules . 105

6.3 Safety Firmware Action Upon Fault Detection . 106

6.4 System Action Upon Fault Detection. 106

6.5 Touch Library and FMEA Synchronization . 106

6.6 Safety Firmware Package . 108

6.7 SAMDSafety Firmware Certification Scope. 108

6.8 Hazard Time . 109

6.9 ASF Dependency . 109

6.10 Robustness and Tuning . 109

6.11 Standards compliance. 109

6.12 Safety Certification . 110

7. Known Issues . 111

8. References . 112
5Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

9. Revision History . 113
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

6

Features

The following features are available only in the QTouch Safety Library:

 CRC protection

 Logical program flow sequence

 Memory protection using double inverse mechanism

 Library RAM relocation and

 Compile-time and Run-time check

For more information about the capacitance related technological concepts, Refer Chapter 4 in Atmel QTouch Library
Peripheral Touch Controller User Guide [42195] available at www.atmel.com.

Product Support

For assistance related to QTouch capacitive touch sensing software libraries and related issues, contact your local
Atmel sales representative or log on to myAtmel Design Support portal to submit a support request or access a
comprehensive knowledge base.

If you don’t have a myAtmel account, please visit http://www.atmel.com/design-support/ to create a new account by
clicking on “Create Account” in the myAtmel menu at the top of the page.

Once logged in, you will be able to access the knowledge base, submit new support cases from the myAtmel page or
review status of your ongoing cases.

 Implements low-power, high-sensitivity,
environmentally robust capacitive touch
buttons, sliders, and wheels

 Supports mutual capacitance and self
capacitance sensing

 Upto 256 channels in mutual-capacitance
mode

 Upto 16 channels in self-capacitance mode

 Two pin per electrode in mutual capacitance
mode - with no external components

 One pin per electrode in self capacitance mode
- with no external components

 Load compensating charge sensing

 Parasitic capacitance compensation for mutual
capacitance mode

 Adjustable gain for superior sensitivity

 Zero drift over the temperature and VDD range

 No need for temperature or VDD compensation

 Hardware noise filtering and noise signal
desynchronization for high conducted immunity

 Supports moisture tolerance

 Atmel provided QTouch Safety Library
firmware

 Supports Sensor Enable and Disable at
Runtime

 Supports Quick Reburst Feature for Faster
Response Time
7Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

www.atmel.com
http://www.atmel.com/design-support/

1. Development Tools

The following development tools are required for QTouch Safety Library development using SAMD20/SAMD21 devices:

Development Environment:

 IAR Embedded Workbench for ARM® 7.40.3.8938 for IAR Compiler

 Atmel Software Framework 3.26.0.1381.

 Atmel Studio 6.2.1563- Service Pack 2 for GCC Compiler

1.1 Device Variants Supported

QTouch Safety Library for SAMDevices is available for the following device variants:

Note: PIN_PB04 is not supported for Touch operation in ATSAMD21G17AU and ATSAMD21G18AU devices.

Series Variant

SAM D20 J Series ATSAMD20J18, ATSAMD20J17, ATSAMD20J16, ATSAMD20J15

SAM D20 G Series
ATSAMD20G18, ATSAMD20G17, ATSAMD20G16, ATSAMD20G15,
ATSAMD20G17U, ATSAMD20G18U

SAM D20 E Series ATSAMD20E18, ATSAMD20E17, ATSAMD20E16, ATSAMD20E15

SAM D21 J Series
ATSAMD21J18A, ATSAMD21J17A, ATSAMD21J16A, ATSAMD21J16B,
ATSAMD21J15A, ATSAMD21J15B

SAM D21 G Series
ATSAMD21G18A, ATSAMD21G18AU, ATSAMD21G17A,
ATSAMD21G17AU, ATSAMD21G16A, ATSAMD21G16B,
ATSAMD21G15A, ATSAMD21G15B

SAM D21 E Series
ATSAMD21E18A, ATSAMD21E17A, ATSAMD21E16A,
ATSAMD21E16B, ATSAMD21E16BU, ATSAMD21E15A,
ATSAMD21E15B, ATSAMD21E15BU
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

8

2. QTouch Safety Library

Atmel QTouch Safety Library makes it simple for developers to embed capacitive-touch button, slider, wheel
functionality into general-purpose Atmel SAMD20/SAMD21 microcontroller applications. The royalty-free QTouch Safety
Library provides library files for each device and supports different numbers of touch channels, enabling both flexibility
and efficiency in touch applications.

QTouch Safety Library can be used to develop single-chip solutions for many control applications, or to reduce chip
count in more complex applications. Developers have the latitude to implement buttons, sliders, and wheels in a variety
of combinations on a single interface.

Figure 2-1. Atmel QTouch Safety Library

2.1 API Overview

QTouch Safety Library API for PTC can be used for touch sensor pin configuration, acquisition parameter setting as well
as periodic sensor data capture and status update operations. The QTouch Safety Library interfaces with the PTC
module to perform the required actions. The PTC module interfaces with the external capacitive touch sensors and is
capable of performing mutual and self capacitance method measurements.

Note: From this section onwards, the program elements that are common to both mutual and self capacitance
technologies are represented using XXXXCAP or xxxxcap.
9Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

For normal operation, it is sufficient to use the Regular APIs. The Helper APIs provides additional flexibility to the user
application. The available APIs are listed in the following table.
Table 2-1. Regular and Helper APIs

Regular API Helper API

touch_xxxxcap_sensors_init

touch_xxxxcap_di_init

touch_xxxxcap_sensor_config

touch_xxxxcap_sensors_calibrate

touch_xxxxcap_sensors_measure
touch_xxxxcap_sensors_deinit

touch_xxxxcap_sensor_get_delta

touch_xxxxcap_sensor_update_config

touch_xxxxcap_sensor_get_config

touch_xxxxcap_update_global_param

touch_xxxxcap_get_global_param

touch_xxxxcap_update_acq_config

touch_xxxxcap_get_acq_config

touch_xxxxcap_get_libinfo

touch_xxxxcap_calibrate_single_sensor

touch_xxxxcap_sensor_disable

touch_xxxxcap_sensor_reenable

touch_lib_pc_test_magic_no_1

touch_lib_pc_test_magic_no_2

touch_lib_pc_test_magic_no_3

touch_lib_pc_test_magic_no_4

touch_calc_xxxcap_config_data_integrity

touch_test_xxxcap_config_data_integrity

touch_xxxxcap_cnfg_mois_mltchgrp

touch_xxxxcap_cnfg_mois_threshold

touch_xxxxcap_mois_tolrnce_enable

touch_xxxxcap_mois_tolrnce_disable

touch_library_get_version_info

touch_disable_ptc

touch_enable_ptc

touch_suspend_ptc

touch_resume_ptc
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

10

Figure 2-2. QTouch Safety Library Overview

2.2 Sequence of Operation

The application periodically initiates a touch measurement on either mutual capacitance or self capacitance sensors. At
the end of each sensor measurement, the PTC module generates an end of conversion (EOC) interrupt. The touch
measurement is performed sequentially until all the sensors are measured. Additional post-processing is performed on
the measured sensor data to determine the touch status of the sensors (keys/rotor/slider) position. The post processing
determines the position value of the sensors and the callback function is then triggered to indicate completion of
measurement.

The recommended sequence of operation facilitates the CPU to either sleep or perform other functions during touch
sensor measurement.
11Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Figure 2-3. QTouch Application Sequence

2.3 Program Flow

Before using the QTouch Safety Library API, configure the PTC module clock generator source. The PTC module clock
can be generated using one of the eight generic clock generators (GCLK0-GCLK7). Configure the corresponding
generic clock multiplexer such that the PTC module clock is set between 400 kHz and 4 MHz.

The touch_xxxxcap_sensors_init API initializes the QTouch Safety Library as well as the PTC module.
Additionally, it initializes the capacitance method specific pin, register, and global sensor configuration.

The touch_xxxxcap_di_init API in i t i a l i zes the memory fo r d i f fe ren t po in te rs in the
touch_lib_xxxcap_param_safety structure.

The touch_xxxxcap_sensor_config API configures the individual sensor. The sensor specific configuration
parameters can be provided as input arguments to this API.

The touch_xxxxcap_sensors_calibrate API calibrates all the configured sensors and prepares the sensors for
normal operation. The auto tuning type parameter is provided as input argument to this API.

The touch_xxxxcap_sensors_measure API initiates a touch measurement on all the configured sensors.

The sequence of the mandatory APIs are depicted in the following illustration.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

12

Figure 2-4. API Usage

For configuring multiple sensors, touch_xxxxcap_config_sensor must be called every time to configure each
sensor.

2.4 Configuration Parameters

The following parameters are available in the QTouch Safety Library for configuring capacitance.
Table 2-2. Configuration Parameters for Mutual and Self capacitance Methods

Parameter Parameter Macros Description

Pin Configuration DEF_MUTLCAP_NODES

DEF_SELFCAP_LINES

Number of Mutual Capacitance nodes.

Number of Self Capacitance lines.

Sensor
Configuration

DEF_XXXXCAP_NUM_CHANNELS Number of Channels.

DEF_XXXXCAP_NUM_SENSORS Number of Sensors.

DEF_XXXXCAP_NUM_ROTORS_SLIDERS Number of Rotor/Sliders.

Yes

No

Call in
loop

time_to_measure_touch

Configure multiple Touch
sensors

touch_xxxxcap_di_init()

touch_xxxxcap_sensors_config()

touch_xxxxcap_sensors_calibrate()

PTC ISR
(Sensors

Calibration)

filter_callback(), if enabled

measure_complete_callback(),
measured data and Touch
Status

touch_xxxxcap_sensors_measure(NO
RMAL_ACQ_MODE)

Host Application code/ SLEEP

Is Calibration
completed?

PTC ISR
(Normal

measurement)
filter_callback(), if enabled

measure_complete_callback(),
measured data and Touch Status

touch_xxxxcap_sensors_measure(NO
RMAL_ACQ_MODE)

Host Application code/ SLEEP

Calibration starts when
first time call to measure
sensors API after
sensors calibrate API.

Subsequent calls to
measure sensors API
after calibration will
perform normal
measurement.

touch_xxxxcap_sensors_init()

Application wants
immediate

measurement

No

Yes

If Library Burst Again Flag set to 1 internally
13Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Acquisition
Parameters

DEF_XXXXCAP_FILTER_LEVEL_PER_NODE The filter level setting controls the number of
samples collected to resolve each acquisition.
This is applicable for individual channel.

DEF_XXXXCAP_GAIN_PER_NODE Gain is applied for an individual channel to allow
a scaling-up of the touch delta.

DEF_XXXXCAP_AUTO_OS_PER_NODE Auto oversample controls the automatic
oversampling of sensor channels when unstable
signals are detected. This is applicable for
individual channel.

DEF_XXXXCAP_FREQ_MODE Frequency mode setting allows users to
configure the bursting waveform characteristics
to get better noise performance for the system.

DEF_XXXXCAP_CLK_PRESCALE_PER_NODE This method is used to select the PTC prescaler.
This is applicable for individual channel.

DEF_XXXXCAP_SENSE_RESISTOR_PER_NO
DE

This method is used to select the sense resistor
value. This is applicable for individual channel.

DEF_XXXXCAP_CC_CAL_CLK_PRESCALE_P
ER_NODE

This method is used to select the PTC prescalar
for CC calibration. This is applicable for
individual channel.

DEF_XXXXCAP_CC_CAL_SENSE_RESISTOR
_PER_NODE

This method is used to select the sense resistor
for CC calibration. This is applicable for
individual channel.

DEF_XXXXCAP_HOP_FREQS Frequency hops to be performed. Maximum
three frequency hops is possible.

Table 2-2. Configuration Parameters for Mutual and Self capacitance Methods

Parameter Parameter Macros Description
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

14

Sensor Global
Parameters

DEF_XXXXCAP_DI Capacitance sensor detect integration (DI) limit.

Range: 0u to 255u.

DEF_XXXXCAP_TCH_DRIFT_RATE Capacitance sensor towards touch drift rate.

Range: 1u to 127u.

DEF_XXXXCAP_ATCH_DRIFT_RATE Capacitance sensor away from touch drift rate.

Range: 1u to 127u.

DEF_XXXXCAP_MAX_ON_DURATION Capacitance sensor maximum ON time
duration.

Range: 0u to 255u.

DEF_XXXXCAP_DRIFT_HOLD_TIME Capacitance Sensor drift hold time.

Range: 1u to 255u.

DEF_XXXXCAP_ATCH_RECAL_DELAY Capacitance sensor away from touch
recalibration delay.

Range: 0u to 255u. Specifying a value of 0u
would disable the away from touch recalibration
feature.

DEF_XXXXCAP_ATCH_RECAL_THRESHOLD Capacitance sensor away from touch
recalibration threshold.

DEF_XXXXCAP_CAL_SEQ1_COUNT Software calibration sequence counter 1.

DEF_XXXXCAP_CAL_SEQ2_COUNT Software calibration sequence counter 2.

DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STA
BILITY_LIMIT

Defines the stability of the signals for noise
measurement.

Range: 1u to 1000u.

DEF_XXXXCAP_NOISE_LIMIT This parameter is used to select the noise limit
value to trigger sensor lockout functionality.

Range: 1u to 255u.

Sensor Global
Parameters

DEF_XXXXCAP_LOCKOUT_SEL This parameter is used to select the lockout
functionality method.

Range: 0u to 2u.

DEF_XXXXCAP_LOCKOUT_CNTDOWN Defines the number of measurements after
which the sensor is unlocked for touch detection.

Range: 1u to 255u.

DEF_XXXXCAP_FREQ_AUTO_TUNE_SIGNAL
_STABILITY_LIMIT

Defines the stability limit of signals for frequency
auto tune decision making. Range: 1u to 1000u.

DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_CNT

This parameter is used to trigger the frequency
auto tune.

Range: 1u to 255u.

Table 2-2. Configuration Parameters for Mutual and Self capacitance Methods

Parameter Parameter Macros Description
15Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

2.4.1 Pin Configuration

2.4.1.1 Mutual Capacitance

Mutual capacitance method uses a pair of sensing electrodes for each touch channel. These electrodes are denoted as
X and Y lines. Capacitance measurement is performed sequentially in the order in which touch (X-Y) nodes are
specified.

Common Parameters DEF_TOUCH_MEASUREMENT_PERIOD_MS User for Touch measurement periodicity.

DEF_TOUCH_PTC_ISR_LVL PTC Module interrupt level.

DEF_XXXXCAP_NOISE_MEAS_ENABLE This parameter is used to enable or disable the
noise measurement.

Range: 0 or 1.

DEF_XXXXCAP_FREQ_AUTO_TUNE_ENABLE This parameter is used to enable and disable the
frequency auto tune functionality.

Range: 0 or 1.

DEF_XXXXCAP_NOISE_MEAS_BUFFER_CNT This parameter is used to select the buffer count
for noise measurement buffer.

Range: 3 to 10.

Moisture
Tolerance and
Quick re-burst
Parameters

DEF_XXXXCAP_NUM_MOIS_GROUPS This parameter is used to configure the number
of moisture groups.

DEF_XXXXCAP_MOIS_TOLERANCE_ENABLE This parameter is used to enable or disable the
Moisture tolerance feature.

DEF_XXXXCAP_QUICK_REBURST_ENABLE This parameter id used to enable or disable the
Quick re-burst feature.

Table 2-2. Configuration Parameters for Mutual and Self capacitance Methods

Parameter Parameter Macros Description
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

16

Mutual capacitance channel (X-Y channels)

 SAMD20/SAMD21 J (64 pin): up to 16(X) x 16(Y) channels
 SAMD20/SAMD21 G (48 pin): up to 12(X) x 10(Y) channels
 SAMD20/SAMD21 E (32 pin): up to 10(X) x 6(Y) channels

Figure 2-5. Mutual Capacitance Sensor Arrangement

To reduce noise issues due to EMC, use a series resistor with value of 1k on X and Y lines.

2.4.1.2 Self Capacitance

Self capacitance method uses a single sense electrode for each touch channel, denoted by a Y line. Capacitance
measurement is performed sequentially in the order in which Y lines are specified in the DEF_SELFCAP_LINES
configuration parameter. Self capacitance touch button sensor is formed using a single Y line channel, while a touch
rotor or slider sensor can be formed using three Y line channels.

Self capacitance channel (Y sense lines)

 SAMD20/SAMD21 J (64 pin): up to 16 channels
 SAMD20/SAMD21 G (48 pin): up to 10 channels
 SAMD20/SAMD21 E (32 pin): up to 6 channels

Figure 2-6. Self Capacitance - Sensor Arrangement
17Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Figure 2-7. Self Capacitance - Channel to Sensor Mapping

Y sense line can be specified using the configuration parameter DEF_SELFCAP_LINES in non-sequential order.

The touch sensors should be enabled in the sequent ia l order of the channels speci f ied us ing the
touch_xxxxcap_sensor_config() API.

For improved EMC performance, a series resistor with value of 1k should be used on X and Y lines. For more
information about designing the touch sensor, refer to Buttons, Sliders and Wheels Touch Sensor Design Guide
available at www.atmel.com.

2.4.2 Sensor Configuration

A mutual capacitance button is formed using a single X-Y channel, while a rotor or slider can be formed using three to
eight X-Y channels.

A self capacitance button is formed using a single Y channel, while a rotor or slider can be formed using three Y
channels.

For more information about designing the touch sensor, refer to Buttons, Sliders and Wheels Touch Sensor Design
Guide [QTAN0079] (www.atmel.com).

2.4.3 Acquisition Parameters

Filter Level Setting

The filter level setting controls the number of samples acquired to resolve each acquisition. A higher filter level setting
provides improved signal to noise ratio even under noisy conditions. However, it increases the total time for measuring
the signal, which results in increased power consumption. This is applicable for individual channel.

Auto Oversample Setting

Auto oversample controls the automatic oversampling of sensor channels when unstable signals are detected with the
default Filter level setting. Enabling Auto oversample results in Filter level x Auto Oversample number of
samples measured on the corresponding sensor channel when an unstable signal is observed. In a case where Filter
level is set to FILTER_LEVEL_4 and Auto Oversample is set to AUTO_OS_4, 4 oversamples are collected with
stable signal values and 16 oversamples are collected when unstable signal is detected. Auto Oversampling Signal
Stability will be determined by the nm_sig_stability_limit variable.

A higher Auto oversample setting provides improved signal to noise ratio under noisy conditions, while increasing the
total time for measurement resulting in increased power consumption and response time. Auto oversamples can be
disabled to obtain best power consumption. Auto oversamples should be configured for individual channel.

Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

18

www.atmel.com
www.atmel.in/Images/doc10752.pdf
www.atmel.com

Figure 2-8. Auto Oversamples

Auto Tuning Options

Auto tuning parameter passed to the calibration API allows users to trade-off between power consumption and noise
immunity. Following auto tuning options are available:

 AUTO_TUNE_NONE - Auto tuning disabled

 AUTO_TUNE_PRSC - Auto tuning of the PTC prescaler

 AUTO_TUNE_RSEL - Auto tuning of the series resistor

When Auto tuning of the series resistor is selected the PTC is optimized for fastest operation or lowest power operation.
The PTC runs at user defined speed and the series resistor is set to the optimum value which still allows full charge
transfer. Auto tuning wil l be performed on individual channel series resistor settings. DEF_XXXXCAP_
SENSE_RESISTOR_PER_NODE will be tuned by the QTouch Safety Library.

When Auto tuning of PTC prescaler is selected the performance is optimized for best noise immunity. During calibration,
the QTouch Safety Library carries out auto tuning to ensure full charge transfer for each sensor, by adjusting either the
internal series resistor or the PTC clock prescaler. The internal series resistor is set to user defined value and the PTC
prescaler is adjusted to slow down the PTC operation to ensure full charge transfer. Auto tuning will be performed on
individual channel PTC prescaler settings.DEF_XXXXCAP_CLK_PRESCALE_PER_NODE will be tuned by the QTouch
Safety Library.

Manual tuning can also be performed by passing AUTO_TUNE_NONE as parameter to the calibration function. When
manual tuning option is selected, the user defined values of PTC prescaler and series resistor on individual channels are
used for PTC operation.

Frequency Mode Setting

Frequency mode allows users to configure the bursting waveform characteristics for better noise performance in the
system. Following frequency modes are available:

 FREQ_MODE_NONE - Frequency mode is disabled

 FREQ_MODE_HOP - Frequency mode hopping

 FREQ_MODE_SPREAD - Frequency mode spread

 FREQ_MODE_SPREAD_MEDIAN - Frequency mode spread median
19Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

When frequency mode none option is selected, the PTC runs at constant speed selected by the user (in manual tuning
mode) or auto tuned frequency (in PTC rescale tune mode). In this case, the median filter is not applied.

When frequency mode hopping option is selected, the PTC runs at a frequency hopping cycle selected by the user (in
manual tuning mode) or auto tuned frequency cycle (in PTC prescaler tune mode). In this case, the median filter is
applied.

When frequency mode spread spectrum option is selected, the PTC runs with spread spectrum enabled on frequency
selected by the user (in manual tuning mode) or auto tuned frequency (in PTC prescaler tune mode). In this case, the
median filter is not applied.

When frequency mode spread spectrum median option is selected, the PTC runs with spread spectrum enabled on
frequency selected by the user (in manual tuning mode) or auto tuned frequency (in PTC prescaler tune mode). In this
case, the median filter is applied.

Gain Setting

Gain setting is applied for an individual channel to allow a scaling-up of the touch delta upon contact.

2.4.4 Sensor Global Parameters

For an overview of the sensor global and sensor specific parameters, refer Section 4.2.2 and Section 4.3 of the QTouch
General Library User Guide (www.atmel.com).

Note: Ensure that the value of DEF_XXXXCAP_CAL_SEQ2_COUNT is always less than the value specified in
DEF_XXXXCAP_CAL_SEQ1_COUNT. Refer Section 2.4.6 for more information about noise immunity global parameter.

2.4.5 Common Parameters

Interrupt Priority Level Setting

The Nested Vectored Interrupt Controller (NVIC) in the SAMD20/SAMD21 has four different priority levels. The priority
level of the PTC end of conversion ISR can be selected based on application requirements to accommodate time critical
operations.

To avoid stack overflow, ensure that adequate stack size has been set in the user application.

Table 2-3. Global Parameters Naming Changes

QTouch Safety Library Name Conventional QTouch Library Name

DEF_XXXXCAP_TCH_DRIFT_RATE
Towards Touch Drift

Negative Drift

DEF_XXXXCAP_ATCH_DRIFT_RATE

Away From Touch Drift
Positive Drift

DEF_XXXXCAP_ATCH_RECAL_THRESHOLD
Away From Touch Recalibration Threshold

Recalibration Threshold

DEF_XXXXCAP_ATCH_RECAL_DELAY

Away From Touch Recalibration delay
Positive Recalibration Delay

DEF_XXXXCAP_CAL_SEQ1_COUNT

Calibration Sequence Counter 1
Software Calibration Counter 1

DEF_XXXXCAP_CAL_SEQ2_COUNT

Calibration Sequence Counter 2
Software Calibration Counter 2
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

20

www.atmel.com
http://www.atmel.in/Images/doc8207.pdf

2.4.5.1 Measurement Period Setting

The measurement period setting is used to configure the periodic interval for touch measurement.

2.4.6 Noise Immunity Global Parameters

2.4.6.1 Noise Measurement Parameters

Noise Measurement Enable Disable

The DEF_XXXXCAP_NOISE_MEAS_ENABLE parameter is used to enable or disable the noise measurement.

 1 - Noise measurement will be enabled.

 0 - Noise measurement will be disabled and lockout functionality will not be available.

Noise Measurement Signal Stability Limit

The parameter DEF_XXXXAP_NOISE_MEAS_SIGNAL_STABILITY_LIMIT defines the stability of the signals for noise
measurement.

Signal values can change from sample to sample during a window buffer period. The difference between adjacent buffer
value is compared to the user configured stability limit.

Noise is reported only when two changes occur within the specified window period and only if both of which exceed the
stability limit.

Range: 1 to 1000

Noise Measurement Limit

The DEF_XXXXCAP_NOISE_LIMIT parameter is used to select the noise limit value to trigger sensor lockout
functionality.

There are two purposes for this parameter:

 If the noise level calculated during a running window exceeds DEF_XXXXCAP_NOISE_LIMIT, then the
corresponding sensors are declared noisy and sensor global noisy bit is set as ‘1’.

 If the lockout is enabled, and the noise level calculated during a running window exceeds DEF_XXXXCAP_NOISE
_LIMIT, then system triggers the sensor lockout functionality.

Range: 1 to 255

Noise Measurement Buffer Count

The DEF_XXXXCAP_NOISE_MEAS_BUFFER_CNT parameter is used to select the buffer count for noise measurement
buffer.

Range: 3 to 10 (If N number of samples differences have to be checked, define this parameter as “N + 1”)

 If N = 4 then set DEF_XXXXCAP_NOISE_MEAS_BUFFER_CNT 5u

2.4.6.2 Sensor LockOut Parameters

Sensor Lockout Selection

The DEF_XXXXCAP_LOCKOUT_SEL parameter is used to select the lockout functionality method.

 If DEF_XXXXCAP_LOCKOUT_SEL is set to SINGLE_SENSOR_LOCKOUT and a sensor’s noise level is greater than
DEF_XXXXCAP_NOISE_LIMIT, then corresponding sensor is locked out from touch detection and drifting is
disabled.

 If DEF_XXXXCAP_LOCKOUT_SEL is set to GLOBAL_SENSOR_LOCKOUT and any sensor’s noise level is greater
than DEF_XXXXCAP_NOISE_LIMIT, then all sensors are locked out from touch detection and drifting is disabled.

 If DEF_XXXXCAP_LOCKOUT_SEL is set to NO_LOCKOUT, then lockout feature is disabled.

Note:
21Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

̶ Global sensors noisy bit will be available for SINGLE_SENSOR_LOCKOUT and GLOBAL_SENSOR_LOCKOUT.

̶ Global sensors noisy bit will not be available for NO_LOCK_OUT.

Range: 0 to 2

Sensor Lockout Countdown

If the sensor signal moves from noisy to a good condition and stays there for a DEF_XXXXCAP_LOCKOUT_CNTDOWN
number of measurements, the sensor is unlocked and sensors are ready for touch detection and drifting is enabled.

Note: This parameter is valid only for global lockout.

Range: 1 to 255

2.4.6.3 Frequency Auto Tune Parameters

Frequency Auto Tune Enable Disable

The DEF_XXXXCAP_FREQ_AUTO_TUNE_ENABLE parameter will enable and disable the frequency auto tune
functionality.

This feature is applicable only for FREQ_MODE_HOP.

 1 - Frequency auto tune will be enabled

 0 - Frequency auto tune will be disabled

Frequency Auto Tune Signal Stability

The DEF_XXXXCAP_FREQ_AUTO_SIGNAL_STABILITY_LIMIT parameter defines the stability limit of signals for
deciding the Frequency auto tune.

Range: 1 to 1000

Frequency Auto Tune In Counter

The DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_CNT parameter is used to trigger the frequency auto tune.

I f sensor s igna l change a t each f requency exceeds the va lue spec i f i ed as
DEF_XXXXCAP_FREQ_AUTO_SIGNAL_STABILITY_LIMIT for DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_CNT, then
frequency auto tune will be triggered at this frequency.

Range: 1 to 255

Note: The Frequency Auto Tune feature and related parameters are available only in FREQ_MODE_HOP mode.

2.4.7 Noise Immunity Features

Noise Measurement

Noise is measured on a per-channel basis after each channel acquisition, using historical data on a rolling window of
successive measurements. Reported noise to exclude the instance of an applied or removed touch contact, but the
noise indication must react sufficiently fast that false touch detection before noise lockout is prevented.

Signal change from sample to sample during the window buffer is compared to the stability limit. Noise is reported only
when two changes occur w i th in the w indow pe r iod and bo th o f wh ich exceed the
DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STABILITY_LIMIT limit.

Noise is calculated using the following algorithm:

if (swing count > 2)

{

Nk = ((|Sn – Sn-1| > DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STABILITY))? (0): (|Sn-Sn-1|

- DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STABILITY)).

}

else
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

22

{

Nk = 0

}

The swing count is number o f s igna l changes that exceed DEF_XXXXCAP_NOISE_MEAS_SIGNAL
_STABILITY_LIMIT limit during buffer window period.

When the measured noise exceeds DEF_XXXXCAP_NOISE_LIMIT, the touch library locks out sensors, reports no
touch detection and drifting is stopped. Noise measurement is provided for all the channels. Each byte in
p_xxxxcap_measure_data-> p_nm_ch_noise_val provides the noise level associated with that channel. Noise
ind ica t ion i s p rov ided fo r a l l t he sensors con f igu red by the app l i ca t ion . A b i t i s ava i lab le i n
p_xxxxcap_measure_data-> p_sensor_noise_status for each sensor to determine whether the sensor is noisy
or not. The following code snippet provides the sample code to read the noise status of a particular sensor.

If (Double_Inverse_Check is passed on p_xxxxcap_measure_data->
p_sensor_noise_status)

{

If((GET_XXXXCAP_SENSOR_NOISE_STATUS(SENSOR_NUMBER) == 0)

{

/* Sensor is stable */

}

Else

{

/* Sensor is Unstable */

}

else

{

/* Take fault action on Double inverse check failure */

}

Note: Double inverse check must be performed on p_xxxxcap_measure_data-> p_sensor_noise_status
variable before using those variables.
23Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Figure 2-9. Noise Calculation

Normal measurement

Noise Meas =
ENABLE

Calculate Noise level

Global lockout
== Enable

 Single key
lockout = Enable

 noise value > noise
limit && Lockout
sensor = noisy

Noise value >
Noise limit && (

Set Lockout bit for all sensor
and Initialize Lockout

countdown with MAX value Set Lockout bit for current
sensor and Limit current Noise

value = 2 * Noise limit.

Lockout Count
= 0

Decrement Lockout
Countdown

Clear unlock Bit for
current sensor

Clear lock Bit for all sensor

Yes

Yes

Yes

Yes

No

yes

No

Sensor Post
processing

No

No

No
Current noise >

prev_noise
Decrement the

noise value
No

Noise value <
Noise limit

yes

No

yes

No

Yes
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

24

2.4.8 Sensor Lockout

This feature locks out the sensors when the measured noise exceeds DEF_XXXXCAP_NOISE_LIMIT and does not

report a touch. This prevents post-processing. So, the high level of noise cannot cause the channel to drift or recalibrate
incorrectly.

Safety library presents two types of lockout features:

Global sensor lockout

When the noise level of a sensor is greater than DEF_XXXXCAP_NOISE_LIMIT, all the sensors are locked out from
touch detection and drifting is disabled. Sensor signal changes from noisy to a good condition and stays there for a
DEF_XXXXCAP_LOCKOUT_CNTDOWN number of measurements, the sensor is unlocked for touch detection and also
available for post processing.

Single sensor lockout

When the noise level of a sensor is greater than DEF_XXXXCAP_NOISE_LIMIT, corresponding sensor is locked out
from touch detection and drifting is disabled. Sensor’s signal moves from noisy to a good condition and the noise value
itself becomes the count-down to clear lockout. The count-out time after a noise spike is proportional to the size of the
spike.

2.4.9 Frequency Auto Tune

The frequency auto tune feature provides the best quality of signal data for touch detection by automatically selecting
acquisition frequencies showing the best SNR in FREQ_MODE_HOP mode. During each measurement cycle, the signal
change since the last acquisition at the same frequency is recorded for each sensor. After the cycle, when all sensors
have been measured at the present acquisition frequency, the largest signal variation of all sensors is stored as the
variance for that frequency stage.

The va r iance fo r each f requency s tage i s compared to the
DEF_XXXXCAP_FREQ_AUTO_TUNE_SIGNAL_STABILITY_LIMIT limit, and if the limit is exceeded, a per-stage counter
is incremented. If the measured variance is lower than the limit, the counter is decremented, if it has not been set as
zero. If all frequencies display noise exceeding the stability limit, only the counter for the specific frequency stage with
the highest variance is incremented after its cycle.

When a frequency counter reaches the DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_CNT (auto-tune count in variable), that
frequency stage is selected for auto-tuning. A new frequency selection is applied and the counters and variances for all
frequencies are reset. After a frequency has been selected for auto-tuning, the count-in for that frequency stage is set to
half the original count-in and the process is repeated until either all frequencies have been measured or a frequency is
selected which does not re-trigger auto-tuning is determined.

If all frequencies have been tested, and the variation exceeds the DEF_XXXXCAP_FREQ_AUTO_TUNE_SIGNAL
_STABILITY_LIMIT limit then the frequency with the lowest variance is selected for the frequency stage currently
under tuning. The auto-tune process is re-initialized and further tuning does not take place until a frequency stage’s high
variance counter again reaches the count in limit.
25Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Figure 2-10. Frequency Auto-Tune

Normal measurement

 (FREQ_HOP_MODE
= ENABLE) &&

(FREQ_AUTO_TUNE =
ENABLE

Signal change of
current freq > Stability

limit

Increment Frequency auto tune
in count for this frequency

Auto tune in count >
Auto tune_Limit

Find the good Frequency and set
as current frequency.

Decrement Auto tune
counter

Noise measurement and System
post processing

Yes

Yes

No

No

Yes

No
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

26

2.5 Touch Library Error Reporting Mechanism

The application reports the Touch library errors using one of the two mechanisms:

 Touch Library Error Application Callback mechanism

 API Return Type mechanism

Touch Library Error Application Callback

If any touch library error is generated due to failure in the logical program counter flow or internal library checks, the
touch library calls the error callback function registered by the application. If error callback is not registered by the
application, the touch library will lock the system in an infinite loop.

The following sample code block registers the touch library error callback:

/* registering the callback */

touch_error_app_cb = touch_lib_error_callback;

Note: Before calling any touch library API, register the touch library error callback.

For the list of APIs that calls the error call back function, see Section 2.12.2, “Error Codes Returned Through Callback”

API Return Type Mechanism

Few Touch library APIs can return the error synchronously through function call return. For the list of APIs that return the
error synchronously, see Section 2.12.1, “Error Codes Returned Synchronously”.

2.6 Touch Library Program Counter Test

The touch library implements two types of tests to verify if the program counter is functioning properly. The logical
program tests verifies that the logical sequence of the APIs and processes are appropriate. The program counter test
ensures that the program counter is working as expected.

2.6.1 Logical Program Flow Test

There are two sub tests. One test ensures that the mandatory sequence of APIs is followed as illustrated in Figure 2-4.
The second test tracks various internal processes by maintaining a unique counter for each process. Any error in the
log ica l sequence causes e r ro r ca l lback func t ion to be ca l led w i th e r ro r s ta tus as
TOUCH_LOGICAL_PROGRAM_CNTR_FLOW_ERR.
27Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Figure 2-11. Example Sequence for Logical Program Flow Error

Figure 2-12. Example of a Wrong API Sequence

��

APPLICATION QTOUCH LIBRARY

��

APPLICATION QTOUCH LIBRARY
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

28

2.6.2 Program Counter Test

This is another mechanism using which Program Counter can tested. To test the branching, the following program
counter API are provided within the touch library at different flash locations:

 touch_lib_pc_test_magic_no_1

 touch_lib_pc_test_magic_no_2

 touch_lib_pc_test_magic_no_3

 touch_lib_pc_test_magic_no_4

The application calls these API and check the returned value. Each of these API returns a unique value. Hence it is
possible to check if the program counter has jumped to the correct address within the touch library by verifying the
unique value it returns. If the expected return value is not returned the application must handle error condition.

Note: Ensure that the program counter can branch throughout the touch library. This program counter test is applicable
only for checking the program counter validity within the touch library.

The following figure illustrates the implementation of the program counter APIs.

Figure 2-13. Program Counter Test Using Program Counter APIs

Application and Touch library initialization

QTouch library API call

API return

Return Value
check

passed?

Continue with
normal sequence

Application needs
to handle error

condition

NO

YES

� �

APPLICATION QTOUCH LIBRARY

touch_lib_pc_test_magic_no_1

Return TOUCH_PC_FUNC_MAGIC_NO_1
29Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

2.7 CRC on Touch Input Configuration

The data integrity check is performed on the input configuration variables from application to Touch Library.

The application calls the touch_calc_xxxxcap_config_data_integrity API, if the input configuration variables
has been modified. The touch_test_xxxxcap_config_data_integrity API must be called to test the input
configuration data integrity. The periodicity of calling this API can be decided by the application.

Note: The touch_calc_xxxxcap_config_data_integrity API must be called after initialization sequence. The
following illustration depicts the sequence for verifying the data integrity.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

30

Figure 2-14. Data Integrity Check Sequence

� �

� �

APPLICATION QTOUCH LIBRARY
31Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

The following APIs modifies the input configuration and hence touch_calc_xxxxcap_config_data_integrity

must be called only after calling these APIs.

 touch_xxxxcap_update_global_param

 touch_xxxxcap_sensor_update_acq_config

 touch_xxxxcap_sensor_update_config

 touch_xxxxcap_cnfg_mois_threshold

 touch_xxxxcap_cnfg_mois_mltchgrp

 touch_xxxxcap_mois_tolrnce_enable

 touch_xxxxcap_mois_tolrnce_disable

Notes: 1. touch_calc_xxxxcap_config_data_integrity and touch_test_xxxxcap_config_
data_integrity should be called only when touch library state is TOUCH_STATE_INIT or
TOUCH_STATE_READY.

2. If calibration of all channels is requested by application with AUTO_TUNE_PRSC or AUTO_TUNE_RSEL
option, QTouch Safety Library will automatically recalculate the CRC at the end of auto tuning calibration
process. If there is any fault, library will report error as TOUCH_LIB_CRC_FAIL through errror callback,
even before application calls touch_test_xxxxcap_config_data_integrity API.

2.8 Double Inverse Memory Check

It is important to check the critical safety data before the application uses such data. Checking each critical data before
using it prevents any system malfunction.

Double inverse memory check is a mechanism that stores and retrieve data with additional redundancy. Reading and
writing redundant data requires some processing and additional memory requirement. Hence, this mechanism is
suggested only for the most important safety critical data in the FMEA and QTouch Safety Library.

The inverse of all the critical data interface variables used among the application and touch library is stored in the
structure variable touch_lib_xxxxcap_param_safety. The mechanism stores the inverse of the critical data in this
structure. Before reading and writing the critical data, the authenticity of the critical data is verified.

All double inverse variables are part of the touch_lib_param_safety_t structure. These double inverse variables
are inverse value of various variables selected from different structure variables. The application must perform the
double inverse check whenever it attempts to read or write a critical data interface variables.

2.8.1 Application to Touch Library

The application must calculate the inverse for all the variables listed in the column Variable and store it as the
corresponding inverse variable listed in the column Inverse Variable.

Touch library checks for double inversion between the variables listed in the Inverse Variable column and Variable
column. If the verification is successful, touch library operation continues as expected.

If the verification is unsuccessful, the touch library calls the error callback function touch_error_app_cb indicating
the reason TOUCH_LIB_DI_CHECK_FAIL.

The following table provides the list of variables and the corresponding inverse variable for which the application must
add double inverse protection.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

32

Figure 2-15. Example Sequence for Processing Double Inverse Variable (Application to QTouch Safety Library)

2.8.2 Touch Library to Application

The touch library must calculate the inverse for all the variables listed in the column Variable and store it as the
corresponding inverse variable listed in the column Inverse Variable.

Table 2-4. Inverse Variable Details - Application to Touch Library

Variable Inverse Variable Description

p_channel_signals P_inv_channel_signals
Refer Section 3.4.5 for variable and Section
3.4.2 for corresponding inverse variable.

current_time_ms inv_current_time_ms
Refer Section 3.4.7 for variable and Section
3.4.2 for corresponding inverse variable.

burst_again inv_burst_again
Refer Section 2.9 for variable and Section
3.4.2 for corresponding inverse variable.

acq_mode inv_acq_mode
Refer Section 3.3.8 for variable and Section
3.4.2 for corresponding inverse variable.

Application computes the
inverse of safety critical data

and stores them

Touch library performs a
double inverse check on

the safety critical data

API call or return from filter callback function

Double inverse
check passed

Continue with the
normal sequence

YES

NO

Application needs to
handle error

condition

Application and Touch library initialization

Is Application
error callback
registered?

YES

Lock the
system

NO

� �

QTOUCH LIBRARYAPPLICATION
33Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Application must check for double inversion between the variables listed in the Inverse Variable column and Variable
column. Appropriate action must be performed by the application if double inversion check fails.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

34

The following table lists the variables and the corresponding inverse variable for which the touch library will add double
inverse protection.

Table 2-5. Inverse Variable Details Touch Library to Application

Variable Inverse Variable Description

p_channel_signals p_inv_channel_signals
Refer Section 3.4.5 for variable and
Section 3.4.2 for corresponding
inverse variable.

acq_status inv_acq_status
Refer Section 3.4.5 for variable and
Section 3.4.2 for corresponding
inverse variable.

num_channel_signals inv_num_channel_signals
Refer Section 3.4.5 for variable and
Section 3.4.2 for corresponding
inverse variable.

num_sensor_states p_inv_sensor_states
Refer Section 3.4.5 for variable and
Section 3.4.2 for corresponding
inverse variable.

p_sensor_states inv_num_sensor_states
Refer Section 3.4.5 for variable and
Section 3.4.2 for corresponding
inverse variable.

num_rotor_slider_values inv_num_rotor_slider_values
Refer Section 3.4.5 for variable and
Section 3.4.2 for corresponding
inverse variable.

p_rotor_slider_values p_inv_rotor_slider_values
Refer Section 3.4.5 for variable and
Section 3.4.2 for corresponding
inverse variable.

lib_state inv_lib_state
Refer Section 3.4.8 for variable and
Section 3.4.2 for corresponding
inverse variable.

delta inv_delta
Refer Section 3.4.8 for variable and
Section 3.4.2 for corresponding
inverse variable.

sf_ptc_error_flag inv_sf_ptc_error_flag
This variable is used by FMEA and
should not be used by the
application.

cc_cal_open_calibration
_vals

inv_cc_cal_open_calibration
_vals

This variable is used by FMEA and
should not be used by the
application.

p_sensor_noise_status p_inv_sensor_noise status Refer Section 3.4.5 for variable and
Section 3.4.2 for corresponding
inverse variable.

p_sensor_mois_status
p_inv_sensor_mois_status Refer Section 3.4.5 for variable and

Section 3.4.2 for corresponding
inverse variable.

p_auto_os_status p_inv_chan_auto_os_status
Refer Section 3.4.5 for variable and
Section 3.4.2 for corresponding
inverse variable.
35Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Note: p_channel_signals variable must be double inversed by both the application and the touch library. The
application can apply filtering mechanism on the channel signals in the filter callback function. The application
must check for the double inversion before modifying the channel signals. After modifying the channel signals, the
application would store the value of the channel signals into the p_inv_channel_signals variable. The Touch
Library after returning from the filter callback function, would re-check for double inversion on the channel signals.

Figure 2-16. Example Sequence for Processing Double Inverse Variable

2.9 Application Burst Again Mechanism

The complet ion o f a touch measurement is ind icated by the touch l ib rary by ca l l ing the funct ion
touch_xxxxcap_measure_complete_callback().The complete callback function will be called on completion of
the previously initiated touch measurement.

The application can call the touch measurement again based on touch measurement periodicity or initiate the next
measurement immediately by returning a value 1 in the touch_xxxxcap_measure_complete_callback()
function. The touch library will initiate the next measurement immediately if application returns a value 1 when the
complete callback function is called and the internal burst again flag is set by the library.

If the application returns 0, the touch library waits for another touch measurement to be initiated by the application by
calling touch_xxxxcap_sensors_measure() to perform another touch measurement. Refer Figure 2-4 for more
information.

2.10 Memory Requirement

The table provided in this section provides the typical code and data memory required for QTouch Safety Library.

g (y)

Application and Touch library initialization

Qtouch library api call

Library computes inverse of
safety critical data and

stores them

API return or filter callback

Application performs double
inverse check on safety

critical data

Double
inverse check

passed?

Continue with
normal sequence

Application needs
to handle error

condition

NO

YES

� �

APPLICATION QTOUCH LIBRARY
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

36

Mutual and self capacitance measurement method requires additional data memory for the application to store the
signals, references, sensor configuration information, and touch status. This data memory is provided by the application
as data block array. The size of this data block depends on the number of Channels, sensors and rotor sliders
configured.

Default Configuration Used For Memory Requirement Calculations:

Apart from the various combinations mentioned in Section 2.10.1. The default configuration details used in all the cases
applicable for memory calculation in Section 2.10.1 are mentioned in the following table.

2.10.1 Memory Requirement for IAR Safety library

Table 2-6. Default Configuration

CONFIGURATION MUTLCAP SELFCAP

DEF_XXXXCAP_NOISE_MEAS_ENABLE 1 1

DEF_XXXXCAP_FREQ_AUTO_TUNE_ENABLE 1 1

DEF_XXXCAP_NOISE_MEAS_BUFFER_CNT 5 5

DEF_XXXCAP_MOIS_TOLERANCE_ENABLE 1 1

DEF_XXXCAP_NUM_MOIS_GROUPS 8 8

Table 2-7. Memory Requirement for Mutual Capacitance

Total No
of

Channels

No of
Keys

No of
rotor/slider

Total
Code

Memory

Total Data
Memory

1 1 0 23275 1720

10 10 0 23296 2180

10 2 2 24925 2172

20 20 0 23286 2664

20 10 2 24913 2640

40 40 0 23255 3664

256 20 5 24884 3620

256 256 0 23185 14568

256 200 14 24812 14400
37Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

2.11 API Execution Time

2.11.1 Mutual Capacitance API Execution Time

This section provides the time required for various mutual capacitance APIs. The values provided are based on the
following system configuration:

 CPU Frequency: 48MHz

 PTC Frequency: 4MHz

 No of Channels: 20

 No of Sensors: 10

Table 2-8. Memory Requirement Self Capacitance

Total No
of

Channels

No of
Keys

No of
rotor/slider

Total
Code

Memory

Total Data
Memory

1 1 0 22884 1700

2 2 0 22887 1744

11 11 0 22880 2188

11 2 3 24412 2232

16 16 0 22868 2412

16 4 4 24398 2468

Table 2-9. Memory Requirement (Self + Mutual) Capacitance

Total No
of Mutual

Cap
Channels

Total No
of

SelfCap
Channels

Total No of
Mutual Cap

Keys

Total
No of
Self
Cap
Keys

Total No
of

Mutual
Cap

Rotor
Sliders

Total No
of Self

Cap
Rotor

Sliders

Total Code
Memory

Total Data
Memory

1 1 1 1 0 0 28556 2080

40 8 40 8 0 0 28510 4356

40 8 40 2 0 2 30042 4392

40 8 24 8 3 0 30138 4300

40 8 8 2 3 2 31669 4336

80 11 80 11 0 0 28522 6548

80 11 80 2 0 3 30054 6592

80 11 48 11 6 0 30148 6412

80 11 48 2 6 3 31680 6456
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

38

 No of Keys: 8

 No of Rotor/sliders: 2

Table 2-10. Default Configuration - Mutual Capacitance

CONFIGURATION MUTLCAP

DEF_XXXXCAP_NOISE_MEAS_ENABLE 1

DEF_XXXXCAP_FREQ_AUTO_TUNE_ENABLE 1

DEF_XXXCAP_NOISE_MEAS_BUFFER_CNT 5

DEF_XXXCAP_MOIS_TOLERANCE_ENABLE 1

DEF_XXXCAP_NUM_MOIS_GROUPS 8

Table 2-11. Execution Time for Various QTouch Safety Library APIs - Mutual Capacitance

API Time Units

touch_mutlcap_sensors_init 412.7 µs

touch_mutlcap_di_init 14.04 µs

touch_mutlcap_sensor_config 19.83 µs

touch_mutlcap_sensors_calibrate 210.6* ms

touch_mutlcap_calibrate_single_sensor 24.84* ms

touch_mutlcap_sensors_measure 17.1* ms

touch_calc_mutlcap_config_data_integrity 1250 µs

touch_test_mutlcap_config_data_integrity 1250 µs

touch_mutlcap_sensor_get_delta 10.79 µs

touch_mutlcap_sensor_update_config 8.48 µs

touch_mutlcap_sensor_get_config 6.59 µs

touch_mutlcap_sensor_update_acq_config 60.05 µs

touch_mutlcap_sensor_get_acq_config 34.55 µs

touch_mutlcap_update_global_param 8.04 µs

touch_mutlcap_get_global_param 6.25 µs

touch_mutlcap_get_libinfo 6.5 µs

touch_lib_pc_test_magic_no_1 3.67 µs

touch_lib_pc_test_magic_no_2 3.39 µs

touch_lib_pc_test_magic_no_3 3.39 µs

touch_lib_pc_test_magic_no_4 3.39 µs

touch_mutlcap_cnfg_mois_mltchgrp 6.06 µs

touch_mutlcap_cnfg_mois_threshold 6.19 µs
39Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Notes: 1. The Table 2-11 provides the maximum time required for the touch_mutlcap_sensors_calibrate,
touch_mutlcap_calibrate_single_sensor, touch_mutlcap_sensors_measure,and
touch_suspend_ptc API to complete the procedure. The time required for the API to return control to the
application will be much shorter than the time specified in the Table 2-11. After the control is returned back
to the application, the application can execute other non-touch related tasks.

2. API Execution time marked as * are calculated for sensors mentioned in Section 2.11.1 with typical sensor
capacitance values.

2.11.2 Self Capacitance API Execution Time

This section provides the time required for various self capacitance APIs. The values provided are based on the
following system configuration:

 CPU Frequency: 48MHz

 PTC Frequency: 4MHz

 No of Channels: 16

 No of Sensors: 8

 No of Keys: 4

 No of Rotor/sliders: 4

touch_mutlcap_mois_tolrnce_enable 4.56 µs

touch_mutlcap_mois_tolrnce_disable 7.72 µs

touch_mutlcap_sensor_reenable 24.17 µs

touch_mutlcap_sensor_disable 14.67 µs

touch_library_get_version_info 4.35 µs

touch_suspend_ptc 2.0 ms

touch_resume_ptc 8.0 µs

touch_disable_ptc 5.0 µs

touch_enable_ptc 5.0 µs

touch_mutlcap_sensors_deinit 183.8 µs

Table 2-12. Timings for APIs to Return Control to the Application

API Time Units

touch_mutlcap_sensors_calibrate 151.9 µs

touch_mutlcap_calibrate_single_sensor 17.79 µs

touch_mutlcap_sensors_measure 85.7 µs

touch_suspend_ptc 4.2 µs

Table 2-11. Execution Time for Various QTouch Safety Library APIs - Mutual Capacitance

API Time Units
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

40

Table 2-13. Default Configuration - Self Capacitance

CONFIGURATION SELFCAP

DEF_XXXXCAP_NOISE_MEAS_ENABLE 1

DEF_XXXXCAP_FREQ_AUTO_TUNE_ENABLE 1

DEF_XXXCAP_NOISE_MEAS_BUFFER_CNT 5

DEF_XXXCAP_MOIS_TOLERANCE_ENABLE 1

DEF_XXXCAP_NUM_MOIS_GROUPS 8

Table 2-14. Execution Time for Various QTouch Safety Library APIs - Self Capacitance

API Time Units

touch_selfcap_sensors_init 313.7 µs

touch_selfcap_di_init 12 µs

touch_selfcap_sensor_config 18.35 µs

touch_selfcap_sensors_calibrate 566.7* ms

touch_selfcap_calibrate_single_sensor 73.89* ms

touch_selfcap_sensors_measure 47.95* ms

touch_calc_selfcap_config_data_integrity 1041 µs

touch_test_selfcap_config_data_integrity 1040 µs

touch_selfcap_sensor_get_delta 10.54 µs

touch_selfcap_sensor_update_config 7.47 µs

touch_selfcap_sensor_get_config 6.1 µs

touch_selfcap_sensor_update_acq_config 19.62 µs

touch_selfcap_sensor_get_acq_config 29.54 µs

touch_selfcap_update_global_param 8.18 µs

touch_selfcap_get_global_param 5.97 µs

touch_selfcap_get_libinfo 6.39 µs

touch_lib_pc_test_magic_no_1 3.67 µs

touch_lib_pc_test_magic_no_2 3.53 µs

touch_lib_pc_test_magic_no_3 3.39 µs

touch_lib_pc_test_magic_no_4 3.39 µs

touch_selfcap_cnfg_mois_mltchgrp 5.59 µs

touch_selfcap_cnfg_mois_threshold 6.1 µs

touch_selfcap_mois_tolrnce_enable 4.74 µs

touch_selfcap_mois_tolrnce_disable 7.28 µs
41Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Notes: 1. The Table 2-14 provides the maximum time required for the touch_selfcap_sensors_calibrate,
touch_selfcap_calibrate_single_sensor, and touch_selfcap_sensors_measure API to
complete the procedure. The time required for the API to return control to the application will be much
shorter than the time specified in the Table 2-14. After the control is returned back to the application, the
application can execute other non-touch related tasks.

2. API Execution Time marked as * are calculated for sensors mentioned in Section 2.11.2, “Self Capacitance
API Execution Time” with typical sensor capacitance values.

touch_selfcap_sensor_reenable 24.17 µs

touch_selfcap_sensor_disable 14.63 µs

touch_library_get_version_info 4.2 µs

touch_selfcap_sensors_deinit 155.8 µs

Table 2-14. Execution Time for Various QTouch Safety Library APIs - Self Capacitance

API Time Units
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

42

2.12 Error Interpretation

This section provides information about the error bits that indicate the errors and the specific reason that causes the
errors.

2.12.1 Error Codes Returned Synchronously

The following table provides the error codes returned by various touch APIs synchronously through function call return.

Table 2-15. Timings for APIs to Return Control to the Application

API Time Units

touch_selfcap_sensors_calibrate 138.2 µs

touch_selfcap_calibrate_single_sensor 13.73 µs

touch_selfcap_sensors_measure 139.9 µs

Table 2-16. Error Codes Returned Synchronously

API Error Bit Reason

touch_xxxxcap_sensors_init

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_INVALID_MUTLCAP_CONF
IG_PARAM

Configuration parameters are
invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_INVALID_RECAL_THRESH
OLD

Recalibration threshold is invalid.

touch_xxxxcap_di_init TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

touch_xxxxcap_sensor_config

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_INVALID_SENSOR_TYPE Sensor type is invalid.

TOUCH_INVALID_CHANNEL_NUM Channel number is invalid.

TOUCH_INVALID_RS_NUM Invalid rotor slider number.

touch_xxxxcap_sensors_calibrate
TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_CNFG_MISMATCH Configuration mismatch error.

touch_xxxxcap_calibrate_single_
sensor

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_INVALID_SENSOR_ID Sensor ID is invalid.

touch_xxxxcap_sensors_measure

TOUCH_ACQ_INCOMPLETE Acquisition is in progress.

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_ALL_SENSORS_DISABLED All sensors are disabled.

touch_xxxxcap_sensor_get_delta TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.
43Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

touch_xxxxcap_sensor_update_con
fig

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_sensor_get_config

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_INVALID_SENSOR_ID Sensor ID is invalid.

touch_xxxxcap_update_global_par
am

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_INVALID_RECAL_THRESH
OLD

Recalibration threshold is invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_get_global_param
TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_sensor_update_acq
_config

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_sensor_get_acq_co
nfig

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_get_libinfo TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

touch_xxxxcap_sensor_reenable
TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_sensor_disable
TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_cnfg_mois_mltchgr
p

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

touch_xxxxcap_cnfg_mois_thresho
ld

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

touch_xxxxcap_mois_tolrnce_enab
le

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_CNFG_MISMATCH Configuration mismatch error

touch_xxxxcap_mois_tolrnce_disa
ble

TOUCH_INVALID_INPUT_PARAM Input parameters are invalid.

TOUCH_CNFG_MISMATCH Configuration mismatch error

touch_library_get_version_info TOUCH_INVALID_INPUT_PARAM Input parameters are invalid

touch_suspend_ptc TOUCH_INVALID_INPUT_PARAM
Suspend application callback is
not registered

TOUCH_INVALID_LIB_STATE PTC is already suspended

touch_resume_ptc TOUCH_INVALID_LIB_STATE PTC is already resumed

Table 2-16. Error Codes Returned Synchronously

API Error Bit Reason
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

44

2.12.2 Error Codes Returned Through Callback

The fo l l ow ing tab le p rov ides the l i s t o f AP Is and the assoc ia ted e r ro r codes tha t resu l t s i n
touch_library_error_callback being called.

touch_calc_xxxxcap_config_data_
integrity

TOUCH_INVALID_LIB_STATE

Library state is invalid.Should be
called when library state is
TOUCH_STATE_INIT or
TOUCH_STATE_READY.

touch_test_xxxxcap_config_data_
integrity

TOUCH_INVALID_LIB_STATE

Library state is invalid.Should be
called when library state is
TOUCH_STATE_INIT or
TOUCH_STATE_READY.

touch_xxxxcap_sensors_deinit
TOUCH_INVALID_LIB_STATE

Library state is invalid.Should be
called when library state is
TOUCH_STATE_INIT or
TOUCH_STATE_READY.

Table 2-17. API Error Codes Returned through Callback

API Error Bit Reason

touch_xxxxcap_sensor_init

TOUCH_LOGICAL_PROGRAM_CNTR
_FLOW_ERR

Logical program counter flow
error.

TOUCH_PINS_VALIDATION_FAIL Touch library Pins Invalid.

touch_xxxxcap_sensor_config
TOUCH_LOGICAL_PROGRAM_CNTR
_FLOW_ERR

Logical program counter flow
error.

touch_xxxxcap_di_init
TOUCH_LOGICAL_PROGRAM_CNTR
_FLOW_ERR

Logical program counter flow
error.

touch_xxxxcap_sensors_calibrate
TOUCH_LOGICAL_PROGRAM_CNTR
_FLOW_ERR

Logical program counter flow
error.

touch_xxxxcap_calibrate_single_s
ensor

TOUCH_LOGICAL_PROGRAM_CNTR
_FLOW_ERR

Logical program counter flow
error.

touch_xxxxcap_sensors_measure

TOUCH_LOGICAL_PROGRAM_CNT_
FAIL

Logical program counter flow
error.

TOUCH_LIB_DI_CHECK_FAIL Double inverse check failed.

TOUCH_LIB_CRC_FAIL
CRC failure during
Calibration process.

touch_test_xxxxcap_config_data_i
ntegrity TOUCH_LIB_CRC_FAIL CRC check failed.

Table 2-16. Error Codes Returned Synchronously

API Error Bit Reason
45Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

2.13 Data and Function Protection

The functions and global variables that are used only by Touch Library are marked as static. The user / application must
not change these variable to non-static.

The header file touch_fmea_api_samd.h file is used only by FMEA. Hence, the application should not include the
same in any file.

2.14 Moisture Tolerance

Moisture tolerance check executes at the end of each measurement cycle and compares the sum of delta of all sensors
in a moisture tolerance group against pre-configured threshold. If delta sum is greater than sensor moisture lock
threshold and less than system moisture lock threshold, then the ON-state sensors within moisture tolerance group will
be considered as moisture affected.

If delta sum is greater than system moisture lock threshold, all sensors within the moisture tolerance group will be
considered as moisture affected. This condition is referred as moisture global lock out. The safety library will come out of
the moisture global lock out state when delta sum is less than threshold for 5 consecutive measurements. Self cap and
mutual cap sensors cannot be configured in a single moisture group, Self cap moisture tolerance and mutual cap
Moisture tolerance features can be enabled or disabled separately.

2.14.1 Moisture Tolerance Group

This feature enables the customer application to group a set of sensors in to single moisture tolerance group. If moisture
on one sensor might affect other sensors due to physical proximity, they must be grouped together into one Moisture
tolerance group.

Using this feature the application can disable moisture tolerance detection for a set of sensors, Multiple Moisture
tolerance groups can be formed by the customer application. The library supports up to a maximum of 8 moisture
groups.

Note: Changing the moisture tolerance group configuration during runtime is not recommended. However, muti-touch
group configuration can be changed during runtime.

2.14.2 Multi-touch Group

If the user wants to touch multiple sensors within the moisture tolerance group simultaneously to indicate a specific
request, then the application should configure those sensors into single multi-touch group. Multiple multi-touch groups
can be formed by the customer application. The library supports a maximum of 8 multi-touch groups within a single
moisture tolerance group.

Moisture tolerance feature improves a system’s performance under the following scenarios:

 Droplets of water sprayed on the front panel surface

 Heavy water poured on the front panel surface

 Large water puddle on multiple sensors

 Trickling water on multiple sensors

Table 2-18. API Header File Details

Header File Availability for
Application

touch_safety_api_samd.h Yes

touch_fmea_api_samd.h Yes
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

46

Moisture tolerance feature is not expected to offer any significant performance improvement under the following
scenarios:

 Large isolated puddle on single sensor

 Direct water pour on single sensor

Within the same moisture group, user should not configure all the sensors to the single multi-touch group.

Figure 2-17. Moisture Tolerance Algorithm

2.15 Quick Re-burst

This feature allows faster resolution of a sensor’s state during DI filtering. If Sensor-N is touched by the user, then any
other sensor that meets one of the following criteria is selected for the measurement in the next cycle:

 Same AKS group as Sensor-N

 Same Moisture tolerance group Sensor-N

If quick re-burst feature is disabled, then all sensors would be measured in every measurement cycle.

START

Calculate delta sum of all Sensors
configured in the moisture group

any sensor is
 in detect ?

Any multi touch
group in detect ?

Yes

Yes

Calculate multi touch group delta and
Subtract from delta sum

Find the first sensor in the group in
ON state and subtract it’s delta from

delta sum

Is delta sum >
Sensor moisture lock

Threshold

Is delta sum <
System moisture lock

Threshold

No

No

Yes

Yes

Global Moisture lock out
All sensors moisture status

bits are set to one

END

Set moisture detect status of the
sensors that are in detect

No

Is Moisture global
Lock out is set?

Decrement lock count

Is Lock count
Zero ?

Reset All sensors moisture
status bits

Yes

No

No

Yes

Yes

No

Start Process for first moisture group

Is this the Last
moisture group ?

Set Next Moisture
group

No

END
47Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

2.15.1 Synchronizing Quick Re-burst and Application Burst again

Table 2-19. Quick Re-burst - Triggers and Sensors

2.16 Reading Sensor States

When noise immunity and moisture tolerance features are enabled the validity of the sensor sate is based on the
moisture status and noise status. Refer to Section 2.4.7 and Section 2.14 for information on noise immunity and
moisture tolerance status of sensors. The state of a sensor is valid only when the sensor is not affected by noise and
moisture. If a sensor is noisy or affected by moisture, then the state of sensor must be considered as OFF. The code
snippet below depicts the same for mutual-cap sensors.

When a sensor is touched or released during DI, library will burst on channels corresponding to sensors whose state is
other than OFF or DISABLED. If any sensor in an AKS group is in a state other than OFF or DISABLED, the library will
burst channels corresponding sensors belong to that AKS group. If a sensor in any moisture group is in a state other
than OFF or DISABLED, the library will burst on channels corresponding to sensors belonging to that moisture group.

If(! (GET_MUTLCAP_SENSOR_NOISE_STATUS(SENSOR_NUMBER)))
{

If(! (GET_MUTLCAP_SENSOR_MOIS_STATUS (SENSOR_NUMBER)))
{

/*Sensor state is valid Read sensor state */
} else
{

/* Sensor is Moisture affected*/
}

}else
{

/* Sensor is noisy */
}

2.17 Touch Library Suspend Resume Operation

The touch library provides touch_suspend_ptc,touch_resume_ptc API to suspend and resume the PTC.

When suspend API is called, the touch library initiates the suspend operation and return to the application.After
completing the current PTC conversion, the touch library will initiate suspend operation and call the application touch
suspend callback function pointer. The suspend complete callback function pointer has to be registered by the
application (Refer Section 3.5.3 for more details).

Quick Re-burst Status Measurement Trigger List of Sensors Measured

Enabled
touch_xxxxcap_sen
sors_measure()

All

Enabled Application Burst Again
Sensors that are touched and their
AKS and moisture tolerance group

sensors

Disabled
touch_xxxxcap_sen
sors_measure()

All

Disabled Application burst again All
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

48

Note: The application then should disable the corresponding PTC clock to reduce the power
consumption.APP_TOUCH_BUSY and APP_FMEA_OPEN_IN_PROGRESS needs to be maintained by the
application. The APP_TOUCH_BUSY will be set to 1 until the completion of following APIs as mentioned in Table 2-
15. The APP_FMEA_OPEN_IN_PROGRESS will be set to 1 until the completion of API mentioned in Table 4-4.

The following flowchart depicts the suspend sequence.

Figure 2-18. Suspension Sequence

Is Callback Received?

Wait for touch_suspend_callback
or perform some other

application code without calling
any Touch_lib APIs or FMEA APIs

Yes

disable PTC GCLK
disable APBCMASK
disable GCLK generator
disable GCLK source

SUSPENSION_COMPLETE

SUPENSION_START

APP_TOUCH_BUSY==1 or
APP_FMEA_OPEN_IN_PROGRESS==1

NoNo

Disable Interrupts

Enable Interrupts

Enable Interrupts

Touch_suspend_ptc()

Yes
49Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

The following flowchart depicts the resume sequence.

Figure 2-19. Resumption Sequence

Note: The suspend and resume operation must be followed as specified in Section 2.17, otherwise the touch library may
not behave as expected.
Once the suspend API is called, the touch library resumption should happen before calling any other API's.

2.18 Drifting on Disabled Sensors

Touch Safety library performs drifting on disabled sensors. Drifting for disabled sensors would function in a same way,
as drifting happens on a sensor which is in 'OFF' state. Hence, drift configuration settings which are applicable for 'OFF'
state sensors would be applicable for disabled sensors also.

When a sensor is touched, it goes to 'ON' state and if it is disabled in this condition, drifting will adjust the reference to
unintentional signal value. Hence for drifting on disabled sensor to function properly, following conditions has to be
ensured before that sensor is disabled.

̶ The state of that particular sensor should be 'OFF'.

̶ TOUCH_BURST_AGAIN' bit field in 'p_xxxxcap_measure_data->acq_status' should be '0'. Refer
Section 3.6.13, “Touch Library Enable Disable Sensor”.

Note:

a. It is recomended to re-enable the sensors periodically so that drifting could be done with respect to latest
signal values and reference would be adjusted with respect to latest signal values. In other case, if sensors
are re-enabled after a long duration, they can be re-enabled with calibration option(no_calib = 0).

b. Drifting on Disabled sensors functionality would be applicable if sensors are re-enabled without calibration.If
sensors are re-enabled with calibration, then reference would be adjusted as part of calibration process
itself.

RESUMPTION_START

Touch_resume_ptc()

re-enable GLCK source
re-enable GCLK generator
re-enable APBCMASK
reenable the PTC GCLK

RESUMPTION_COMPLETE
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

50

3. QTouch Safety Library API

3.1 Typedefs

3.2 Macros

3.2.1 Touch Library Acquisition Status Bit Fields.

DEF_TOUCH_MUTLCAP must be set to 1 in the application to enable the Mutual Capacitance touch technology.
DEF_TOUCH_SELFCAP must be set to 1 in the application to enable the Self Capacitance touch technology.

Keyword Type Description

threshold_t uint8_t
An unsigned 8-bit number setting a sensor
detection threshold.

sensor_id_t uint8_t Sensor number type.

touch_current_time_t uint16_t Current time type.

touch_delta_t int16_t Touch sensor delta value type.

touch_acq_status_t uint16_t Status of touch measurement.

Keyword Type Description

TOUCH_NO_ACTIVITY 0x0000u No touch activity

TOUCH_IN_DETECT 0x0001u At least one touch channel is in detect.

TOUCH_STATUS_CHANGE 0x0002u
Change in touch status of at least one Touch
channel.

TOUCH_ROTOR_SLIDER_POS_CHANGE 0x0004u
Change in the position of at least one rotor or
slider.

TOUCH_CHANNEL_REF_CHANGE 0x0008u
Change in the reference value of at least one
touch channel.

TOUCH_BURST_AGAIN 0x0100u
Indicates that re-burst is required to resolve
filtering or calibration state.

TOUCH_RESOLVE_CAL 0x0200u
Indicates that re-burst is required to resolve
calibration process.

TOUCH_RESOLVE_FILTERIN 0x0400u
Indicates that re-burst is required to resolve
calibration.

TOUCH_RESOLVE_DI 0x0800u
Indicates that re-burst is needed to resolve
Detect Integration.

TOUCH_RESOLVE_POS_RECAL 0x1000u
Indicates that re-burst is needed to resolve
away from touch recalibration.

TOUCH_CC_CALIB_ERROR 0x2000u
Indicates that CC Calibration error has
occurred.

TOUCH_AUTO_OS_IN_PROGRESS 0x4000u
Indicates that Auto Oversample process is
going on.
51Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

TOUCH_SAFETY_COMPILE_CHECK must be set to 1 to enable the compile time check feature.

3.2.2 Sensor State Configurations.

GET_SENSOR_STATE (SENSOR_NUMBER)

To get the sensor state (whether detect or not). These values are valid for parameter that corresponds to the sensor
specified using the SENSOR_NUMBER. The macro returns either 0 or 1. If the bit value is 0, the sensor is not in detect. If
the bit value is 1, the sensor is in detect.

#define GET_XXXXCAP_SENSOR_STATE(SENSOR_NUMBER) p_xxxxcap_measure_data->
p_sensor_states [(SENSOR_NUMBER / 8)] & (1 << (SENSOR_NUMBER % 8))) >>
(SENSOR_NUMBER % 8)

GET_ROTOR_SLIDER_POSITION (ROTOR_SLIDER_NUMBER)

To get the rotor angle or slider position. These values are valid only when the sensor state for corresponding rotor or
slider state is in detect. ROTOR_SLIDER_NUMBER is the parameter for which the position is being obtained. The macro
returns rotor angle or sensor position.

#define GET_XXXXCAP_ROTOR_SLIDER_POSITION(ROTOR_SLIDER_NUMBER)

p_xxxxcap_measure_data->p_rotor_slider_values [ROTOR_SLIDER_NUMBER]

GET_XXXXCAP_SENSOR_NOISE_STATUS (SENSOR_NUMBER)

To get the noise status of a particular sensor. The return value is 1 in case of sensor is noisy and returns 0 if sensor is
not noisy.

#define GET_XXXXCAP_SENSOR_NOISE_STATUS (SENSOR_NUMBER)

(p_xxxxcap_measure_data->p_sensor_noise_status [(SENSOR_NUMBER / 8)] & (1 <<
(SENSOR_NUMBER % 8))) >> (SENSOR_NUMBER % 8)

GET_XXXXCAP_SENSOR_MOIS_STATUS (SENSOR_NUMBER)

To get the moisture status of a particular sensor. The return value is 1 in case of sensor is moisture affected and returns
0 if sensor is not moisture affected.

#define GET_XXXXCAP_SENSOR_MOIS_STATUS (SENSOR_NUMBER)

(p_xxxxcap_measure_data-> \p_sensor_mois_status [(SENSOR_NUMBER / 8)] & (1 <<
(SENSOR_NUMBER % 8))) >> (SENSOR_NUMBER % 8))

GET_XXXXCAP_AUTO_OS_CHAN_STATUS(CHAN_NUM)

To get the auto oversample status of a particular channel. The return value is 1 in case of channel auto oversample is
going on and returns 0 if channel auto oversample process is not going on.

#define GET_XXXXCAP_AUTO_OS_CHAN_STATUS (CHAN_NUM)

(p_xxxxcap_measure_data->p_auto_os_status [(CHAN_NUM / 8)] & (1 <<

(CHAN_NUM % 8))) >> (CHAN_NUM % 8))
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

52

3.3 Enumerations

3.3.1 Touch Library GAIN Setting(tag_gain_t)

Detailed Description

Gain per touch channel. Gain is applied for an individual channel to allow a scaling-up of the touch delta. Delta on touch
contact is measured on each sensor. The resting signal is ignored.

Range: GAIN_1 (no scaling) to GAIN_32 (scale-up by 32).

Data Fields

 GAIN_1

 GAIN_2

 GAIN_4

 GAIN_8

 GAIN_16

 GAIN_32

3.3.2 Filter Level Setting (tag_filter_level_t)

Detailed Description

Touch library FILTER LEVEL setting.

The filter level setting controls the number of samples acquired to resolve each acquisition. A higher filter level setting
provides improved signal to noise ratio under noisy conditions, while increasing the total time for measurement which
results in increased power consumption. The filter level should be configured for each channel.

Refer filter_level_t in touch_safety_api_samd.h

Range: FILTER_LEVEL_1 (one sample) to FILTER_LEVEL_64 (64 samples).

Data Fields

 FILTER_LEVEL_1

 FILTER_LEVEL_2

 FILTER_LEVEL_4

 FILTER_LEVEL_8

 FILTER_LEVEL_16

 FILTER_LEVEL_32

 FILTER_LEVEL_64

3.3.3 Touch Library AUTO OS Setting (tag_auto_os_t)

Detailed Description

Auto oversample controls the automatic oversampling of sensor channels when unstable signals are detected with the
default setting of filter level. Each increment of Auto Oversample doubles the number of samples acquired from the
corresponding sensor channel when an unstable signal is observed. The auto oversample should be configured for each
channel.

For example, when filter level is set to FILTER_LEVEL_4 and Auto Oversample is set to AUTO_OS_4, 4 oversamples
are collected with stable signal values and 16 oversamples are collected when unstable signal is detected.

Refer auto_os_t in touch_safety_api_samd.h
53Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Range: AUTO_OS_DISABLE (oversample disabled) to AUTO_OS_128 (128 oversamples).

Data Fields

 AUTO_OS_DISABLE

 AUTO_OS_2

 AUTO_OS_4

 AUTO_OS_8

 AUTO_OS_16

 AUTO_OS_32

 AUTO_OS_64

 AUTO_OS_128

3.3.4 Library Error Code (tag_touch_ret_t)

Detailed Description

Touch Library error codes.

Data Fields

 TOUCH_SUCCESS Successful completion of touch operation.

 TOUCH_ACQ_INCOMPLETE Library is busy with pending previous touch measurement.

 TOUCH_INVALID_INPUT_PARAM Invalid input parameter.

 TOUCH_INVALID_LIB_STATE Operation not allowed in the current touch library state.

 TOUCH_INVALID_SELFCAP_CONFIG_PARAM Invalid self capacitance configuration input parameter.

 TOUCH_INVALID_MUTLCAP_CONFIG_PARAM Invalid mutual capacitance configuration input parameter.

 TOUCH_INVALID_RECAL_THRESHOLD Invalid recalibration threshold input value.

 TOUCH_INVALID_CHANNEL_NUM Channel number parameter exceeded total number of channels configured.

 TOUCH_INVALID_SENSOR_TYPE Invalid sensor type. Sensor type must NOT be SENSOR_TYPE_UNASSIGNED.

 TOUCH_INVALID_SENSOR_ID Invalid sensor number parameter.

 TOUCH_INVALID_RS_NUM Number of rotor/sliders set as 0, while trying to configure a rotor/slider.

 TOUCH_INTERNAL_TOUCH_LIB_ERR Touch internal library error

 TOUCH_LOGICAL_PROGRAM_CNTR_FLOW_ERR Touch logical flow error

 TOUCH_LIB_CRC_FAIL Touch library data CRC error

 TOUCH_LIB_DI_CHECK_FAIL Touch library double inverse check field

 TOUCH_PC_FUNC_MAGIC_NO_1 Program counter magic number 1

 TOUCH_PC_FUNC_MAGIC_NO_2 Program counter magic number 2

 TOUCH_PC_FUNC_MAGIC_NO_3 Program counter magic number 3

 TOUCH_PC_FUNC_MAGIC_NO_4 Program counter magic number 4

 TOUCH_PINS_VALIDATION_FAIL Touch pins are not valid

 TOUCH_ALL_SENSORS_DISABLED All sensors are disabled

 TOUCH_CNFG_MISMATCH Number of sensors defined in DEF_XXXXCAP_NUM_SENSORS are not equal to the
number of sensors configured using touch_xxxcap_sensor_config() or Number of moisture groups
defined In DEF_XXXXCAP_NUM_MOIS_GROUPS are not equal to the number of groups configured using
touch_xxxxcap_cnfg_mois_mltchgrp or If moisture group threshold is not configured for all moisture
groups.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

54

3.3.5 Sensor Channel (tag_channel_t)

Detailed Description

Sensor start and end channel type of a Sensor. Channel number starts with value 0.

Data Fields

CHANNEL_0 to CHANNEL_255

3.3.6 Touch Library State (tag_touch_lib_state_t)

Detailed Description

Touch library state.

Data Fields

 TOUCH_STATE_NULL Touch library is un-initialized. All sensors are disabled.

 TOUCH_STATE_INIT Touch library has been initialized.

 TOUCH_STATE_READY Touch library is ready to start a new capacitance measurement on enabled sensors.

 TOUCH_STATE_CALIBRATE Touch library is performing calibration on all sensors.

 TOUCH_STATE_BUSY Touch library is busy with on-going capacitance measurement.

3.3.7 Sensor Type (tag_sensor_type_t)

Detailed Description

Sensor types available.

Data Fields

 SENSOR_TYPE_UNASSIGNED Sensor is not configured yet.

 SENSOR_TYPE_KEY Sensor type key.

 SENSOR_TYPE_ROTOR Sensor type rotor.

 SENSOR_TYPE_SLIDER Sensor type slider.

 MAX_SENSOR_TYPE Max value of enum type for testing.

3.3.8 Touch Library Acquisition Mode (tag_touch_acq_mode_t)

Detailed Description

Touch library acquisition mode.

Data Fields

RAW_ACQ_MODE

When raw acquisition mode is used, the measure_complete_callback function is called immediately once a fresh
value of signals are available. In this mode, the Touch Library does not perform any post processing. So, the references,
sensor states or rotor/slider position values are not updated in this mode.
55Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

NORMAL_ACQ_MODE

When normal acquisition mode is used, the measure_complete_callback function is called only after the Touch
Library completes processing of the signal values obtained. The references, sensor states and rotor/slider position
values are updated in this mode.

3.3.9 AKS Group (tag_aks_group_t)

Detailed Description

It provides information about the sensors that belong to specific AKS group.

NO_AKS_GROUP indicates that the sensor does not belong to any AKS group and cannot be suppressed.

AKS_GROUP_x indicates that the sensor belongs to the AKS group x.

Data Fields

 NO_AKS_GROUP

 AKS_GROUP_1

 AKS_GROUP_2

 AKS_GROUP_3

 AKS_GROUP_4

 AKS_GROUP_5

 AKS_GROUP_6

 AKS_GROUP_7

 MAX_AKS_GROUP Max value of enum type for testing

3.3.10 Channel Gain Setting (tag_gain_t)

Detailed Description

A sensor detection hysteresis value. This is expressed as a percentage of the sensor detection threshold.

HYST_x = hysteresis value is x% of detection threshold value (rounded down).

Note: A minimum threshold value of 2 is used.

Example: If detection threshold = 20,

HYST_50= 10 (50% of 20)

HYST_25 = 5 (25% of 20)

HYST_12_5 = 2 (12.5% of 20)

HYST_6_25= 2 (6.25% of 20 = 1, but value is hard limited to 2)

Data Fields

 HYST_50

 HYST_25

 HYST_12_5

 HYST_6_25

 MAX_HYST Maximum value of enum type for testing
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

56

3.3.11 Sensor Recalibration Threshold (tag_recal_threshold_t)

Detailed Description

This is expressed as a percentage of the sensor detection threshold.

RECAL_x = recalibration threshold is x% of detection threshold value (rounded down).

Note: A minimum value of 4 is used.

Example: If detection threshold = 40,

 RECAL_100 = 40 (100% of 40)

 RECAL_50 = 20 (50% of 40)

 RECAL_25 = 10 (25% of 40)

 RECAL_12_5 = 5 (12.5% of 40)

 RECAL_6_25 = 4 (6.25% of 40 = 2, but value is hard limited to 4)

Data Fields

 RECAL_100

 RECAL_50

 RECAL_25

 RECAL_12_5

 RECAL_6_25

 MAX_RECAL Maximum value of enum type for testing

3.3.12 Rotor Slider Resolution (tag_resolution_t)

Detailed Description

For rotors and sliders, the resolution of the reported angle or position. RES_x_BIT = rotor/slider reports x-bit values.

Example: If slider resolution is RES_7_BIT, then reported positions are in the range 0..127.

Data Fields

 RES_1_BIT

 RES_2_BIT

 RES_3_BIT

 RES_4_BIT

 RES_5_BIT

 RES_6_BIT

 RES_7_BIT

 RES_8_BIT

 MAX_RES Maximum value of enum type for testing

3.3.13 Auto Tune Setting (tag_auto_tune_type_t)

Detailed Description

Touch library PTC prescaler clock and series resistor auto tuning setting
57Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Data Fields

 AUTO_TUNE_NONE Auto tuning mode disabled. This mode uses the user defined PTC prescaler and series
resistor values.

 AUTO_TUNE_PRSC Auto tune PTC prescaler for best noise performance. This mode uses the user defined
series resistor value.

 AUTO_TUNE_RSEL Auto tune series resistor for least power consumption. This mode uses the user defined PTC
prescaler value.

3.3.14 PTC Clock Prescale Setting (tag_prsc_div_sel_t)

Detailed Description

Refer touch_configure_ptc_clock() API in touch.c. PTC Clock Prescale setting is available for each
channel.

Example:

If generic clock input to PTC = 4 MHz,

PRSC_DIV_SEL_1 sets PTC Clock to 4 MHz.

PRSC_DIV_SEL_2 sets PTC Clock to 2 MHz.

PRSC_DIV_SEL_4 sets PTC Clock to 1 MHz.

PRSC_DIV_SEL_8 sets PTC Clock to 500 KHz.

Data Fields

 PRSC_DIV_SEL_1

 PRSC_DIV_SEL_2

 PRSC_DIV_SEL_4

 PRSC_DIV_SEL_8

3.3.15 PTC Series Resistor Setting (tag_rsel_val_t)

Detailed Description

For mutual capacitance mode, this series resistor is switched internally on the Y-pin. For self capacitance mode, the
series resistor is switched internally on the sensor pin. PTC Series Resistance setting is available for individual channel.

Example:

 RSEL_VAL_0 sets internal series resistor to 0 Ohms.

 RSEL_VAL_20 sets internal series resistor to 20 Kohms.

 RSEL_VAL_50 sets internal series resistor to 50 Kohms.

 RSEL_VAL_100 sets internal series resistor to 100 Kohms.

Data Fields

 RSEL_VAL_0

 RSEL_VAL_20

 RSEL_VAL_50

 RSEL_VAL_100
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

58

3.3.16 PTC Acquisition Frequency Delay Setting (freq_hop_sel_t)

Detailed Description

The PTC acquisition frequency is dependent on the generic clock input to PTC and PTC clock prescaler setting. This
delay setting inserts n PTC clock cycles between consecutive measurements on a given sensor, thereby changing the
PTC acquisition frequency. FREQ_HOP_SEL_1 setting inserts 0 PTC clock cycle between consecutive measurements.
FREQ_HOP_SEL_16 setting inserts 15 PTC clock cycles. Hence, higher delay setting will increase the total time required
for capacitance measurement on a given sensor as compared to a lower delay setting.

An optimal setting avoids noise in the same frequency as the acquisition frequency.

Data Fields

 FREQ_HOP_SEL_1

 FREQ_HOP_SEL_2

 FREQ_HOP_SEL_3

 FREQ_HOP_SEL_4

 FREQ_HOP_SEL_5

 FREQ_HOP_SEL_6

 FREQ_HOP_SEL_7

 FREQ_HOP_SEL_8

 FREQ_HOP_SEL_9

 FREQ_HOP_SEL_10

 FREQ_HOP_SEL_11

 FREQ_HOP_SEL_12

 FREQ_HOP_SEL_13

 FREQ_HOP_SEL_14

 FREQ_HOP_SEL_15

 FREQ_HOP_SEL_16

3.3.17 PTC Acquisition Frequency Mode Setting (tag_freq_mode_sel_t)

Detailed Description

The frequency mode setting option enables the PTC acquisition to be configured for the following modes.

 Frequency hopping and spread spectrum disabled.

 Frequency hopping enabled with median filter.

 Frequency spread spectrum enabled without median filter.

 Frequency spread spectrum enabled with median filter.

Range: FREQ_MODE_NONE (no frequency hopping & spread spectrum) to FREQ_MODE_SPREAD_MEDIAN (spread
spectrum with median filter).

Data Fields
 FREQ_MODE_NONE 0u

 FREQ_MODE_HOP 1u

 FREQ_MODE_SPREAD 2u

 FREQ_MODE_SPREAD_MEDIAN 3u
59Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

3.3.18 PTC Sensor Lockout Setting (nm_sensor_lockout_t)

Detailed Description

The sensor lockout setting option allows the system to be configured in the following modes.

 SINGLE_SENSOR_LOCKOUT Single sensor can be locked out.

 GLOBAL_SENSOR_LOCKOUT All the sensors are locked out for touch detection.

 NO_LOCK_OUT All the sensors are available for touch detection.

Range: SINGLE_SENSOR_LOCKOUT to NO_LOCK_OUT.

Data Fields

 SINGLE_SENSOR_LOCKOUT 0u

 GLOBAL_SENSOR_LOCKOUT 1u

 NO_LOCK_OUT 2u

3.3.19 Moisture Group Setting (moisture_grp_t)

Detailed Description

Sensor can be configured in the moisture group using this type.

 MOIS_DISABLED Indicates that the sensor does not belong to any moisture group.

 MOIS_GROUP_X Indicates that the sensor belongs to the moisture group x.

Range: MOIS_DISABLED=0 to MOIS_GROUP_7.

Data Fields

 MOIS_DISABLED=0

 MOIS_GROUP_0

 MOIS_GROUP_1

 MOIS_GROUP_2

 MOIS_GROUP_3

 MOIS_GROUP_4

 MOIS_GROUP_5

 MOIS_GROUP_6

 MOIS_GROUP_7

 MOIS_GROUPN

3.3.20 Multi-touch Group Setting (mltch_grp_t)

Detailed Description

Sensor can be configured in the multi-touch group using this type

 MLTCH_NONE Indicates that the sensor does not belong to any multi-touch group.

 MLTCH_GROUP_X Indicates that the sensor belongs to the multi-touch group x.

Range: MLTCH_NONE=0 to MOIS_GROUP_7.

Data Fields

 MLTCH_NONE=0

 MLTCH_GROUP_0

 MLTCH_GROUP_1

 MLTCH_GROUP_2
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

60

 MLTCH_GROUP_3

 MLTCH_GROUP_4

 MLTCH_GROUP_5

 MLTCH_GROUP_6

 MLTCH_GROUP_7

 MLTCH_GROUPN
61Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

3.4 Data Structures

3.4.1 Touch Library Configuration Type

touch_config_t Struct Reference

Touch library Input Configuration Structure.

Data Fields

touch_mutlcap_config_t Struct Reference

Touch Library mutual capacitance configuration input type.

Data Fields

Field Unit Description

p_mutlcap_config

p_selfcap_config

touch_mutlcap_config_t

touch_selfcap_config_t

Pointer to mutual capacitance
configuration structure.

Pointer to self capacitance
configuration structure.

ptc_isr_lvl uint8_t PTC ISR priority level

Field Unit Description

num_channels uint16_t Number of channels.

num_sensors uint16_t Number of sensors

num_rotors_and_sliders uint8_t Number of rotors/sliders.

global_param touch_global_param_t Noise measurement enable/disable

touch_xxxxcap_acq_param touch_xxxxcap_acq_param_t Sensor acquisition parameter info.

* p_data_blk uint8_t Pointer to data block buffer.

buffer_size uint16_t Size of data block buffer.

* p_mutlcap_xy_nodes uint16_t Pointer to xy nodes

mutl_quick_reburst_enable uint8_t Quick re-burst enable

(touch_filter_data_t
*p_filter_data)

void(* filter_callback) Mutual capacitance filter callback

enable_freq_auto_tune uint8_t Frequency auto tune enable

enable_noise_measurement uint8_t Noise measurement enable

nm_buffer_cnt uint8_t Memory allocation buffer

mutl_mois_tlrnce_enable uint8_t Mutual capacitance moisture tolerance
enable flag

mutl_mois_groups uint8_t Number of mutual capacitance
moisture groups
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

62

touch_selfcap_config_t Struct Reference

Touch Library self capacitance configuration input type.

Data Fields

3.4.2 Touch Library Safety Type

touch_lib_fault_t Struct Reference

Detailed Description

This structure holds the inverse values of various touch library parameters.

Data Fields

touch_lib_param_safety_t Struct Reference

Detailed Description

This structure holds the pointer to the data block for double inverse safety variables.

Field Unit Description

num_channels uint16_t Number of channels.

num_sensors uint16_t Number of sensors

num_rotors_and_sliders uint8_t Number of rotors/sliders.

global_param touch_global_param_t
Global sensor configuration
information.

touch_selfcap_acq_param touch_selfcap_acq_param_t
Sensor acquisition parameter
information.

* p_data_blk uint8_t Pointer to data block buffer.

buffer_size uint16_t Size of data block buffer.

* p_selfcap_y_nodes uint16_t Pointer to selfcap nodes

self_quick_reburst_enable uint8_t Quick re-burst enable

(touch_filter_data_t
*p_filter_data)

void(* filter_callback) Self capacitance filter callback

enable_freq_auto_tune; uint8_t Frequency auto tune enable

enable_noise_measurement uint8_t Noise measurement enable

nm_buffer_cnt uint8_t Memory allocation buffer

self_mois_tlrnce_enable uint8_t Self cap moisture tolerance enable flag

self_mois_groups uint8_t Number of self-cap moisture groups

Field Unit Description

inv_touch_ret_status touch_ret_t Holds the inverse value of the touch
return status.
63Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Data Fields

3.4.3 Touch Library Double Inverse Type

touch_lib_di_data_block_t Struct Reference

Detailed Description

This structure holds the pointer to the data block for the double inverse safety variables.

Field Unit Description

*p_inv_channel_signals uint16_t Pointer to the channel signals which
hold the inverse value of different
channel signals.

inv_acq_status touch_acq_status
_t

Holds the inverse value of the touch
acquisition status.

inv_num_channel_signals uint8_t Holds the inverse value of the total
number of channel signals.

inv_num_sensor_states uint8_t Holds the inverse value of the number
of sensor states bytes.

*p_inv_sensor_states uint8_t Pointer to the sensor states that holds
the inverse value of different sensor
states.

inv_num_rotor_slider_values uint8_t Holds the inverse value of the number
of rotor slider.

*p_inv_rotor_slider_values uint8_t Pointer to the rotor slider values that
holds the inverse value of different rotor
slider values

inv_lib_state uint8_t Holds the inverse value of the touch
library state.

p_inv_delta Int16_t Holds the inverse value of the touch
delta.

inv_current_time_ms uint16_t Holds the inverse value of current time
millisecond variable.

inv_burst_again uint8_t Holds the inverse value of the burst
again flag.

inv_acq_mode touch_acq_mode_t Holds the inverse value of the touch
acquisition mode.

inv_sf_ptc_error_flag uint8_t Holds the inverse value of the PTC
error flag.

inv_cc_cal_open_calibration_
vals

uint16_t Holds the inverse value of the CC
calibration value.

*p_inv_sensor_noise_status uint8_t Holds the inverse value of the sensor
noise status.

*p_inv_sensor_mois_status uint8_t Holds the inverse value of the Sensor
moisture status.

*p_inv_chan_auto_os_status uint8_t Holds the inverse value of the channel
auto os status.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

64

Data Fields

3.4.4 Touch Library Parameter Type

tag_touch_global_param_t Struct Reference

Detailed Description

Touch library global parameter type.

Data Fields

tag_touch_xxxxcap_param_t Struct Reference

Detailed Description

Touch library capacitance sensor parameter type.

Field Unit Description

p_di_data_block uint8_t Holds the pointer to the data block allocated by
the application for double inverse check for the
safety variables.

di_data_block_size uint16_t Holds the size of the data block allocated by the
application of safety variables.

Field Unit Description

di Sensor uint8_t Detect Integration (DI) limit.

atch_drift_rate uint8_t Sensor away from touch drift rate.

tch_drift_rate uint8_t Sensor towards touch drift rate.

max_on_durationSensor uint8_t Maximum ON time duration.

drift_hold_time uint8_t Sensor drift hold time.

atch_recal_delay uint8_t Sensor away from touch recalibration delay.

recal_threshold recal_threshold_t Sensor away from touch recalibration
threshold.

cal_seq_1_count uint8_t Sensor calibration dummy burst count.

cal_seq_2_count uint8_t Sensor calibration settling burst count.

auto_tune_sig_stability_l
imit

uint16_t Stability limit for frequency auto tune feature.

auto_freq_tune_in_cnt uint8_t Frequency auto tune In counter.

nm_sig_stability_limit uint16_t Stability limit for noise measurement.

nm_noise_limit uint8_t Noise limit.

nm_enable_sensor_lock_out nm_sensor_lockout_t Sensor lockout feature variable.

nm_lockout_countdown uint8_t Lockout countdown for noise measurement.
65Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Data Fields

tag_touch_xxxxcap_acq_param_t Struct Reference

Detailed Description

Capacitance sensor acquisition parameter type.

Data Fields

Field Unit Description

aks_group aks_group_t Which AKS group, the sensor belongs to.

detect_threshold threshold_t An unsigned 8-bit number setting a sensor
detection threshold.

detect_hysteresis hysteresis_t A sensor detection hysteresis value. This is
expressed as a percentage of the sensor
detection threshold.
 HYST_x = hysteresis value is x% of

detection threshold value (rounded
down). A minimum value of 2 is used.

 Example: If detection threshold = 20,

 HYST_50 = 10 (50% of 20)

 HYST_25 = 5 (25% of 20)

 HYST_12_5 = 2 (12.5% of 20)

 HYST_6_25 = 2 (6.25% of 20 = 1, but
value is hard limited to 2)

position_resolution resolution_t For rotors and sliders, the resolution of the
reported angle or position.

RES_x_BIT = rotor/slider reports x-bit values.

Example: If slider resolution is RES_7_BIT,
then reported positions are in the range
0..127

position_hysteresis uint8_t Sensor position hysteresis. This is valid only
for a rotor or slider. bits 1..0: hysteresis.

This parameter is valid only for mutual cap.

Field Unit Description

p_xxxxcap_gain_per_node gain_t Pointer to gain per node.

touch_xxxxcap_freq_mode uint8_t Setup acquisition frequency mode.

p_xxxxcap_ptc_prsc prsc_div_sel_t Pointer to PTC clock prescaler value per
node.

p_xxxxcap_resistor_value rsel_val_t Pointer to PTC series resistor value per
node.

p_xxxxcap_hop_freqs freq_hop_sel_t Pointer to acquisition frequency settings.

p_xxxxcap_filter_level filter_level_t Pointer to Filter level per node..

p_xxxxcap_auto_os auto_os_t Pointer to Auto oversampling per node.

p_xxxxcap_ptc_prsc_cc_cal prsc_div_sel_t Pointer to PTC clock prescale value during
CC cal

p_xxxxcap_resistor_value_
cc_cal

rsel_val_t Pointer to PTC series resistor value during
CC cal..
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

66

3.4.5 Touch Library Measurement Data Type

tag_touch_measure_data_t Struct Reference

Detailed Description

Touch library measurement parameter type.

Data Fields

3.4.6 Touch Library Filter Data Type

tag_touch_filter_data_t Struct Reference

Detailed Description

Touch library filter data parameter type.

Field Unit Description

measurement_done_touch volatile uint8_t Flag set by
touch_xxxxcap_measure_complete_callback(
) function when a latest Touch status is available.

acq_status touch_acq_status_t Status of touch measurement.

num_channel_signals uint16_t Length of the measured signal values list.

*p_channel_signals uint16_t Pointer to measured signal values for each channel.

num_channel_references uint16_t Length of the measured reference values list.

* p_channel_references uint16_t Touch status of each sensor.

num_sensor_states uint8_t Number of sensor state bytes.

num_rotor_slider_values uint8_t Length of the rotor and slider position values list.

*p_rotor_slider_values uint8_t Pointer to rotor and slider position values.

num_sensors uint16_t Length of the sensors data list.

* p_cc_calibration_vals uint16_t Pointer to calibrated compensation values for a given
sensor channel.

p_sensors sensor_t Pointer to sensor data.

*p_sensor_noise_status uint8_t Pointer to noise status of the sensors.

*p_nm_ch_noise_val uint16_t Pointer to noise level value of each channel.

p_sensor_mois_status uint8_t Pointer to moisture status.

* p_auto_os_status uint8_t Pointer to Per channel Auto
Oversample status.
67Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Data Fields

3.4.7 Touch Library Time Type

tag_touch_time_t Struct Reference

Detailed Description

Touch library time parameter type.

Data Fields

3.4.8 Touch Library Info Type

tag_touch_info_t Struct Reference

Detailed Description

Touch library Info type.

Data Fields

Field Unit Description

num_channel_signals uint16_t Length of the measured signal values list.

p_channel_signals uint16_t Pointer to measured signal values for each
channel.

Field Unit Description

measurement_period_ms uint16_t Touch measurement period in milliseconds.
This variable determines how often a new
touch measurement must be done.

current_time_ms volatile uint16_t Current time, set by timer ISR.

mutl_time_to_measure_touch volatile uint8_t Flag set by timer ISR when it is time to
measure touch - Mutual capacitance method.

self_time_to_measure_touch volatile uint8_t Flag set by timer ISR when it is time to
measure touch - Self capacitance method.

Field Unit Description

tlib_state touch_lib_state_t Touch library state.

num_channels_in_use uint16_t Number of channels currently in use.

num_sensors_in_use uint16_t Number of sensors in use irrespective of the
sensor is enable or disable.

num_rotors_sliders_in_use uint8_t Number of rotor sliders in use, irrespective of
the rotor/slider being disabled or enabled.

max_channels_per_rotor_slider uint8_t Max possible number of channels per rotor or
slider.

fw_version uint16_t Touch library version.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

68

3.4.9 Touch Library Version

touch_libver_info_t Struct Reference

Detailed Description

Touch library version information.

Product id for Safety Library is 202. Firmware version is formed of major, minor and patch version as given below:

TLIB_MAJOR_VERSION = 5

TLIB_MINOR_VERSION = 1

TLIB_PATCH_VERSION = 4

fw_version = (TLIB_MAJOR_VERSION << 8) | (TLIB_MINOR_VERSION << 4) | (TLIB_PATCH_VERSION)

Data Fields

3.5 Global Variables

3.5.1 touch_lib_fault_test_status

Type

touch_lib_fault_t

Detailed Description

This structure holds the inverse value of the touch return status.

3.5.2 touch_error_app_cb

Type

void (*)(touch_ret_t lib_error)

Detailed Description

Callback function pointer that must be initialized by the application before a touch library API is called. Touch library
would call the function pointed by this variable under certain error conditions.

3.5.3 touch_suspend_app_cb

Type

void (* volatile touch_suspend_app_cb) (void)

Detailed Description

Callback function pointer that must be initialized by the application before a touch library API is called.Touch library
would call the function pointed by this function when suspension operation has to be carry on by the application.

Field Unit Description

chip_id uint32 Chip identification number.

product_id uint16_t Product identification number.

fw_version uint16_t Library version number.
69Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

If suspend operation is requested by application and touch library is not in TOUCH_STATE_BUSY state, then application
will not receive suspend callback from the library. The application should continue the suspend operation in that case
without waiting for the suspend callback.

3.6 Functions

3.6.1 Touch Library Initialization

The following API is used to initialize the Touch Library with capacitance method pin, register and sensor configuration
provided by the user.

touch_ret_t touch_xxxxcap_sensors_init (touch_config_t * p_touch_config)

Returns:

touch_ret_t: Touch Library status.

3.6.2 Touch Library Sensor Configuration

The following API configures a capacitance sensor of type key, rotor or slider.

touch_ret_t touch_xxxxcap_sensor_config (sensor_type_t sensor_type, channel_t
from_channel, channel_t to_channel, aks_group_t aks_group, threshold_t detect_threshold,
hysteresis_t detect_hysteresis, resolution_t position_resolution, uint8_t
position_hysteresis, sensor_id_t * p_sensor_id)

Returns:

touch_ret_t: Touch Library status.

3.6.3 Touch Library Sensor Calibration

The following API is used to calibrate the capacitance sensors for the first time before starting a touch measurement.
This API can also be used to force calibration of capacitance sensors during runtime.

Fields Description

p_touch_config Pointer to touch configuration structure.

Fields Description

sensor_type Sensor type key, rotor or slider.

from_channel First channel in the slider sensor.

to_channel Last channel in the slider sensor.

aks_group AKS group (if any) the sensor belongs to.

detect_threshold Sensor detection threshold.

detect_hysteresis Sensor detection hysteresis value.

position_resolution Resolution of the reported position value.

position_hysteresis Hysteresis level of the reported position value.

p_sensor_id Sensor id value of the configured sensor is updated by the Touch
Library.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

70

touch_ret_t touch_xxxxcap_sensors_calibrate (auto_tune_type_t auto_tune_type)

Returns:

touch_ret_t: Touch Library status.

Note: Call touch_xxxxcap_sensors_measure API after executing this API.

The following API calibrates the single sensor.

touch_ret_t touch_xxxxcap_calibrate_single_sensor(sensor_id_t sensor_id)

Returns:

touch_ret_t: Touch Library status.
Note: Call touch_xxxxcap_sensors_measure API after executing this API. If calibration of a disabled sensor is

required, touch_xxxxcap_sensor_reenable API should be used with calibration option.
touch_xxxxcap_calibrate_single_sensor API should not be used for calibrating a disabled sensor.
Otherwise it may lead to TOUCH_LOGICAL_PROGRAM_CNTR_FLOW_ERR.

3.6.4 Touch Library Sensor Measurement

The following API starts a touch measurement on capacitance sensors.

touch_ret_t touch_xxxxcap_sensors_measure (touch_current_time_t
current_time_ms ,touch_acq_mode_t xxxxcap_acq_mode , uint8_t(*measure_
complete_callback)(void))

Returns:

touch_ret_t: Touch Library status.

3.6.5 Touch Library Sensor Specific Touch Delta Read

The following API can be used retrieve the delta value corresponding to a given sensor for capacitance sensors
respectively.

Fields Description

auto_tune_type Specify auto tuning parameter mode.

Fields Description

sensor_id Sensor number to calibrate.

Fields Description

current_time_ms Current time in millisecond.

xxxxcap_acq_mode Normal or raw acquisition mode.

measure_complete_callback Callback function to indicate that a single touch measurement is
completed.
71Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

touch_ret_t touch_xxxxcap_sensor_get_delta (sensor_id_t sensor_id, touch_delta_t * p_delta)

Returns:

touch_ret_t: Touch Library status.

3.6.6 Touch Library Sensor Specific Parameter Configuration Read-write

The following API sets the individual sensor specific configuration parameters for capacitance sensors.

touch_ret_t touch_xxxxcap_sensor_update_config (sensor_id_t sensor_id ,
touch_xxxxcap_param_t * p_touch_sensor_param)

Returns:

touch_ret_t: Touch Library status.

The following API reads the sensor configuration parameters for capacitance sensors.

touch_ret_t touch_xxxxcap_sensor_get_config (sensor_id_t sensor_id,
touch_xxxxcap_param_t * p_touch_sensor_param)

Returns:

touch_ret_t: Touch Library status.

3.6.7 Touch Library Sensor Specific Acquisition Configuration Read-write

The following API sets the sensor specific acquisition configuration parameters for capacitance sensors respectively.

Fields Description

sensor_id The sensor id for which delta value is being seeked.

p_delta
Pointer to the delta variable to be updated by the touch
library.

Fields Description

p_sensor_id
The sensor id for which configuration parameter information
is being set.

p_touch_sensor_param
The touch sensor parameter structure that will be used by the
touch library to update.

Fields Description

p_sensor_id
The sensor id for which configuration parameter information
is being set.

p_touch_sensor_param
The touch sensor parameter structure that will be used by the
touch library to update.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

72

touch_ret_t touch_xxxxcap_sensor_update_acq_config (touch_xxxxcap_acq_param_t *
p_touch_xxxxcap_acq_param)

Returns:

touch_ret_t: Touch Library status.

Note: touch_xxxxcap_sensor_update_acq_config API must be called after the
touch_xxxxcap_sensors_init API.

The following API gets the sensor specific acquisition configuration parameters for cap sensors respectively.

touch_ret_ttouch_xxxxcap_sensor_get_acq_config (touch_xxxxcap_acq_param_t *
p_touch_xxxxcap_acq_param)

Returns:

touch_ret_t: Touch Library status.

3.6.8 Touch Library Sensor Global Parameter Configuration Read-write

The following API updates the global parameter for cap sensors respectively.

touch_ret_t touch_xxxxcap_update_global_param (touch_global_param_t * p_global_param)

Returns:

touch_ret_t: Touch Library status.

Note: touch_xxxxcap_update_global_param API must be called after the touch_xxxxcap_sensors_init
API.

The following API reads back the global parameter for cap sensors respectively.

touch_ret_t touch_xxxxcap_get_global_param (touch_global_param_t * p_global_param)

Returns:

Fields Description

p_touch_xxxxcap_acq
_param

The touch sensor acquisition parameter structure that will be
used by the touch library to update.

Fields Description

p_touch_xxxxcap_acq
_param

The touch sensor acquisition parameter structure that will be
used by the touch library to update.

Fields Description

p_global_param The pointer to global sensor configuration.

Fields Description

p_global_param The pointer to global sensor configuration.
73Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

touch_ret_t: Touch Library status.

3.6.9 Touch Library Info Read

The following API gets the Touch Library status information for cap sensors respectively.

touch_ret_t touch_xxxxcap_get_libinfo (touch_info_t * p_touch_info)

Returns:

touch_ret_t: Touch library status.

3.6.10 Touch Library Program Counter

touch_ret_t touch_lib_pc_test_magic_no_1 (void)

The following API tests the program counter inside the touch library. This function returns the unique magic number
TOUCH_PC_FUNC_MAGIC_NO_1 to the application.

Returns: touch_ret_t

touch_ret_t touch_lib_pc_test_magic_no_2 (void)

This function tests the program counter inside the touch library. This function returns the unique magic number
TOUCH_PC_FUNC_MAGIC_NO_2 to the application.

Returns: touch_ret_t

touch_ret_t touch_lib_pc_test_magic_no_3 (void)

This function tests the program counter inside the touch library.This function returns the unique magic number
TOUCH_PC_FUNC_MAGIC_NO_3 to the application.
Returns: touch_ret_t

touch_ret_t touch_lib_pc_test_magic_no_4 (void)

This function tests the program counter inside the touch library.This function returns the unique magic number
TOUCH_PC_FUNC_MAGIC_NO_4 to the application.
Returns: touch_ret_t

3.6.11 Touch Library CRC Configuration Check

touch_ret_t touch_calc_xxxxcap_config_data_integrity

This function computes 16 bit CRC for the touch configuration data and stores it in a global variable internal to the
library.

Returns: touch_ret_t.

touch_ret_t touch_test_xxxxcap_config_data_integrity(void)

This function performs a test to verify the integrity of the touch configuration data. It computes the CRC value and tests
it against the previously stored CRC value. The result of the comparison is passed back to the application.

Fields Description

p_touch_info
Pointer to the touch info data structure that will be updated by
the touch library.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

74

Returns: Returns the result of the test integrity check. If CRC check passes, it returns TOUCH_SUCCESS, else it returns
TOUCH_LIB_CRC_FAIL.

3.6.12 Touch Library Double Inverse check

touch_ret touch_xxxxcap_di_init (touch_lib_di_data_block_t *p_dblk)

This function initializes the memory from inverse data block allocated by the application for different pointers in the
touch_lib_param_safety_t.

Data Fields

Returns: touch_ret_t

This API must be called after the touch_xxxxcap_sensors_init API and before any other API is called.

3.6.13 Touch Library Enable Disable Sensor

touch_ret touch_xxxxcap_sensor_disable (sensor_id_t sensor_id)

This function disable the sensor.

Data Fields

Returns : touch_ret_t

touch_ret touch_xxxxcap_sensor_reenable (sensor_id_t sensor_id, uint8_t no_calib)

This function will enable the sensor.

Data Fields

Returns : touch_ret_t

Fields Description

* p_dblk Pointer to the starting address of the data block
allocated by the application for double inverse check.

Fields Description

sensor_id Sensor which needs to be disabled.

Fields Description

sensor_id Sensor which needs to be re-enabled.

no_calib
Re-enable of sensor would be done with calibration or not. If
value is 1, sensor would be re-enable without calibration else
if value is 0, sensor would be re-enable with calibration.
75Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Notes: 1. Call touch_xxxxcap_sensors_measure API after executing this API.

2. It is recommended to re-enable the sensors with calibration (no_calib = 0), if sensors are re-enabled after
a long duration. Refer Section 2.18, “Drifting on Disabled Sensors”.

3.6.14 Touch Library Version Information

This function will provide the library version information.

touch_ret_t touch_library_get_version_info(touch_libver_info_t *p_touch_libver_info);

Data Fields

Returns : touch_ret_t

3.6.15 Touch Library Moisture Tolerance

This function can be used to Configure sensor in the moisture group and multi touch group.

touch_ret_t touch_xxxxcap_cnfg_mois_mltchgrp (sensor_id_t snsr_id,moisture_grp_t mois_grpid,mltch_grp_t
mltch_grpid);

Fields Description

p_touch_libver_info Pointer to touch library version information structure.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

76

Data Fields

Returns : touch_ret_t

This function can be used to configure moisture group sensor moisture lock and system moisture lock threshold.

touch_ret_t touch_xxxxcap_cnfg_mois_threshold (moisture_grp_t,mois_snsr_threshold_t
snsr_threshold,mois_system_threshold_t system_threshold);

Data Fields

Returns : touch_ret_t

This function can be used to enable the moisture tolerance feature.

touch_ret_t touch_xxxxcap_mois_tolrnce_enable (void);

Data Fields

None

Returns : touch_ret_t

This function can be used to disable the moisture tolerance feature.

touch_ret_t touch_xxxxcap_mois_tolrnce_disable (void);

Data Fields

None

Returns : touch_ret_t

3.6.16 Touch PTC Peripheral Enable Disable

touch_ret_t touch_disable_ptc(void)

This function disable the PTC module

Data Fields

Fields Description

snsr_id Sensor to configure.

mois_grpid Sensor to be configured in this moisture group.

mltch_grpid Sensor to be configured in this multi touch group.

Fields Description

mois_grpid Moisture group id.

snsr_threshold Sensor moisture lock threshold.

system_threshold System moisture lock threshold.
77Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

None

Returns : touch_ret_t

Note: Refer Section 2.17 and Section 4.6 for use cases associated with touch_disable_ptc.

touch_ret_t touch_enable_ptc(void)

This function enable the PTC module.

Data Fields

None

Returns : touch_ret_t

Note: Refer Section 2.17 for use cases associated with touch_enable_ptc.

3.6.17 Touch Library Suspend Resume

touch_ret_t touch_suspend_ptc(void)

This function suspends the PTC library’s current measurement cycle. The completion of the operation is indicated
through callback pointer that must be initialized by the application. Refer section Section 3.5.3 and Section 2.17.

Data Fields

None

Returns : touch_ret_t

touch_ret_t touch_resume_ptc(void)

This function resumes the PTC library’s current measurement which was suspended using touch_suspend_ptc. After
the touch_resume_ptc is called by the application, the touch_xxxxcap_sensors_measure API should be called
only after the measurement complete callback function is received. Refer section Section 3.5.3 and Section 2.17.

Data Fields

None

Returns : touch_ret_t

Note: The APIs related to touch suspend operation must be used in accordance with the safety requirements of the
product and must be taken care by the customer application.

3.6.18 Touch Library Re-Initialization

touch_ret_t touch_xxxxcap_sensors_deinit(void)

This function deinit ial izes the touch l ibrary.This API should be called only when the l ibrary state is in
TOUCH_STATE_INIT or TOUCH_STATE_READY state.

After calling deinit API,no other API should be called apart from touch_xxxxcap_sensors_init to reinitialize the
touch library.

Data Fields

None

Returns : touch_ret_t

Note:
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

78

a. If one module(self-cap or mutual-cap touch library) is de-initialized, then all other modules should be de-
initialized as well. For eg., if mutual-cap touch library is de-initialized, then mutual-cap FMEA, self-cap touch
library and self-cap FMEA should be de-initialized or stopped.

b. When touch library or FMEA has to be re-initialized, the application has to follow the initialization sequence
as done during power-up.
79Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

4. FMEA

This section provides information about the FMEA component. The FMEA library supports the rotor/slider built with
spatially interpolated design. FMEA component is further categorized into mutual and self capacitance FMEA
component. FMEA will be performed on all the touch pins including sensor disabled pins.

For more information about designing the touch sensor, refer to Buttons, Sliders and Wheels Touch Sensor Design
Guide (www.atmel.com).

4.1 Double Inverse Memory Check

4.1.1 Application to FMEA

No variable is interfaced from the application to FMEA. Hence, Double Inverse mechanism need not be used for
protection.

4.1.2 FMEA to Application

The following variable must be protected using the specified inverse variable.

4.2 Memory Requirement

The following table provides the Flash and the RAM memory required for various configurations using different number
of channels.

Default Configuration:

The following Macros are defined for all the cases mentioned for the Memory Calculation in Section 4.2.1

 SELFCAP_FMEA_MAP_FAULT_TO_CHANNEL

 MUTLCAP_FMEA_MAP_FAULT_TO_CHANNEL

4.2.1 Memory Requirement for IAR Library

4.2.1.1 Memory Requirement for Mutual Capacitance

Table 4-1.

Variable Inverse Variable

faults_to_report faults_to_report_inv (Refer Section 5.3.3)

Total No of
Mutual
Cap
Channels

Total Code Memory Total Data
Memory

1 2224 88

10 2268 108

20 2268 124

40 2268 164

256 2300 596
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

80

www.atmel.com

4.2.1.2 Memory Requirement Self Capacitance

4.2.1.3 e

Total No of
Self Cap
Channels

Total Code Memory Total
Data
Memory

1 2056 80

2 2124 84

11 2148 124

16 2174 144

Total No of
Mutual
Cap
Channels

Total No of Self Cap
Channels

Total Code Memory Total
Data
Memory

1 1 4538 168

40 8 4689 276

80 11 4692 368
81Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

4.3 API Execution Time

4.3.1 Mutual Capacitance API Execution Time

The following table provides information about the execution time required for various FMEA APIs.

System Clock Frequency: 48MHz

PTC Clock Frequency: 4MHz

Notes: 1. For the sf_mutlcap_fmea_test_open_pins_per_channel API, the preceding table provides the
maximum time required to complete the procedure. After the control is returned back to the application, the
application can execute any other tasks.

2. API Execution Time marked as * are calculated for sensors with typical sensor capacitance values.

The time for the Mutual capacitance FMEA API to return the control to the application is as follows:

Table 4-2. Mutual Capacitance FMEA API Execution Time

API Input Value Time (in µs)

1

Channel

(PORT A)

20
Channels

(PORT A
& B)

(5 x4)

sf_mutlcap_fmea_in
it

Any value 84.8 125.6

sf_mutlcap_fmea_te
st

0x01 (short to Vcc) 114 303.5

0x02 (short to Vss) 115.2 309

0x04 (short between pins) 744 3656

0x08 (PTC register test) 214 352.9

0x10 (input configuration
data integrity check)

122 265.1

0x1F (all test) 1000 4032

sf_mutlcap_fmea_te
st_open_pins_per_c
hannel

Any value 13200 12830

API Input Value Time (in µs)

1

Channel

(PORT A)

20
Channels

(PORT A
& B)

(5 x4)

sf_mutlcap_fmea_test_ope
n_pins_per_channel

Any value 50.2 50.3
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

82

4.3.2 Self Capacitance API Execution Time

The following table provides information about the APIs and their corresponding execution time.

Table 4-3. Self Capacitance FMEA API Execution Time

Notes: 1. For the sf_selfcap_fmea_test_open_pins_per_channel API, the preceding table provides the
maximum time required to complete the procedure. After the control is returned back to the application, the
application can execute any other tasks.

2. API Execution Time marked as * are calculated for sensors with typical sensor capacitance values.

The time for the Self capacitance FMEA API to return the control to the application is as follows:

Table 4-4. Self Capacitance FMEA Asynchronous API Execution Time

API Input Value Time (in µs)

1

Channel

(PORT A)

16
Channels

(PORT A
& B)

sf_selfcap_fmea_init Any value 79.4 218

sf_selfcap_fmea_test

0x01 (short to Vcc) 99.4 290

0x02 (short to Vss) 99.8 298

0x04 (short between pins) 612 3540

0x08 (PTC register test) 212 348

0x10 (input configuration
data integrity check)

116 329

0x1F (all test) 848 3946

sf_selfcap_fmea_test_ope
n_pins_per_channel

Any value 10800 10700

API Input Value Time (in µs)

1

Channel

(PORT A)

16
Channels

(PORT A
& B)

sf_selfcap_fmea_test_ope
n_pins_per_channel

Any value 48.7 48.9
83Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

4.4 Error Interpretation

Table 4-5. Error Interpretation

List of API Error Bit Reason Error Coverage

sf_xxxxcap_fmea_ini
t

FMEA_ERR_INIT

CRC value computed
by touch library has
failed double inverse
check

Not applicable

FMEA_ERR_INIT Input pointer is NULL Not applicable

FMEA_ERR_INIT
Input values are not
within limit

Not applicable

sf_xxxxcap_fmea_tes
t

FMEA_ERR_PRE_TEST
Undefined test bits
are set

Not applicable

FMEA_ERR_PRE_TEST

This function is called
before calling
sf_xxxxcap_fmea
_init()

Not applicable

FMEA_ERR_SHORT_TO_V
CC

Any one touch pin is
short to Vcc

XXXXCAP enabled
pins

FMEA_ERR_CONFIG_CHE
CK CRC

CRC check has failed
Not applicable

Not applicable

FMEA_ERR_SHORT_TO_V
SS

Any one touch pin is
short to Vss

XXXXCAP enabled
pins

FMEA_ERR_SHORT_TO_P
INS

Any two touch pins
are shorted to each
other

XXXXCAP enabled
pins

FMEA_ERR_PTC_REG

PTC register test
failed or the PTC test
status returned by
touch library failed
double inverse check

Not applicable

FMEA_ER-
R_SHORT_TO_VCC

At least one test has
failed

FMEA_ER-
R_SHORT_TO_VSS

FMEA_ER-
R_SHORT_TO_PINS

FMEA_ERR_PTC_REG

FMEA_ERR_CONFIG_-
CHECK
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

84

4.5 Data and Function Protection

The functions and global variables which are used only by FMEA are marked as static. The user / application should not
change the same to non-static.

The header file sf_fmea_samd_int.h file is used only by FMEA. The user/application should not include this header

file in any other files.

4.6 FMEA Considerations

FMEA Short Between Pins, Short to VSS, Short to VCC can be detected on the MCU pins. The periodicity of Short to
VSS test should be much lesser than the Short between Pins test. The touch_disable_ptc could be called after
sf_xxxxcap_fmea_test API and also after the open pin test callback is received for each channel.This should be
done to reduce the power consumption.

sf_xxxxcap_fmea_tes
t_open_pins_per_cha
nnel

FMEA_ERR_PRE_TEST

This function is called
before calling
sf_xxxxcap_fmea_
init()

Not applicable

FMEA_ERR_PRE_TEST

Channel number
passed is more than
the maximum
possible

Not applicable

FMEA_ERR_OPEN_PINS

There is a disconnect
between sensor
electrode and device
pin for the given
channel number

One channel per call

Table 4-6. Header File Availability for Application

Header File Availability for
Application

Configurable Fields

sf_fmea_samd_int.h No Not applicable

sf_fmea_samd_api.h Yes

 FMEA_VAR_LOCATION

 MUTLCAP_FMEA_MAP_FAULT_TO_CH
ANNEL

 SELFCAP_FMEA_MAP_FAULT_TO_CH
ANNEL

Table 4-5. Error Interpretation

List of API Error Bit Reason Error Coverage
85Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

5. FMEA API

5.1 Typedefs

None

5.2 Enumerations

5.2.1 sf_fmea_faults_t

This enumeration describes the types of FMEA faults or errors such as short to Vcc, short to Vss, and short between
pins that occur in a system. The test results of FMEA tests are stored in global fault report structure. The generic test
result of FMEA test is stored in faults_to_report field of sf_xxxxcap_fmea_fault_report_var. Each bit of
the field faults_to_report field represents the test status for each FMEA test.

For example, FMEA_ERR_SHORT_TO_VCC bit represents short to Vcc test status, the FMEA_ERR_SHORT_TO_VSS bit
represents short to Vss test status.

Note: If multiple FMEA tests are conducted in a single API call, sf_xxxxcap_fmea_fault_report_var will hold the
consolidated results of all the requested tests.

In other case, when FMEA tests are conducted one after other by the application,
sf_xxxxcap_fmea_fault_report_var will hold only the latest test results(previous results will be cleared each time
by FMEA component).In such cases, it is recommenced that application should keep track of fault report variable.

Table 5-1. FMEA Fault Details

Values Description

FMEA_ERR_SHORT_TO_VCC Short to Vcc

FMEA_ERR_SHORT_TO_VSS Short to Vss

FMEA_ERR_SHORT_TO_PINS Short between pins

FMEA_ERR_PTC_REG PTC register test

FMEA_ERROR_CONFIG_CHECK Checks the input configuration integrity

FMEA_ERR_OPEN_PINS Open connection between device pin and sensor

FMEA_ERROR_PRE_TEST Pre-test failure

FMEA_ERR_INIT Initialization
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

86

5.3 Data Structures

5.3.1 sf_xxxxcap_fmea_open_test_config_t

The configuration parameters required for FMEA open pin test are passed through this structure.

Note: The open pin test is performed indirectly by measuring the capacitance of the sensor electrode. If the sensor
electrode is disconnected from the device pin, the measured capacitance value will be less when compared to that
of the sensor electrode connected to the device pin.

Fields Type Description

cc_cal_valid_min_val

For Mutual capacitance

cc_cal_valid_min_val[DEF_
SELFCAP_NUM_CHANNELS]

For Self capacitance

uint16_t

CC value should be provided for each selfcap
channel.In case of mutual cap, single cc
calibration value needs to be provided.

Maximum value: 16000

cc_cal_val_min_no_error uint8_t

Open errors are declared only if CC calibration
values of a particular channel is out of range in
N1 samples out of N2 samples.

For example, if N2 is set to 4 and N1 is set to 2,
then CC calibration values are compared with the
cc_cal_valid_min_val low and high limits,
for continuous 4 samples. The channels whose
CC calibration values are in error for more than 2
samples are declared error.

Whenever an open pin test function is called, a
sample counter corresponding to the channel is
incremented. If an error is found among the
samples, the error count for the channel is
incremented. If the error count reaches N1, the
error is reported and the error count and sample
count are reset. If sample count reaches N2
value (it indicates that the error count has not
reached N1) the error count and sample count is
reset.

In the previous example,
cc_cal_val_min_no_error represents N1.

Maximum value:
cc_cal_val_no_of_samples

Minimum value: 1

cc_cal_val_no_of_samples uint8_t

In the previous example,
cc_cal_val_no_of_samples represents N2.

Maximum value: 15

Minimum value: 1

xxxxcap_open_pin_test_cal
lback

void
(*)(uint16_t)

After completing the open pin test, the open pin
test function calls the
xxxxcap_open_pin_test_callback
function and indicates the completion of the open
pin test. The application can pick the test status
in this complete callback functions.
87Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

During design stage, the application developer must monitor the equivalent capacitance value for all the channels under
normal (all the sensors are connected and un-touched) condition. User can read the equivalent capacitance value as
shown in the following example:

/* channel 0’s equivalent capacitance */
p_xxxxcap_measure_data->p_cc_calibration_vals[0]
/* channel 1’s equivalent capacitance */
p_xxxxcap_measure_data->p_cc_calibration_vals[1]

Although not mandatory, it is recommended to set cc_cal_valid_min_val as 30% of the lowest value observed in

p_cc_calibration_vals array.

Fo r examp le , i f 415 i s the lowes t va lue observed in the p_cc_calibration_vals a r ray , se t
cc_cal_valid_min_val as 124.

Note: The CC values would differ based on the value of series resistance (internal or external) connected to the touch
pins.

5.3.2 sf_xxxxcap_fmea_input_config_t

The Open CC values will change based on the resistance added on the touch lines.Proper value of CC has to given as
input to the sf_xxxxcap_fmea_test_open_pins_per_channel function. The FMEA test input configuration data
are passed through this structure.

typedef struct

tag_sf_xxxxcap_fmea_input_config_t

{

 sf_xxxxcap_fmea_open_test_config_t *xxxxcap_open_test_config;

}sf_xxxxcap_fmea_input_config_t;

5.3.3 sf_mutlcap_fmea_fault_report_t

The Mutual capacitance FMEA test API status is updated in this structure.

typedef struct tag_sf_mutlcap_fmea_fault_report_t

{

uint16_t faults_to_report;

uint16_t faults_to_report_inv;

uint16_t x_lines_fault_vcc;

uint16_t y_lines_fault_vcc;

uint16_t x_lines_fault_vss;

uint16_t y_lines_fault_vss;

uint16_t x_lines_fault_short;

uint16_t y_lines_fault_short;

#ifdef MUTLCAP_FMEA_MAP_FAULT_TO_CHANNEL

uint8_t fmea_channel_status[DEF_MUTLCAP_NUM_CHANNELS];

Values Description

xxxxcap_open_test_config
Refer sf_xxxxcap_fmea_open_test_config_t
description in Section 5.3.1
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

88

#endif

}sf_mutlcap_fmea_fault_report_t;

Values Description

faults_to_report

If a bit is set to 1 in fault_to_report, then corresponding fault has
occurred.

If a bit is set to 0 in fault_to_report, then the corresponding fault
has not occurred.

The X/Y lines and channels that are affected are provided in other fields.

FMEA fault status

 Bit 0 represents the short to Vcc.

 Bit 1 represents the short to Vss.

 Bit 2 represents the short to PINS.

 Bit 3 represents the PTC register test.

 Bit 4 represents the Configuration data integrity.

 Bit 5 represents the Open pin fault.

 Bit 6 represents the fault pre-test failure condition.

 Bit 7 represents the fault init failed condition.

The bit 0 is set if at least one of the touch pin (X or Y) is short to Vcc.

The bit 1 is set if at least one of the touch pin (X or Y) is short to Vss.

The bit 2 is set if at least two touch pins are shorted to each other.

The bit 3 is set if,

 a fault is found in PTC register test

 the test result passed by touch library fails double inversion check

The bit 4 is set if,

 a fault is found in the input configuration data integrity

 the CRC value computed by touch library fails double inversion
check

The bit 5 is set if at least one touch pin is not connected with the sensor
electrode.

The bit 6 is set if,

 the sf_mutlcap_fmea_test() function is called before
executing the initialization function

 if the channel number passed to
sf_mutlcap_fmea_test_open_pins_per_channel()
function is greater than DEF_MUTLCAP_NUM_CHANNELS.

The bit 7 is set if,

 invalid parameters are passed to the FMEA initialization function

 when the CRC value computed by the touch library for the input
configuration data fails the double inverse check

 the input pointer is NULL.

faults_to_report_inv Compliment value of field faults_to_report

x_lines_fault_vcc If bit n is set, then Xn pin is short to Vcc

y_lines_fault_vcc If bit n is set, then Yn pin is short to Vcc
89Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

5.3.4 sf_selfcap_fmea_fault_report_t

The self capacitance FMEA test API status is updated in this structure.

typedef struct tag_sf_selfcap_fmea_fault_report_t

{

uint16_t faults_to_report;

uint16_t faults_to_report_inv;

uint16_t y_lines_fault_vcc;

uint16_t y_lines_fault_vss;

uint16_t y_lines_fault_short;

#ifdef SELFCAP_FMEA_MAP_FAULT_TO_CHANNEL

uint8_t fmea_channel_status[DEF_SELFCAP_NUM_CHANNELS];

#endif

x_lines_fault_vss If bit n is set, then Xn pin is short to Vss

y_lines_fault_vss If bit n is set, then Yn pin is short to Vss

y_lines_fault_short If bit n is set, then Xn pin is short to other touch pin

x_lines_fault_short If bit n is set, then Yn pin is short to other touch pin

fmea_channel_status
[DEF_MUTLCAP_NUM_CHANN
ELS]

This array maps FMEA faults to individual channel numbers. This
variable is applicable only if
MUTLCAP_FMEA_MAP_FAULT_TO_CHANNEL macro is defined in
sf_fmea_samd_api.h file. This is used to map FMEA faults to
individual channel numbers. Each byte in the array corresponds to the
FMEA faults in the particular channel number.

Example: FMEA_CHANNEL_STATUS[0] represents the fault of the
channel number 0.

Each bit in the byte represents the FMEA test status.

Example:

 Bit 0 represents the short to Vcc.

 Bit 1 represents the short to Vss.

 Bit 2 represents the short to PINS.

 Bit 5 represents the open pin fault.

If X or Y pin corresponding to a channel is shorted to Vcc then the Bit 0
position of that specific byte will be set to 1.

If X or Y pin corresponding to the channel is shorted to Vss then the Bit 1
position of that specific byte will be set to 1.

If X or Y pin corresponding to the channel is shorted to other X or Y pins,
the Bit 2 of all the channel which uses the faulty X or Y will be set to 1.

Bit 5 of all the channels whose sensor electrode is not connected to the
device pin is set to 1.

Since PTC register test, configuration data integrity, pre-test failure and
initialization failure are common for all the channels,
fmea_channel_status will not contain those information.

Values Description
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

90

}sf_selfcap_fmea_fault_report_t;

Values Description

faults_to_report

If a bit is set to 1 in fault_to_report, then corresponding fault has
occurred.

If a bit is set to 0 in fault_to_report, then the corresponding fault
has not occurred.

The Y lines and channels that are affected are provided in other fields.

FMEA fault status:

 Bit 0 represents the short to Vcc.

 Bit 1 represents the short to Vss.

 Bit 2 represents the short to PINS.

 Bit 3 represents the PTC register test.

 Bit 4 represents the Configuration data integrity.

 Bit 5 represents the Open pin fault.

 Bit 6 represents the fault pre-test failure condition.

 Bit 7 represents the fault init failed condition.

The bit 0 is set if at least one of the touch pin (Y) is short to Vcc.

The bit 1 is set if at least one of the touch pin (Y) is short to Vss.

The bit 2 is set if at least two touch pins are shorted to each other.

The bit 3 is set if,

 a fault is found in PTC register test

 the test result passed by touch library fails double inversion check

The bit 4 is set if,

 a fault is found in the input configuration data integrity

 the CRC value computed by touch library fails double inversion
check

The bit 5 is set if at least one touch pin is not connected with the sensor
electrode.

The bit 6 is set if,

 the sf_selfcap_fmea_test() function is called before
executing the initialization function

 if the channel number passed to
sf_selfcap_fmea_test_open_pins_per_channel()
function is greater than DEF_SELFCAP_NUM_CHANNELS.

The bit 7 is set if,

 invalid parameters are passed to the FMEA initialization function

 when the CRC value computed by the touch library for the input
configuration data fails the double inverse check

 the input pointer is NULL.

faults_to_report_inv Compliment value of field faults_to_report
91Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Note: The application must validate the field faults_to_report by performing the double inversion check on
faults_to_report variable using the faults_to_report_inv variables.

y_lines_fault_vcc If bit n is set, then Yn pin is short to Vcc

y_lines_fault_vss If bit n is set, then Yn pin is short to Vss

fmea_channel_status
[DEF_SELFCAP_NUM_CHANN
ELS]

This array maps FMEA faults to individual channel numbers. This
variable is applicable only if
SELFCAP_FMEA_MAP_FAULT_TO_CHANNEL macro is defined in
sf_fmea_samd_api.h file. This is used to map FMEA faults to
individual channel numbers. Each byte in the array corresponds to the
FMEA faults in the particular channel number.

Example: FMEA_CHANNEL_STATUS[0] represents the fault of the
channel number 0.

Each bit in the byte represents the FMEA test status.

Example:

 Bit 0 represents the short to Vcc.

 Bit 1 represents the short to Vss.

 Bit 2 represents the short to PINS.

 Bit 5 represents the open pin fault.

If Y pin corresponding to a channel is shorted to Vcc then the Bit 0
position of that specific byte will be set to 1.

If Y pin corresponding to the channel is shorted to Vss then the Bit 1
position of that specific byte will be set to 1.

If Y pin corresponding to the channel is shorted to other Y pins, the Bit 2
of all the channel which uses the faulty Y will be set to 1.

Bit 5 of all the channels whose sensor electrode is not connected to the
device pin is set to 1.

Since PTC register test, configuration data integrity, pre-test failure and
initialization failure are common for all the channels,
fmea_channel_status will not contain those information.

Values Description
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

92

5.4 Global Variables

5.4.1 sf_xxxxcap_fmea_fault_report_var

5.5 Functions

5.5.1 sf_xxxxcap_fmea_init

This function initializes all the FMEA related variables and verifies if the input parameters are within predefined range. If
t he va lues a re ou ts ide the p rede f ined range , the faults_to_report f i e ld o f
sf_xxxxcap_fmea_fault_report_var global structure is updated with an FMEA_ERROR_INIT error. If the values
are within the range, the touch library computes the CRC for the input configuration data. The FMEA validates the CRC
value passed by the touch library by performing double inverse check. If the double inverse check fails, the
FMEA_ERROR_INIT is reported in the variable sf_xxxxcap_fmea_fault_report_var. This function must be called
a f te r pe r fo rm ing the touch in i t i a l i za t ion . The app l i ca t ion shou ld check the var iab le
sf_xxxxcap_fmea_fault_report_var after calling this function and ensure that the initialization has not failed.

void sf_xxxxcap_fmea_init(sf_xxxxcap_fmea_config_t sf_xxxxcap_fmea_input_config)

Return: None.

5.5.2 sf_xxxxcap_fmea_test

This function performs various FMEA tests based on the input parameter and updates the global structure
sf_xxxxcap_fmea_fault_report_var which contains the FMEA fault status.

Type Description

sf_xxxxcap_fmea_fault_re
port_t

Holds the test status from the latest sf_xxxxcap_fmea_test() call.
Refer Section 5.3.3 for mutual capacitance and Section 5.3.4 for self
capacitance related information.

The members, faults_to_report and faults_to_report_inv of
sf_xxxxcap_fmea_fault_report_var variable must be verified for
double inversion before using any other member of this variable.

Fields Type Description

sf_xxxxcap_fmea_inpu
t_config

sf_xxxxcap_fmea_input_
config_t

The input parameters are passed through this
structure
93Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

void sf_xxxxcap_fmea_test(uint16_t select_checks)

Return: None.

Fields Type Description

select_checks uint16_t

Bit masks of the tests that must be performed.

 If bit 0 is set as 1, Short to Vcc test is performed.

 If bit 1 is set as 1, Short to Vss test is performed.

 If bit 2 is set as 1, Short to Pins test is performed.

 If bit 3 is set as 1, PTC register test is performed.

 If bit 4 is set as 1, input configuration data integrity
test is performed.

 If any bit is set to 0, the corresponding FMEA test
is not performed.

 Bit 5 to 15 are reserved in this field. The
application should not call this function by setting
them.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

94

5.5.3 sf_xxxcap_fmea_test_open_pins_per_channel

Open pin test is performed by receiving the CC value for the current channel number from touch library. If the CC value
received from the touch library is less than or equal to the configured minimum value, then the error counter for that
channel is incremented. Error counter will also be incremented if double inverse check of the CC value is failed. If the
error counter reaches the configured minimum number of error count, then the FMEA_ERR_OPEN_PINS error is updated
in sf_xxxxcap_fmea_fault_report_var and the sample and error counter of that channel is reset to zero. If the
sample counter reaches the configured maximum number of channels, then the error counter and sample counter are
reset to zero.

Figure 5-1. Working Mechanism of the Error and Sample Counter

Is (cc_val <=
cc_cal_valid_min_val)
or cc_val failed double

inverse check ?

Yes

No

Get cc_val from touch lib for
ch_num

Start

sample_cnt[ch_num]++;
err_status = 0;

err_cnt[ch_num]++;

Is err_cnt[ch_num] >=
N1

Yes

No

err_status = 1;

Is sample_cnt[ch_num]
>= N2

Yes

No

err_cnt[ch_num] = 0;
sample_cnt[ch_num] = 0;

Update the fmea general status
with err_status;

End
95Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

This API can be called using one of the three modes.

Mode 1: Application Tracking the Next Channel Number

If the channel number passed as parameter is less than DEF_XXXXCAP_NUM_CHANNELS, this function performs open
pin test for the specified channel number. In this mode, the application can decide the channel number to be tested
during each run.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

96

Mode 2: FMEA Tracking the Next Channel Number

The application can let the FMEA to track the channel number by passing DEF_XXXXCAP_NUM_CHANNELS as the input
value. For each call to sf_xxxxcap_fmea_open_pins_per_channel with DEF_XXXXCAP_NUM_CHANNELS as the

sf_xxxxcap_fmea_open_pin_per_channel
(DEF_XXXXCAP_NUM_CHANNELS)

Function call return

Application working condition

Perform open pin test for ch_num

FMEAApplication

Open Pin test complete
callback function(ch_num)

Fault ?Fault Action

Function call return

Yes

No

System Power up

Function call return

sf_xxxxcap_fmea_init()
FMEA Initialization
ch_num_track = 0;

ch_num = ch_num_track;

ch_num_track++;

Is ch_num_track ==
DEF_XXXXCAP_NUM_CHANNEL

S ?

ch_num_trac
k = 0

sf_xxxxcap_fmea_open_pin_per_channel

Function call return

Perform open pin test for ch_num

Open Pin test complete
callback function(ch_num)

Fault ?Fault Action

Function call return

Yes

No

ch_num = ch_num_track;

ch_num_track++;

Is ch_num_track ==
DEF_XXXXCAP_NUM_CHANNEL

S ?

ch_num_trac
k = 0
97Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

i npu t va lue , open p in tes t w i l l be per fo rmed on one channe l (re fe r red as sf_xxxxcap
_fmea_open_test_ch_track). At FMEA initialization, sf_xxxxcap_fmea_open_test_ch_track is initialized to
0 . A f te r each tes t , sf_xxxxcap_fmea_open_test_ch_track i s i nc remen ted by 1 . When
sf_xxxxcap_fmea_open_test_ch_track reaches DEF_XXXXCAP_NUM_CHANNELS, it is reset to 0.

Mode 3: Both FMEA and Application tracking the channel number

In mode 3, sf_xxxxcap_fmea_test_open_pins_per_channel() can be called with input parameter value in the

range of 0 to DEF_XXXXCAP_NUM_CHANNELS.

Whenever the input parameter value is in the range of 0 to DEF_XXXXCAP_NUM_CHANNELS-1, this function performs
open pin test for the specified channel number.

Whenever the input parameter value is equal to DEF_XXXXCAP_NUM_CHANNELS, open pin test will be performed on one
channel number sf_xxxxcap_fmea_open_test_ch_track. sf_xxxxcap_fmea_open_test_ch_track is

Function call return

sf_xxxxcap_fmea_init()

FMEA Initialization
ch_num_track = 0;

Application working condition

FMEAApplication

System Power up

sf_xxxxcap_fmea_open_pin_per_channel(app_ch_num)

Function call return

Open Pin test complete
callback function(ch_num)

Perform open pin test for ch_num

Function call return

Yes

No

ch_num = app_ch_num;

sf_xxxxcap_fmea_open_pin_per_channel
(DEF_XXXXCAP_NUM_CHANNELS)

Function call return

Perform open pin test for ch_num

Open Pin test complete
callback function(ch_num)

Fault ?Fault Action

Function call return

Yes

No

ch_num = ch_num_track;

ch_num_track++;

Is ch_num_track ==
DEF_XXXXCAP_NUM_CHANNEL

S ?

ch_num_trac
k = 0

Fault Action

app_ch_num = N;

Fault ?
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

98

incremented by after performing the test. If the sf_xxxxcap_fmea_open_test_ch_track is equal to or greater than
DEF_XXXXCAP_NUM_CHANNELS, then sf_xxxxcap_fmea_open_test_ch_track reset to 0.

In all these modes, the application should initiate the next open pin test only after receiving the callback function for the
previously initiated open pin test.

void sf_xxxxcap_fmea_test_open_pins_per_channel (uint16_t ch_num)

If the channel number passed is greater than DEF_XXXXCAP_NUM_CHANNELS, then the

sf_xxxxcap_fmea_fault_report_var is updated with FMEA_ERR_PRE_TEST error.

Return:
None.

The sf_xxxxcap_fmea_test_open_pins_per_channel() calls the open pin test complete callback
function after performing open pin test for the specified channel. The application should check the open pin
test status only after the open pin test complete callback function is called.

void sf_xxxxcap_fmea_test_open_pins_per_channel (uint16_t ch_num)

Data Fields

Return: None.

The sf_xxxxcap_fmea_test_open_pins_per_channel() calls the open pin test complete callback function after
performing open pin test for the specified channels. The application should check the open pin test status only after the
open pin test complete callback function is being called for the respective touch acquisition technology.

Arguments Type Description

ch_num unint16_t Channel number for which the open pin test must be performed
99Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

5.5.4 sf_xxxxcap_fmea_stop

This function stops the FMEA component operation and change the FMEA init status to uninitialized state. The global
variables used by the FMEA are reset to default value. The application cannot execute further FMEA tests without re-
initializing the FMEA component.

void sf_xxxxcap_fmea_stop (void)

Return: None.

Arguments Type Description

None None None

sf_xxxxcap_fmea_test()

Function call return

System Power up

sf_xxxxcap_fmea_init()

FMEA Initialization

Application working condition

FMEAApplication

Fault Action
Yes

No

sf_xxxxcap_fmea_stop()

Perform FMEA Test

Function call return

sf_xxxxcap_fmea_init()

FMEA Initialization

sf_xxxxcap_fmea_test()

Fault ?Fault Action
Yes

No

Function call return

Fault ?

Application working condition

Function call return

Function call return

Perform FMEA Test
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

100

5.6 Macros

DEF_TOUCH_FMEA_MUTLCAP_ENABLE and DEF_TOUCH_FMEA_SELFCAP_ENABLE must be set to 1 to enable mutual
cap and self cap FMEA respectively.
101Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

6. System

6.1 Relocating Touch Library and FMEA RAM Area

The data corresponding to the touch library and FMEA are placed at specific sections in the RAM.

This is done so that the customer application can perform the static memory analysis test on the touch and FMEA RAM
area as per the Class B safety requirements.

To create these two RAM sections (Touch and FMEA), the linker file must be modified as per the description in the
following sections.

Notes: 1. All the variables related to touch sensing (filter callback, touch input configuration, gain variables and
others) in touch.c application file must be re-located to touch library RAM section.

2. Following warning may be displayed in IAR IDE:
Warning[Be006]: possible conflict for segment/section.
This warning is thrown due to relocation of configuration variables in touch.c and FMEA variables which
contains both initialized and zero initialized data to the TOUCH_SAFETY_DATA_LOCATION and
TOUCH_FMEA_DATA_LOCATION sections, respectively.
This warning will not affect the safe operation of the system.
This warning can be safely discarded or if required the same can be suppressed using diagnostic tab in IAR
project options.

6.1.1 Modifying the IAR Linker File

Touch Library RAM Section

The changes should be done in <devicevariant>_flash.icf file as follows:

Linker symbols should be added in linker file to denote the start and size of the touch library RAM section. The size of
touch RAM section (SIZE_OF_TOUCH_SAFETY_DATA_LOCATION) should be calculated as per Section 2.10.

An example setting is as follows:

define symbol TOUCH_SAFETY_DATA_LOCATION_START = 0x20004000;

define symbol SIZE_OF_TOUCH_SAFETY_DATA_LOCATION = 0x05DC;

define symbol TOUCH_SAFETY_DATA_LOCATION_END = (TOUCH_SAFETY_DATA_LOCATION_START +
SIZE_OF_TOUCH_SAFETY_DATA_LOCATION -1);

Table 6-1. IAR Linker Symbols for Touch RAM Data

Symbol in Linker File Description

TOUCH_SAFETY_DATA_LOCATION_region
Touch Library Data Memory Region to be
created in linker file.

TOUCH_SAFETY_DATA_LOCATION
Touch library Data Section to be created in
linker file

SIZE_OF_TOUCH_SAFETY_DATA_LOCATION Size of Touch Library RAM data

TOUCH_SAFETY_DATA_LOCATION_START

The absolute address of RAM from where
touch library RAM variables would be
placed in
TOUCH_SAFETY_DATA_LOCATION section

TOUCH_SAFETY_DATA_LOCATION_END
End location of the
TOUCH_SAFETY_DATA_LOCATION section
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

102

FMEA RAM Section

Linker symbols should be added in linker file to denote the start and size of the FMEA library RAM section. The size of
FMEA RAM section (SIZE_OF_FMEA_SAFETY_DATA_LOCATION) should be calculated as per section Section 4.2.

An example setting is as follows:

define symbol FMEA_SAFETY_DATA_LOCATION_START = 0x20004000;

define symbol SIZE_OF_FMEA_SAFETY_DATA_LOCATION = 0x05DC;

define symbol FMEA_SAFETY_DATA_LOCATION_END = (FMEA_SAFETY_DATA_LOCATION_START +
SIZE_OF_FMEA_SAFETY_DATA_LOCATION -1);

Note: More information can be found at page 85, Linking Your Application in [3]. Refer [4] for the version of IAR tool-
chain used.

6.1.2 Modifying GCC Linker File

The changes should be done in <devicevariant>_flash.ld file as follows:

Table 6-2. IAR Linker Symbols for FMEA RAM Data

Symbol in Linker File Description

FMEA_SAFETY_DATA_LOCATION_region
FMEA Library Data Memory Region to be
created in linker file

FMEA_SAFETY_DATA_LOCATION
FMEA library Data Section to be created in
linker file

SIZE_OF_FMEA_SAFETY_DATA_LOCATION Size of FMEA Library RAM data

FMEA_SAFETY_DATA_LOCATION_START

The absolute address of RAM from where
FMEA library RAM variables would be
placed in
FMEA_SAFETY_DATA_LOCATION section

FMEA_SAFETY_DATA_LOCATION_END
End location of the
FMEA_SAFETY_DATA_LOCATION section
103Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

Touch Library RAM Section

The TOUCH_SAFETY_DATA_LOCATION_START , _sTOUCH_SAFETY_DATA_LOCATION ,
TOUCH_SAFETY_DATA_LOCATION_END and _eTOUCH_SAFETY_DATA_LOCATION variables would be used in the
startup_samd20.c or startup_samd21.c file to initialize the Touch library RAM section from FLASH.

Symbol in Linker File Description

TOUCH_SAFETY_DATA_LOCATION_region

Touch Library Data Memory Region to be
created in linker file. The ORIGIN field in
the memory region should be the starting
address of the touch library RAM data and
LENGTH field should be the size of the
touch library RAM data.

TOUCH_SAFETY_DATA_LOCATION
Touch library Data Section to be created in
linker file

SIZE_OF_TOUCH_SAFETY_DATA_LOCATION Size of Touch Library RAM data

TOUCH_SAFETY_DATA_LOCATION_START

The absolute address of RAM from where
Touch library RAM variables would be
placed in
TOUCH_SAFETY_DATA_LOCATION
section

TOUCH_SAFETY_DATA_LOCATION_END
End location of the
TOUCH_SAFETY_DATA_LOCATION section

_sTOUCH_SAFETY_DATA_LOCATION
It holds the start address of the
TOUCH_SAFETY_DATA_LOCATION in
FLASH

_eTOUCH_SAFETY_DATA_LOCATION
It holds the end address of the
TOUCH_SAFETY_DATA_LOCATION in
FLASH
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

104

FMEA Library RAM Section

The FMEA_SAFETY_DATA_LOCATION_START, _sFMEA_SAFETY_DATA_LOCATION, FMEA_SAFETY_DATA_
LOCATION_END and _eFMEA_SAFETY_DATA_LOCATION variables would be used in the startup_samd20.cor
startup_samd21.c file to initialize the FMEA library RAM section from FLASH.

Note: More information can be found on linker script at page 37 in [6].

6.2 API Rules

All safety APIs must be incorporated in to a system as per the following rules:

a. Both FMEA and Touch library must be initialized at least once after power-up. FMEA can be initialized again
after stopping the FMEA.

b. The periodicity for calling safety test APIs is controlled by the application.

c. Few safety test APIs will lock interrupts during the test period since interrupts could potentially disrupt the
safety functionality. Refer Section 2.11 for information about Touch Library.

FMEA component is functionally dependent on Atmel touch library. Hence FMEA test must be performed only after the
touch library is initialized. Touch library is a pre-requisite for FMEA firmware, Include the FMEA firmware, only when the
Touch library is included in the system.

Symbol in Linker File Description

FMEA_SAFETY_DATA_LOCATION_region

FMEA Library Data Memory Region to be
created in linker file. The ORIGIN field in
the memory region should be the starting
address of the FMEA library RAM data and
LENGTH field should be the size of the
FMEA library RAM data.

FMEA_SAFETY_DATA_LOCATION
FMEA library Data Section to be created in
linker file

SIZE_OF_FMEA_SAFETY_DATA_LOCATION Size of FMEA Library RAM data

FMEA_SAFETY_DATA_LOCATION_START

The absolute address of RAM from where
FMEA library RAM variables would be
placed in
TOUCH_SAFETY_DATA_LOCATION
section

FMEA_SAFETY_DATA_LOCATION_END
End location of the
FMEA_SAFETY_DATA_LOCATION section

_sFMEA_SAFETY_DATA_LOCATION
It holds the start address of the
FMEA_SAFETY_DATA_LOCATION in
FLASH

_eFMEA_SAFETY_DATA_LOCATION
It holds the end address of the
FMEA_SAFETY_DATA_LOCATION in
FLASH
105Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

6.3 Safety Firmware Action Upon Fault Detection

On detection of a fault within an IEC safety test API, the safety firmware can perform the corrective action.

A. Touch library action upon fault detection.

B. FMEA library action upon fault detection. If a fault is detected by the FMEA library, it will update the fault in the
global structure sf_xxxxcap_fmea_fault_report_var.

6.4 System Action Upon Fault Detection

The fault action routine must be designed by the user and will be system dependent. The following options can be
considered for the fault actions routines:

a) Application may inform the host about the failure, provided the failure does not impact the communication with
the host controller.

b) Lock the system by disabling interrupt. Perform other possible clean-up actions and lock the system.
c) The system can clean-up and shutdown other safety systems and reset the system.

6.5 Touch Library and FMEA Synchronization

The following entities are mutually exclusive and cannot be executing an activity (touch measurement or FMEA test)
simultaneously.

 Self-cap touch library

 Mutual-cap touch library

 Self-cap FMEA

 Mutual-cap FMEA

The customer application should establish a synchronization mechanism to manage the exclusivity of the entities.

The following tables provides the information about the FMEA APIs, Touch library APIs and their corresponding action
to indicate completion.

Table 6-3. FMEA API Execution Completion Indicators

API Name Completion Indication

sf_xxxxcap_fmea_init Function call return

sf_xxxxcap_fmea_test Function call return

sf_xxxxcap_fmea_test_o
pen_pin_per_channel

Open pin test complete callback function call

sf_xxxxcap_fmea_stop Function call return
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

106

Table 6-4. API Execution Completion Indicators

API Completion Indication

touch_xxxxcap_sensors_init Function call return

touch_xxxxcap_di_init Function call return

touch_xxxxcap_sensor_config Function call return

touch_xxxxcap_sensors_calibrate Measure complete callback function call

touch_xxxxcap_calibrate_single_sensor Measure complete callback function call

touch_xxxxcap_sensors_measure
Measure complete callback function call with
Application burst again set to zero

touch_xxxxcap_sensor_get_delta Function call return

touch_xxxxcap_sensor_update_config Function call return

touch_xxxxcap_sensor_get_config Function call return

touch_xxxxcap_sensor_update_acq_config Function call return

touch_xxxxcap_sensor_get_acq_config Function call return

touch_xxxxcap_update_global_param Function call return

touch_xxxxcap_get_global_param Function call return

touch_xxxxcap_get_libinfo Function call return

touch_lib_pc_test_magic_no_1 Function call return

touch_lib_pc_test_magic_no_2 Function call return

touch_lib_pc_test_magic_no_3 Function call return

touch_lib_pc_test_magic_no_4 Function call return

touch_xxxxcap_sensor_disable Function call return

touch_xxxxcap_sensor_reenable Function call return

touch_library_get_version_info Function call return

touch_xxxxcap_cnfg_mois_mltchgrp Function call return

touch_xxxxcap_cnfg_mois_threshold Function call return

touch_xxxxcap_mois_tolrnce_enable Function call return

touch_xxxxcap_mois_tolrnce_disable Function call return

touch_calc_xxxxcap_config_data_integrity Function call return

touch_test_xxxxcap_config_data_integrity Function call return
107Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

6.6 Safety Firmware Package

The following files corresponding to the safety component.

6.7 SAMDSafety Firmware Certification Scope
The Class-B IEC certification of the following modules are supported and compiled by FMEA and Safety Touch Library.
The following activities must be performed by the user to achieve IEC certification for the overall system:
 Risk analysis for the system

 IEC certification for the critical and supervisory sections of the system

Safety Component Files

FMEA

sf_mutlcap_fmea_samd.c

sf_selfcap_fmea_samd.c

touch_fmea_api_samd.h

sf_fmea_samd_api.h

sf_fmea_samd_int.h

Touch Library

libsamd20_safety_iar.a

libsamd20_safety_gcc.a

libsamd21_safety_iar.a

libsamd21_safety_gcc.a

touch_safety_api_samd.h
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

108

6.8 Hazard Time

It is the responsibility of the application to ensure that the optimal configuration is selected for the individual test
components (FMEA) to achieve the hazard time requirement of the end user system as per the [1] and [2].

Note: The hazard time for various types of failure is not defined by Atmel. It is based on the test configuration and
periodicity selected by the user designing the end user system or application.

6.9 ASF Dependency

The Atmel® Software Framework (ASF) is a MCU software library providing a large collection of embedded software for
different Atmel MCUs. It simplifies the usage of microcontrollers, providing an abstraction to the hardware and high-
value middle wares. The Touch Library and FMEA is dependent on the ASF.

ASF is available as standalone package for IAR compilers and can be downloaded from Atmel website. For more
information and an overview about ASF visit: http://www.atmel.com/tools/ AVRSOFTWAREFRAMEWORK.aspx.

The latest ASF standalone package is available for download in the download page in the Software Category in
www.atmel.com.

6.10 Robustness and Tuning

Please refer AT08578: SAM D20 QTouch Robustness Demo User Guide and AT09363: PTC Robustness Design
Guide.

6.11 Standards compliance

Atmel Safety Library is compliant with the following list of IEC, EN and UL standards.

UL Compliance

 UL 60730-1, IEC 60730-1 and CSA E60730-1, Automatic electrical controls

 UL 60335-1 and IEC 60335-1, Household and similar electrical appliances

 UL 60730-2-11 and IEC 60730-2-11, Energy Regulators

 UL 1017 and IEC 60335-2-2, Vacuum Cleaners and Water-Suction Cleaning Appliances

 UL 749, UL 921, and IEC 60335-2-5, Dishwashers

 UL 858 and IEC 60335-2-6, Stationary Cooking Ranges, Hobs, Ovens, and Similar Appliances

 UL 1206, UL 2157, and IEC 60335-2-7, Washing Machines

 UL 1240, UL 2158, and IEC 60335-2-11, Tumble Dryers

 UL 1083 and IEC 60335-2-13, Deep Fat Fryers, Frying Pans, and Similar Appliances

 UL 982 and IEC 60335-2-14, Kitchen Machines

 UL 1082 and IEC 60335-2-15, Appliances for Heating Liquids

 UL 923 and IEC 60335-2-25, Microwave Ovens, Including Combination Microwave Ovens

 UL 197 and IEC 60335-2-36, Commercial Electric Cooking Ranges, Ovens, Hobs, and Hob Elements

 UL 197 and IEC 60335-2-37, Commercial Electric Doughnut Fryers and Deep Fat Fryers

 UL 73, UL 499, and IEC 60335-2-54, Surface-Cleaning Appliances for Household Use Employing Liquids or
Steam

 UL 499, UL 1776, and IEC 60335-2-79, High Pressure Cleaners and Steam Cleaners

 UL 507 and IEC 60335-2-80, Fans
109Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

http://www.atmel.com/tools/AVRSOFTWAREFRAMEWORK.aspx
http://www.atmel.com/Images/Atmel-42324-SAM-D20-QTouch-Robustness-Demo_User-Guide_AT08578.pdf
http://www.atmel.com/tools/AVRSOFTWAREFRAMEWORK.aspx
http://www.atmel.com
http://www.atmel.com/images/icon_pdf.gif

http://www.atmel.com/Images/Atmel-42360-PTC-Robustness-Design-Guide_ApplicationNote_AT09363.pdf

http://www.atmel.com/Images/Atmel-42360-PTC-Robustness-Design-Guide_ApplicationNote_AT09363.pdf

http://www.atmel.com/Images/Atmel-42360-PTC-Robustness-Design-Guide_ApplicationNote_AT09363.pdf

http://www.atmel.com/Images/Atmel-42360-PTC-Robustness-Design-Guide_ApplicationNote_AT09363.pdf

VDE Compliance

 IEC/EN 60730-1, Automatic electrical controls

 IEC/EN 60335-2-11, Energy regulators

 IEC/EN 60335-1, Safety of household appliances

 IEC/EN 60335-2-5, Dishwashers

 IEC/EN 60335-2-6, Hobs, ovens and cooking ranges

 IEC/EN 60335-2-7, Washing machines

 IEC/EN 60335-2-9, Grills, toasters and similar portable cooking appliances

 IEC/EN 60335-2-14 Kitchen machines

 IEC/EN 60335-2-15,Heating liquids

 IEC 60335-2-25 Microwave ovens including combination micro wave ovens

 IEC 60335-2-33 Coffeemills and coffee

 IEC 60335-2-36 Commercial electric cooking ranges, ovens, hobs and hob elements

 IEC 60730-2-11 Energy regulators

6.12 Safety Certification

A Safety Certification "mark" on a product indicates that it has been tested against the applicable safety in a certain
region and found to be in compliance. A National Certification Body (NCB) is an organization that grants nationally
recognized conformity certificates and marks to products such asVDE and UL are NCBs in Germany and USA,
respectively.

The IECEE CB Scheme is an international system for mutual acceptance of test reports and certificates dealing with the
safety of electrical and electronic components, equipment and products. The tests performed by one national NCB and
the resulting CB-certificates / test reports are the basis for obtaining the national certification of other participating NCBs,
subject to any National Differences being met. The following diagram illustrates the typical CB scheme flow.
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

110

7. Known Issues

The following errata is applicable for the QTouch Safety Library versions up to 5.1.4.

Issue:

Touch acquisition may fail and stop working.

Description:

In QTouch applications, where either a single interrupt or a chain of nested non-PTC interrupts has duration longer than
the total touch measurement time, the touch acquisition may fail and stop working.

This issue occurs most likely in applications with few touch channels (2-3 channels) and a low level of noise handling
(filter level 16 or lower and no frequency hopping).

Fix/workaround:

1. Always ensure that the duration of a single interrupt or a chain of nested non-PTC interrupts does not exceed the
total touch measurement time. (or)

2. Add a critical section by disabling interrupts for the touch_xxxxcap_sensors_measure() function as shown
in the following code snippet.

Disable_global_interrupt();
touch_ret = touch_xxxxcap_sensors_measure(current_time, NORMAL_ACQ_MODE,
touch_xxxxcap_measure_complete_callback);
Enable_global_interrupt();

The Interrupt Blocking Time while executing touch_xxxxcap_sensors_measure API for various CPU frequencies are as
follows.

The Interrupt Blocking Time varies based on the PTC_GCLK frequency, CPU frequency, and the library version. The
actual blocking time can be measured by toggling a GPIO pin before and after calling the touch_xxxxcap_sensors
_measure function.

If you are using an IAR compiler, then use system_interrupt_enable_global() and system_interrupt_
disable_global() functions to enable and disable the global interrupts, respectively.

CPU Frequency (in MHz) Interrupt Blocking Time (in µs)

48 ~96

24 ~162

16 ~229

12 ~295
111Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

8. References

For more information and knowledge about the safety component for SAM devices, refer the following:

 [1]: IEC 60730-1: IEC60730-1 Standard for Safety for Software in Programmable Components

 [2]: SAMD20 device data sheet (http://www.atmel.com/Images/Atmel-42129-SAM-D20_Datasheet.pdf)

 [3]: IAR C/C++ Compiler Guide (http://supp.iar.com/FilesPublic/UPDINFO/004916/
arm/doc/EWARM_DevelopmentGuide.ENU.pdf)

 [4]: IAR Embedded Workbench for ARM – Version 7.40

 [5]: Buttons, Sliders and Wheels Touch Sensor Design Guide (http://www.atmel.com/Images/doc10752.pdf)

 [6]: GCC Linker pdf (https://sourceware.org/binutils/docs/ld/)

 [7]: SAMD21 device data sheet (http://www.atmel.com/Images/Atmel-42181-SAM-D21_Datasheet.pdf)
Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

112

http://supp.iar.com/FilesPublic/UPDINFO/004916/ arm/doc/EWARM_DevelopmentGuide.ENU.pdf
http://www.atmel.com/Images/Atmel-42129-SAM-D20_Datasheet.pdf
http://www.atmel.com/Images/doc10752.pdf
https://sourceware.org/binutils/docs/ld/
http://supp.iar.com/FilesPublic/UPDINFO/004916/arm/doc/EWARM_DevelopmentGuide.ENU.pdf
http://supp.iar.com/FilesPublic/UPDINFO/004916/arm/doc/EWARM_DevelopmentGuide.ENU.pdf

9. Revision History

Doc. Rev. Date Comments

G 07/2016 Added Section Known Issues

F 10/2015 Minor non-technical updates

E 09/2015
Added AutoOversample, Filter level, PTC Resistor selection and PTC Pre-
scaler on a per channel basis, and Touch De-init APIs

D 05/2015 Included Suspend and Resume PTC Operation Feature

C 11/2014 Enhanced release with Noise Immunity and Moisture Control Features

B 04/2014 Enhanced release with Noise Immunity Features

A 01/2014 Initial document release
113Atmel | SMART SAM QTouch Safety Library [USER GUIDE]
Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-UserGuide_07/2016

XX X XX X
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42230G-SAM-Atmel-SAMD-QTouch-Safety-Library-Datasheet_07/2016.

Atmel®, Atmel logo, Enabling Unlimited Possibilities®, and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. ARM®, and Cortex®, are registered trademarks of ARM Limited. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

www.atmel.com
https://plus.google.com/106109247591403112418
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com

	1. Development Tools
	1.1 Device Variants Supported

	2. QTouch Safety Library
	2.1 API Overview
	2.2 Sequence of Operation
	2.3 Program Flow
	2.4 Configuration Parameters
	2.4.1 Pin Configuration
	2.4.2 Sensor Configuration
	2.4.3 Acquisition Parameters
	2.4.4 Sensor Global Parameters
	2.4.5 Common Parameters
	2.4.6 Noise Immunity Global Parameters
	2.4.7 Noise Immunity Features
	2.4.8 Sensor Lockout
	2.4.9 Frequency Auto Tune

	2.5 Touch Library Error Reporting Mechanism
	2.6 Touch Library Program Counter Test
	2.6.1 Logical Program Flow Test
	2.6.2 Program Counter Test

	2.7 CRC on Touch Input Configuration
	2.8 Double Inverse Memory Check
	2.8.1 Application to Touch Library
	2.8.2 Touch Library to Application

	2.9 Application Burst Again Mechanism
	2.10 Memory Requirement
	2.10.1 Memory Requirement for IAR Safety library

	2.11 API Execution Time
	2.11.1 Mutual Capacitance API Execution Time
	2.11.2 Self Capacitance API Execution Time

	2.12 Error Interpretation
	2.12.1 Error Codes Returned Synchronously
	2.12.2 Error Codes Returned Through Callback

	2.13 Data and Function Protection
	2.14 Moisture Tolerance
	2.14.1 Moisture Tolerance Group
	2.14.2 Multi-touch Group

	2.15 Quick Re-burst
	2.15.1 Synchronizing Quick Re-burst and Application Burst again

	2.16 Reading Sensor States
	2.17 Touch Library Suspend Resume Operation
	2.18 Drifting on Disabled Sensors

	3. QTouch Safety Library API
	3.1 Typedefs
	3.2 Macros
	3.2.1 Touch Library Acquisition Status Bit Fields.
	3.2.2 Sensor State Configurations.

	3.3 Enumerations
	3.3.1 Touch Library GAIN Setting(tag_gain_t)
	3.3.2 Filter Level Setting (tag_filter_level_t)
	3.3.3 Touch Library AUTO OS Setting (tag_auto_os_t)
	3.3.4 Library Error Code (tag_touch_ret_t)
	3.3.5 Sensor Channel (tag_channel_t)
	3.3.6 Touch Library State (tag_touch_lib_state_t)
	3.3.7 Sensor Type (tag_sensor_type_t)
	3.3.8 Touch Library Acquisition Mode (tag_touch_acq_mode_t)
	3.3.9 AKS Group (tag_aks_group_t)
	3.3.10 Channel Gain Setting (tag_gain_t)
	3.3.11 Sensor Recalibration Threshold (tag_recal_threshold_t)
	3.3.12 Rotor Slider Resolution (tag_resolution_t)
	3.3.13 Auto Tune Setting (tag_auto_tune_type_t)
	3.3.14 PTC Clock Prescale Setting (tag_prsc_div_sel_t)
	3.3.15 PTC Series Resistor Setting (tag_rsel_val_t)
	3.3.16 PTC Acquisition Frequency Delay Setting (freq_hop_sel_t)
	3.3.17 PTC Acquisition Frequency Mode Setting (tag_freq_mode_sel_t)
	3.3.18 PTC Sensor Lockout Setting (nm_sensor_lockout_t)
	3.3.19 Moisture Group Setting (moisture_grp_t)
	3.3.20 Multi-touch Group Setting (mltch_grp_t)

	3.4 Data Structures
	3.4.1 Touch Library Configuration Type
	3.4.2 Touch Library Safety Type
	3.4.3 Touch Library Double Inverse Type
	3.4.4 Touch Library Parameter Type
	3.4.5 Touch Library Measurement Data Type
	3.4.6 Touch Library Filter Data Type
	3.4.7 Touch Library Time Type
	3.4.8 Touch Library Info Type
	3.4.9 Touch Library Version

	3.5 Global Variables
	3.5.1 touch_lib_fault_test_status
	3.5.2 touch_error_app_cb
	3.5.3 touch_suspend_app_cb

	3.6 Functions
	3.6.1 Touch Library Initialization
	3.6.2 Touch Library Sensor Configuration
	3.6.3 Touch Library Sensor Calibration
	3.6.4 Touch Library Sensor Measurement
	3.6.5 Touch Library Sensor Specific Touch Delta Read
	3.6.6 Touch Library Sensor Specific Parameter Configuration Read-write
	3.6.7 Touch Library Sensor Specific Acquisition Configuration Read-write
	3.6.8 Touch Library Sensor Global Parameter Configuration Read-write
	3.6.9 Touch Library Info Read
	3.6.10 Touch Library Program Counter
	3.6.11 Touch Library CRC Configuration Check
	3.6.12 Touch Library Double Inverse check
	3.6.13 Touch Library Enable Disable Sensor
	3.6.14 Touch Library Version Information
	3.6.15 Touch Library Moisture Tolerance
	3.6.16 Touch PTC Peripheral Enable Disable
	3.6.17 Touch Library Suspend Resume
	3.6.18 Touch Library Re-Initialization

	4. FMEA
	4.1 Double Inverse Memory Check
	4.1.1 Application to FMEA
	4.1.2 FMEA to Application

	4.2 Memory Requirement
	4.2.1 Memory Requirement for IAR Library

	4.3 API Execution Time
	4.3.1 Mutual Capacitance API Execution Time
	4.3.2 Self Capacitance API Execution Time

	4.4 Error Interpretation
	4.5 Data and Function Protection
	4.6 FMEA Considerations

	5. FMEA API
	5.1 Typedefs
	5.2 Enumerations
	5.2.1 sf_fmea_faults_t

	5.3 Data Structures
	5.3.1 sf_xxxxcap_fmea_open_test_config_t
	5.3.2 sf_xxxxcap_fmea_input_config_t
	5.3.3 sf_mutlcap_fmea_fault_report_t
	5.3.4 sf_selfcap_fmea_fault_report_t

	5.4 Global Variables
	5.4.1 sf_xxxxcap_fmea_fault_report_var

	5.5 Functions
	5.5.1 sf_xxxxcap_fmea_init
	5.5.2 sf_xxxxcap_fmea_test
	5.5.3 sf_xxxcap_fmea_test_open_pins_per_channel
	5.5.4 sf_xxxxcap_fmea_stop

	5.6 Macros

	6. System
	6.1 Relocating Touch Library and FMEA RAM Area
	6.1.1 Modifying the IAR Linker File
	6.1.2 Modifying GCC Linker File

	6.2 API Rules
	6.3 Safety Firmware Action Upon Fault Detection
	6.4 System Action Upon Fault Detection
	6.5 Touch Library and FMEA Synchronization
	6.6 Safety Firmware Package
	6.7 SAMDSafety Firmware Certification Scope
	6.8 Hazard Time
	6.9 ASF Dependency
	6.10 Robustness and Tuning
	6.11 Standards compliance
	6.12 Safety Certification

	7. Known Issues
	8. References
	9. Revision History

