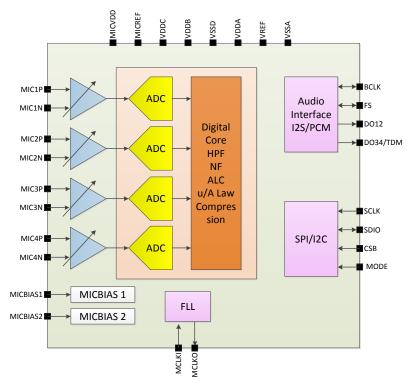
NAU85L40B

Quad Audio ADC with Integrated FLL and Microphone Preamplifier

Description

The NAU85L40B is a low power, high quality, 4-channel ADC for microphone array application. The NAU85L40B integrates programmable gain preamplifiers for quad differential microphones, significantly reducing external component requirements. A fractional FLL is available to accurately generate any audio sample rate using any commonly available system clock source from 8KHz through 33MHz. Audio data can be directed to two I2S data out lines or onto a single time division multiplexed (TDM) PCM data output.


The NAU85L40B operates with analog supply voltages from 1.6V to 2V, while the digital core can operate down to 1.2V to conserve power. Internal register controls enable flexible power saving modes by powering down subsections of the chip under software control. The NAU85L40B is specified for operation from -40°C to +85°C, and is available in a 28-lead QFN package.

Features

- 101dB SNR (A-weighted) @ 0dB gain, VDDA=1.8V, Fs = 48 kHz, OSR=128x
- 92dB THD+N @ 0dB gain, 0.8Vrms in, VDDA=1.8V, Fs=48 kHz, OSR=128x
- -124dB Channel Crosstalk @ 0dB gain, 0.9Vrms in, VDDA=1.8V, Fs=48 kHz, OSR=128x
- Integrated programmable gain microphone amplifier
- On-chip FLL
- I2C Serial control interface with read/write capability

Block Diagram

- Supports sample rates from 8 kHz to 96 kHz at 24bit resolution
- Two separate microphone bias supplies for low noise microphone biasing.
- Standard audio data bus interfaces: I2S, Left or Right justified, TDM (4 channel), Two's compliment, MSB first
- 32-bit audio sub frames
- Package: Pb free 28L-QFN
- Temperature range: -40 to 85°

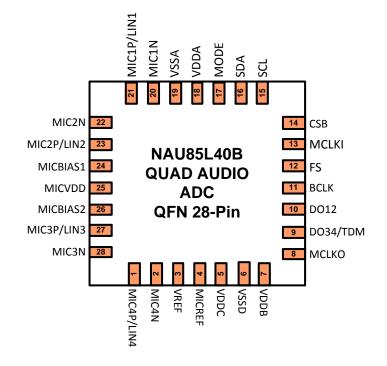


Table of Contents

BL	OCK	DIAGRAM	1
ΡI	N DIA	GRAM	4
	Orderi	ing Information	4
ΡI	N DES	SCRIPTION	5
ΕL	ECTR	RICAL CHARACTERISTICS	6
1	GE	ENERAL DESCRIPTION	9
2	AN	NALOG INPUTS	9
	2.1	ADC and Digital Signal Processing	10
	2.2	ADC Digital Block	10
	2.2.	2.1 Input Limiter / Automatic Level Control (ALC)	11
	2.2.	ADC Digital Volume Control	15
	2.2.	2.3 ADC Programmable High Pass Filter	15
	2.2.	Programmable Notch Filter	16
	2.3	Audio Data Companding	16
	2.3.	β.1 μ-law	17
	2.3.	3.2 A-law	17
	2.4	Digital Interfaces	17
3	PC	OWER SUPPLY	17
	3.1	Power on and off reset	17
	3.2	Reference Voltage Generation	18
	3.3	Microphone Bias Generation	19
4	CL	LOCKING AND SAMPLE RATES	19
	4.1	PCM Clock Generation	
	4.2	Frequency Locked Loop (FLL)	
5	CC	ONTROL INTERFACES	
	5.1	Selection of Control Mode	
	5.2	2-Wire-Serial Control Mode (I ² C Style Interface)	
	5.3	2-Wire Protocol Convention	
	5.4	2-Wire Write Operation	
	5.5	2-Wire Read Operation	
	5.6	Digital Serial Interface Timing	
~	5.7	Software Reset	
6			
	6.1	Right-Justified Audio Data	
	6.2	Left-Justified Audio Data	
	6.3	I2S Audio Data Mode	
	6.4	PCM A Audio Data PCM B Audio Data	
	6.5 6.6	PCM B Audio Data	
	6.7	AUDIO INTERFACE TIMING DIAGRAM	
	6.7.		
	6.7.		
	0.7.		

	6.7.3	PCM AUDIO INTERFACE IN SLAVE MODE (PCM Audo Data)	33
	6.7.4	PCM AUDIO INTERFACE IN MASTER MODE	34
	6.7.5	5 PCM AUDIO INTERFACE IN SLAVE MODE (PCM Time Slot Mode)	34
	6.7.6	6 PCM AUDIO INTERFACE IN MASTER MODE (PCM Time Slot Mode)	35
	6.7.7	7 AUDIO Timing Parameter	35
6	6.8	TDM Right Justified Audio Data	
6	6.9	TDM Left Justified Audio Data	
6	6.10	TDM I2S Audio Data	
6	6.11	TDM PCM A Audio Data	37
6	6.12	TDM PCM B Audio Data	
6	6.13	TDM PCM Offset Audio Data	
7	RE	GISTER MAP	
8	TYI	PICAL APPLICATION DIAGRAM	52
9	PA	CKAGE INFORMATION	54
9.1		SION HISTORY	
10	OR	DERING INFORMATION	57

Pin Diagram

Ordering Information

Part Number	Dimension	Package	Package Material
NAU85L40YGB	4 x 4 mm	28 QFN	Green

Pin Description

Pin #	Name	Туре	Functionality
1	MIC4P/LIN4	Analog Input	MICP Input 4 / Line In Input 4
2	MIC4N	Analog Input	MICN Input 4
3	VREF	Reference	Decoupling for Mid-rail Reference Voltage
4	MICREF	Analog Output	Decoupling for MIC Reference Voltage
5	VDDC	Supply	Digital Core Supply
6	VSSD	Supply	Digital Ground
7	VDDB	Supply	Digital Buffer (Input/Output) Supply
8	MCLKO	Digital Output	Output from PLL
9	DO34	Digital Output	Digital Audio ADC Data Output for ADC 3 and 4 or TDM
10	DO12	Digital Output	Digital Audio ADC Data Output for ADC 1 and 2
11	BCLK	Digital I/O	Digital Audio Bit Clock
12	FS	Digital I/O	Digital Audio Frame Sync
13	MCLKI	Digital Input	Master Clock Input
14	CSB	Digital Input	3-Wire MPU Chip Select/I2C address LSB
15	SCL	Digital Input	3-Wire MPU Clock Input/I2C Clock (SCL)
16	SDA	Digital I/O	3-Wire MPU Data Input/I2C Data I/O (SDA)
17	MODE	Digital Input	Control Interface Mode Selection Pin (I2C=1, SPI=0)
18	VDDA	Supply	Analog Power Supply
19	VSSA	Supply	Analog Ground
20	MIC1N	Analog Input	MICN Input 1
21	MIC1P/LIN1	Analog Input	MICP Input 1 / Line In Input 1
22	MIC2N	Analog Input	MICN Input 2
23	MIC2P/LIN2	Analog Input	MICP Input 2 / Line In Input 2
24	MICBIAS1	Analog Output	Microphone Bias for Microphone ADC 1 and 2
25	MICVDD	Supply	Microphone Supply
26	MICBIAS2	Analog Output	Microphone Bias for Microphone ADC 3 and 4
27	MIC3P/LIN3	Analog Input	MICP Input 3 / Line In Input 3
28	MIC3N	Analog Input	MICN Input 3

Electrical Characteristics

Conditions: VDDA = VDDC=1.8V, VDDB = 3.3V, MICVDD=3.3V, MCLK = 12.88MHz, $T_A = +25^{\circ}C$, 1 kHz signal, Fs = 48 kHz, 24-bit audio data, with differential inputs unless otherwise stated.

Symbol		Parameter		Conditions	T	ypical	Li	mit	Un	its (Limit)	
				V _{DD} A		0.5		1			
				V _{DD} A When V _{DD} C=1.2V		16.7					
ISD		Shutdown Current		V _{DD} B		0.2		1		μΑ	
				V _{DD} C		2		1(0		
				V _{DD} MIC		0.5		1			
ADC									-		
THD+N		C Total Harmonic Distortion		C Input, MIC_GAIN = 6dB, f=1KHz, = 16KHz, OSR=128X		-92	-	80		dB	
				eference= @ 0dB gain, 0.8Vrms in, DDA=1.8V, Fs=48 kHz, OSR=128x		-92				dB	
SNR	Sig	gnal to Noise Ratio	W	ference = VOUT(0dBFS), A- eighted, MIC Input, MIC Gain = B,fs = 8KHz, Mono Differential Input		101				dB	
			W	ference = VOUT(0dBFS), A- eighted, MIC Input, MIC Gain = B,fs = 8KHz, Mono Differential Input		100				dB	
			W	ference = VOUT(0dBFS), A- eighted, Quad Input, Gain = 12dB,fs I6KHz		97				dB	
			w	Reference= MIC Gain= 0dB gain, (A- reighted) VDDA=1.8V, Fs = 48 kHz, ISR=128x		101				dB	
PSRR	Po	wer Supply Rejection Ratio	V _R f _{RII}	IPPLE = 200mVP_P applied to AVDD, PPLE = 217Hz, Input Referred, C_GAIN = 0dB Differential Input		65				dB	
Xtalk	AD	OC channel cross talk	0.8	C Input, MIC_GAIN = 0dB, VIN = 3Vrms, f=1KHz, Fs = 48KHz , aannel 1(3) to Channel 2 (4)		-124				dB	
FS _{ADC}	AD	C Full Scale Input Level	A۱	/ _{DD} = 1.8V		1				V _{RMS}	
MICBIAS	1		1		1				<u> </u>		
V _{BIAS}	Οι	itput Voltage	Programmable 2.1V to 2.8V in 0.1V Steps		2.8V in 0.1V 2.5						V
I _{OUT}	Οι	itput Current						4		mA	
e _{OS}	Οι	itput Noise	A-'	weighted 20Hz-20kHz		-115				dBV	

Notes

1. Full Scale input level is relative to the magnitude of VDDA and can be calculated as $FS = 1V_{rms}*VDDA/1.8$.

2. Distortion is measured in the standard way as the combined quantity of distortion products plus noise. The signal level for

distortion measurements is at 3dB below full scale, unless otherwise noted.

3. Unused analog input pins should be left as no-connection.

Nuvoton Technology Corporation America Tel: 1-408-544-1718 Fax: 1-408-544-1787

4. Unused digital input pins should be tied to ground.

Digital I/O

Parameter	Symbol	Comments/Conditions		Min	Max	Units	
Input LOW level	VIL	VDDB = 1.8V			0.33 * VDDB	V	
	- IL	VDD	0B = 3.3V		0.37 * VDDB	-	
Input HIGH level	VIH	VDD	0B = 1.8V	0.67 * VDDB		V	
	- 111	VDDB = 3.3V		0.63 * VDDB			
Output HIGH level	V _{OH}	I _{Load} =	VDDB = 1.8V	0.9 * VDDB		V	
	011	1mA	VDDB = 3.3V	0.95 * VDDB			
Output LOW level V _{OL}		I _{Load} =	VDDB = 1.8V		0.1 * VDDB	V	
	- 02	1mA	VDDB = 3.3V		0.05 * VDDB		

Recommended Operating Conditions

Condition	Symbol	Min	Typical	Max	Units
Digital Supply Range with sample rate > 48 kHz or FLL enabled	VDDC	1.62	1.8	1.98	V
Digital Supply Range with sample rate <= 48kHz and FLL disabled	VDDC	1.2	1.8	1.98	V
Digital I/O Supply Range	VDDB	1.62	1.8	3.6	V
Analog Supply Range	VDDA	1.62	1.8	1.98	V
Microphone Bias Supply Voltage	VDDMIC	2.5	4.2	5.5	V
Temperature Range	T _A	-40		+85	°C

CAUTION: Below conditions needed to be followed for regular operation: VDDB > VDDC – 0.6V.

Absolute Maximum Ratings

Parameter	Min	Max	Units
Digital Supply Range (VDDC)	-0.3	2.2	V
Digital I/O Supply Range (VDDB)	-0.3	6.0	V
Analog Supply Range (VDDA)	-0.3	2.2	V
Microphone Bias Supply Voltage (MICVDD)	-0.3	6.0	V
Voltage Input Digital Range	VSSD - 0.3	VDDB + 0.3	V
Voltage Input Analog Range	VSSA - 0.3	VDDA + 0.3	V
Junction Temperature, T _J	-40	+150	°C
Storage Temperature	-65	+150	°C

CAUTION: Do not operate at or near the maximum ratings listed for extended periods. Exposure to such conditions may adversely influence product reliability and result in failures not covered by warranty.

CAUTION: The following condition need to be followed for maximum ratings: VDDB > VDDC - 0.6V.

1 General Description

The NAU85L40B is a low power, high quality, 4-channel ADC for microphone array applications. There are eight analog inputs with individual input PGA gain stages and are passed to the ADC path for signal processing. A low noise microphone bias circuit supplies a programmable voltage reference for one or more electret microphones on two buffered MICBIAS outputs that are available to separately supply microphones associated with channels 1 & 2 and channels 3 & 4. The digital audio data from the ADC's can be processed by a Volume Control, High Pass filter, and ALC before it is passed on to the serial I2S or TDM PCM interface. This digital serial output data can be available in two separate dual channel formats on ADCOUT12 for channel 1 & 2 and ADCOUT34 for channel 3 & 4. The 4-channel serial digital audio can also be combined into one serial bit stream on ADCOUT34 in TDM mode. The device clock can be locked to an external clock reference or generated internally by the on-chip FLL. The registers that control the NAU85L40B can be programmed through standard I2C or SPI interface.

2 Analog Inputs

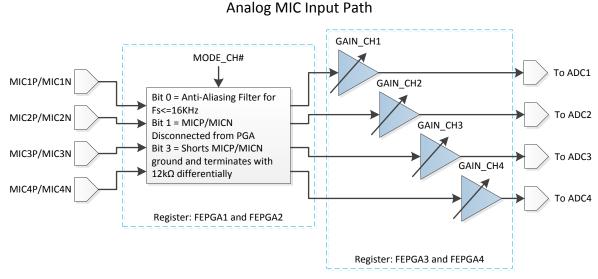
NAU85L40B has four low noise, high common mode rejection ratio analog microphone differential inputs – MIC1/MIC1P together are MIC.1, MIC2N/MIC2P together are MIC.2, MIC3N/MIC3P together are MIC.3, MIC4N/MIC4P together are MIC.4. Each of these microphone inputs are followed by a - 1dB to 36dB PGA gain stage with a fixed 12kOhm input impedance.

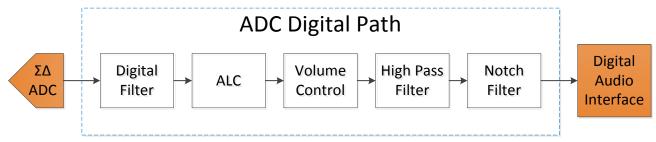
All inputs are maintained at a DC bias at approximately 1/2 of the VDDA supply voltage. Connections to these inputs should be AC-coupled by means of DC blocking capacitors suitable for the device application.

The differential microphone input structure is essential in noisy digital systems where amplification of low-amplitude analog signals is necessary such as in portable digital media devices and cell phones. Differential inputs are also very useful to reduce ground noise in systems in which there are ground voltage differences between different chips and components. When properly implemented, the differential input architecture offers an improved power-supply rejection ratio (PSRR) and higher ground noise immunity.

A detailed diagram of the input PGA connections and associated registers is shown in Figure 1. The PGA inputs can also be disconnected from the amplifier for applications where the inputs are shared with other devices. In addition, there is a pre-charge circuit that can speed up charging the external coupling capacitor set with <u>FEPGA2.ACDC_CTRL Reg0x6A[15:8]</u>. The PGA gain can be set from - 1dB to 36dB in 1dB steps and the embedded antialiasing filter also has a single bit adjustment to shift the cut-off frequency.

A detailed register description is available in registers **FEPGA1 REG0x69** to **FEPGA4 REG0x6C**.




Figure 1: Analog Input Structure

2.1 ADC and Digital Signal Processing

The NAU85L40B has four independent high quality ADCs. These are high performance 24-bit sigmadelta converters that are suitable for a very wide range of applications. All digital processing is with 24-bit precision minimizing processing artifacts and maximizing the audio dynamic range supported by the NAU84L04.

The ADCs are supported by a wide range mixed-mode Automatic Level Control (ALC), a high pass filter, and a notch filter. All of which are optional and programmable. The high pass filter function is intended for DC-blocking or low frequency noise reduction, such as to reduce unwanted ambient noise or "wind noise" on a microphone input. The notch filter may be programmed to greatly reduce a specific frequency band or frequency, such as a 50Hz, 60Hz, or 217Hz unwanted noise. The 4-channel ADC TDM interface also provides for flexible routing options.

2.2 ADC Digital Block

Figure 2: ADC Digital Path

The ADC digital block performs 24-bit analog-to-digital conversion and signal processing, making available a high quality audio sample stream the audio path digital interface. This block consists of a sigma-delta modulator, digital decimator/ filter, ALC, volume control, high pass filter, and a notch filter.

In order to enable the ADCs, <u>POWER_MANAGEMENT.ADC1_EN Reg0x01[0]</u> through <u>POWER_MANAGEMENT.ADC4_EN Reg0x01[3]</u> must all be set to 1. The audio sample rate of the ADC is set by <u>CLOCK_SRC.CLK_ADC_SRC Reg0x03[7:6]</u>, which is derived from the MCLK. (See Section <u>CLOCKING AND SAMPLE RATES</u>). The polarity of either ADC output signal can be changed independently on either ADC logic output which can be sometimes useful in management of the audio phase. This feature can help minimize any audio processing that may be otherwise required as the data are passed to other stages in the system. The ADC coding scheme is in twos complement format and the full-scale input level is proportional to VDDA. For example, with a 1.8V supply voltage, the full-scale level is 1.0VRMS.

2.2.1 Input Limiter / Automatic Level Control (ALC)

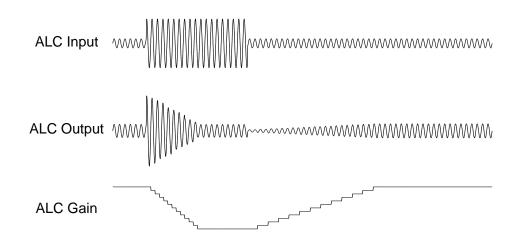
The ADC digital path of the NAU85L40B is supported by the digital Automatic Level Control (ALC) function. This can be used to automatically manage the gain to optimize the signal level at the output of the ADC by automatically amplifying input signals that are too small or decreasing the amplitude of the signals that are too loud.

The ALC monitors the output of the ADC, measured after the digital decimator. The ADC output is fed into a peak detector, which updates the measured peak value whenever the absolute value of the input signal is higher than the current measured peak. The measured peak gradually decays to zero unless a new peak is detected, allowing for an accurate measurement of the signal envelope. The peak value is then used by a logic algorithm to determine whether the gain should be increased, decreased, or remain the same.

In normal mode, when sudden peaks occur above the desired gain settings, the ALC reduces volume at a register determined rate and step size. This continues until the output level of the ADC is again at the desired target level. If the input signal suddenly becomes quiet, the ALC increases volume at a register determined rate and step size until the output level from the ADC reaches the target level. If the input gain stays within the target level, the ALC will remain in a steady state.

In addition to the normal operation mode, the ALC may be operated in a special limiter mode that functions similarly to the normal mode but with faster attack times. This mode is primarily used to quickly ramp down signals that are too loud.

2.2.1.1 ALC Peak Limiter Function


Both normal and limiter mode include a peak limiter function. This implements an emergency gain reduction when the ADC output level exceeds a set gain value. When the ADC output exceeds 87.5% of full scale, the ALC block ramps down the gain at the maximum ALC Attack Time rate. This is regardless of the mode and attack rate settings. This continues until the ADC output level has been reduced to below the emergency limit threshold. This action limits ADC clipping if there is a sudden increase in the input signal level.

2.2.1.2 ALC Parameter Definitions

- ALC Maximum Gain (ALCMAX): This sets the maximum allowed gain during normal mode ALC operation. In the Limiter mode of ALC operation, the ALCMXGAIN value is not used, instead, the maximum gain allowed is set equal to the pre-existing gain value that was in effect at the moment in time that the Limiter mode is enabled. See <u>ALC_CONTROL_2 REG0x21</u> for details.
- ALC Minimum Gain (ALCMIN): This sets the minimum allowed gain during all modes of ALC operation. This is useful to keep the ALC operating range close to the desired range for a given application scenario. See <u>ALC_CONTROL_2 REG0x21</u> for details.
- ALC Target Value (ALCLVL): Determines the value used by the ALC logic decisions comparing this fixed value with the output of the ADC. This value is expressed as a fraction of Full Scale (FS) output from the ADC. Depending on the logic conditions, either the output value used in the comparison may be the instantaneous value of the ADC, or a time weighted average of the ADC peak output level. See <u>ALC_CONTROL_2 REG0x21</u> for details.
- ALC Attack Time (ALCATK): Attack time refers to how quickly a system responds to an increasing volume level that is greater than some defined threshold. Typically, attack time is much faster than decay time. In the NAU85L40B, when the absolute value of the ADC output exceeds the

ALC Target Value, the gain will be reduced at a step size and rate determined by this parameter. When the peak ADC output is at least 1.5dB lower than the ALC Target Value, the stepped gain reduction will halt. See <u>ALC_CONTROL_3 REG0x22</u> for details.

- ALC Decay Time (ALCDCY): Decay time refers to how quickly a system responds to a decreasing volume level. Typically, decay time is much slower than attack time. When the ADC output level is below the ALC Target value by at least 1.5dB, the gain will increase at a rate determined by this parameter. In Limiter mode, the time constants are faster than in ALC mode. See <u>ALC_CONTROL_3 REG0x22</u> for details.
- ALC Hold Time (ALCHLD): Hold time refers to the duration of time when no action is taken. This is typically to avoid undesirable sounds that can happen when an ALC responds too quickly to a changing input signal. In the NAU85L40B, the hold time value is the duration of time that the ADC output peak value must be less than the target value before there is an actual gain increase. See <u>ALC_CONTROL_2 REG0x21</u> for details.

2.2.1.3 ALC Normal Mode Example Using ALC Hold Time Feature

Input signals with different characteristics (e.g., voice vs. music) may require different settings for this parameter for optimum performance. Increasing the ALC hold time prevents the ALC from reacting too quickly to brief periods of silence such as those that may appear in music recordings. Having a shorter hold time may be useful in voice applications where a faster reaction time helps to adjust the volume setting for speakers with different volumes. The waveform below shows the operation of the ALC_CONTROL_2.ALCHLD REG0x21[7:4] parameter.

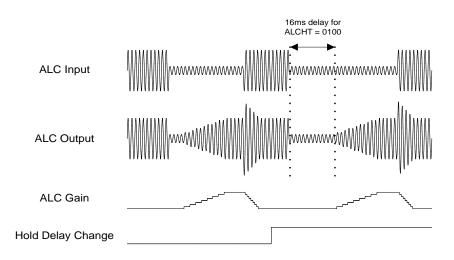


Figure 4: ALC using Hold time

2.2.1.4 Noise Gate (Normal Mode Only)

A noise gate threshold prevents ALC amplification of noise when there is no input signal or no signal above an expected background noise level. The noise gate is enabled by setting <u>ALC_CONTROL_1.ALC_NGEN REG0x20[4]</u> and the threshold level is set by <u>ALC_CONTROL_1.ALC_NGTH REG0x20[3:0]</u>. When there is no signal or a very quiet signal (pause) composed mostly of noise, the ALC holds the gain constant instead of amplifying the signal towards the target threshold. The NAU85L40B accomplishes this by comparing the input signal level against the noise gate threshold. The noise gate only operates in conjunction with the ALC and only in Normal mode.

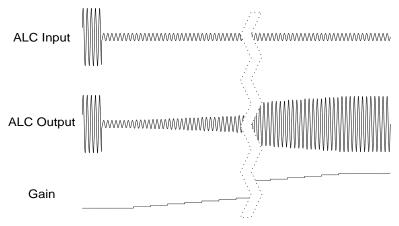


Figure 5: ALC without Noise gate

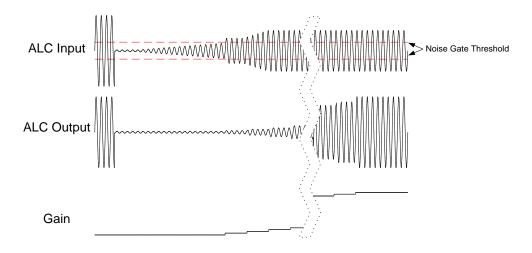


Figure 6: ALC with noise gate

2.2.1.5 ALC Example with ALC Min/Max Limits and Noise Gate Operation

The drawing below shows the effects of ALC operation over the full scale signal range. The drawing is color coded as follows:

Blue Original Input signal (linear line from zero to maximum) Green PGA gain value over time (inverse to signal in target range) Red Output signal (held to a constant value in target range)

ηυνοτοη

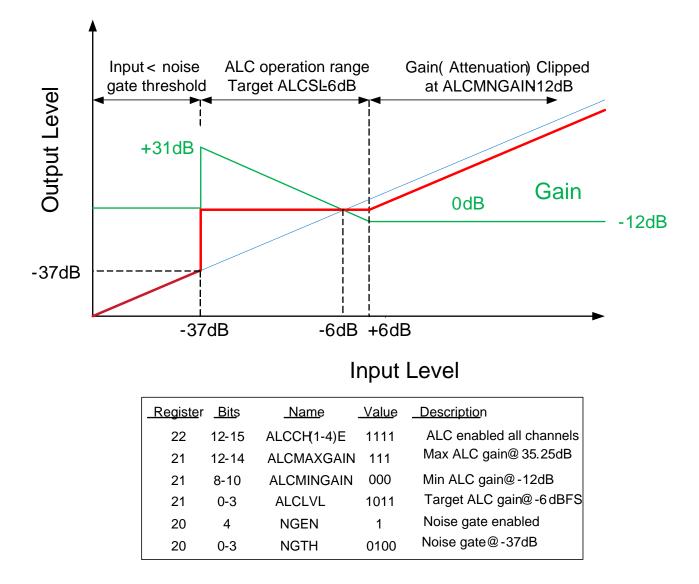


Figure 7: ALC Response Envelope

2.2.2 ADC Digital Volume Control

The effective output audio volume of each ADC can be changed from +36dB through -128dB in 0.125dB steps using the digital volume control feature. Included in the volume control is a "digital mute" value that will completely mute the signal output of the ADC.

In addition, the ADC has an analog gain control, which can be set from -1dB to 36dB.

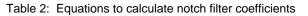
Registers **<u>DIGITAL_GAIN_CH1 REG0x40</u>** through **<u>DIGITAL_GAIN_CH4 REG0x43</u>** control the digital gain of each channel. These registers can also select the ADC source of each output channel.

2.2.3 ADC Programmable High Pass Filter

A high pass filter in the digital output path optionally supports each ADC. The High Pass filter can be enabled by setting <u>HPF_FILTER_CH12.HPF_EN_CH1 Reg0x38[4]</u>, <u>HPF_FILTER_CH12.HPF_EN_CH2 Reg0x38[12]</u>, <u>HPF_FILTER_CH34.HPF_EN_CH3</u> **Reg0x39[4]**, and **HPF_FILTER_CH34.HPF_EN_CH4 Reg0x39[12]**. The high pass filter has two different operating modes. In the audio mode, the filter is a simple first order DC blocking filter, with a cut-off frequency of 3.7Hz. In the application specific mode, the filter is a second order audio frequency filter, with a programmable cut-off frequency. The cutoff frequency of the high pass filter is scaled depending on the sampling frequency indicated to the system by the setting in register <u>ADC_SAMPLE_RATE.SMPL_RATE REG0x3A[7:5]</u>.

The following table provides the exact cutoff frequencies with different sample rates. These cutoff frequencies can be selected by setting <u>HPF_FILTER_CH12.HPF_CUT_CH1 Reg0x38[2:0]</u>, <u>HPF_FILTER_CH12.HPF_CUT_CH2 Reg0x38[10:8]</u>, <u>HPF_FILTER_CH34.HPF_CUT_CH3</u>.

	SMPL_RATE Reg0x3A[7:5] in kHz (FS)										
HPF_CUT	101 or 100			C	011 or 010			001 or 000			
	8	11.025	12	16	22.05	24	32	44.1	48		
000	82	113	122	82	113	122	82	113	122		
001	102	141	153	102	141	153	102	141	153		
010	131	180	156	131	180	156	131	180	156		
011	163	225	245	163	225	245	163	225	245		
100	204	281	306	204	281	306	204	281	306		
101	261	360	392	261	360	392	261	360	392		
110	327	450	490	327	450	490	327	450	490		
111	408	563	612	408	563	612	408	563	612		


Table 1: High Pass Filter Cut-off Frequencies in Hz (with HPF_AM = 1)

2.2.4 Programmable Notch Filter

A notch filter in the digital output path optionally supports each ADC. The notch filter is used to stop a very narrow band of frequencies around a center frequency. This function can be enabled by setting NFEN in <u>NOTCH FIL1 CH1.NFEN Reg0x30[14]</u> to <u>NOTCH FIL1 CH4.NFEN Reg0x36[14]</u>. The center frequency is programmed by setting NFA1 of registers <u>NOTCH FIL1 CH1.NFA1</u> <u>Reg0x30[13:0]</u> to <u>NOTCH_FIL1 CH4.NFA1 Reg0x36[13:0]</u> with two's compliment coefficient values calculated using Table 2 as shown below.

It is important to note that the register update bits are write-only bits. The update bit function is important so that all filter coefficients actively being used are changed simultaneously; even though the register values must be written sequentially. When there is a write operation to any of the filter coefficient settings, but the update bit is not set (value = 0), the value is stored as pending a future update, but does not go into effect. When there is a write operation to any coefficient register, and the update bit is set (value = 1), then the new value in the register being written is immediately put into effect, and any other pending coefficient value is put into effect at the same time.

A ₀	A 1	Notation	Register Value (DEC)
$\frac{1 - \tan \frac{2\pi f_b}{2f_s}}{1 + \tan \frac{2\pi f_b}{2f_s}}$	$-(1+A_0)$ $2\pi f_c$	$ f_c = \text{center frequency (Hz)} \\ f_b = -3 \text{dB bandwidth (Hz)} \\ f_s = \text{sample frequency} \\ (Hz) $	

2.3 Audio Data Companding

Companding is used in digital communication systems to optimize signal-to-noise ratios with reduced data bit rates, using non-linear algorithms. The NAU85L40B supports the two main

Nuvoton Technology Corporation America Tel: 1-408-544-1718 telecommunications companding standards: A-law and μ -law. The A-law algorithm is primarily used in European communication systems and the μ -law algorithm is primarily used by North America, Japan, and Australia.

Companding converts 13 bits (μ -law) or 12 bits (A-law) to 8 bits using non-linear quantization. The companded signal is an 8bit word containing sign (1-bit), exponent (3-bits) and mantissa (4-bits)

Following are the data compression equations set in the ITU-T G.711 standard and implemented in the NAU85L40B.

2.3.1 μ-law	
$F(x) = \frac{\ln(1+\mu \times x)}{\ln(1+\mu)},$	-1 < x < 1
$F(x) = \frac{\ln(1+\mu)}{\ln(1+\mu)},$	
	$\mu = 255$

2.3.2 A-law	
$F(x) = \frac{A \times x }{(1 + \ln(A))'}$	$x \leq \frac{1}{A}$
$F(x) = \frac{(1 + \ln(A \times x))}{(1 + \ln(A))},$	$\frac{1}{A} \le x \le 1$
	<i>A</i> = 87.6

When companding is enabled, the PCM interface must be set to an 8-bit word length by setting <u>PCM_CTRL0.CMB8 Reg0x10[10]</u>. When in 8-bit mode, the Register word length controls in <u>PCM_CTRL0.WLEN Reg0x10[3:2]</u> are ignored.

2.4 Digital Interfaces

Command and control of the device is accomplished using a 2-wire/3-wire serial control interface. This simple, but highly flexible, interface is compatible with many commonly used command and control serial data protocols and host drivers. See <u>CONTROL INTERFACES</u> for more detail.

Digital audio input/output data streams are transferred to and from the device separately for command and control. The digital audio data interface supports either I2S or PCM audio data protocols, and is compatible with commonly used industry standard devices that follow either of these two serial data formats. See **DIGITAL AUDIO INTERFACE** for more detail.

3 Power Supply

The NAU85L40B has been designed to operate reliably using a wide range of power supply conditions and power-on/power-off sequences. However, because of existence of ESD protection diodes between the supplies, that will have impact on the application of the supplies. Because of these diodes, the following conditions need to be met:

VDDB > VDDC - 0.6V.

3.1 Power on and off reset

The NAU85L40B includes a power on and off reset circuit on chip. The circuit resets the internal logic control at VDDC and VDDA supply power up and this reset function is automatically generated

internally when power supplies are too low for reliable operation. The reset threshold is approximately 0.55Vdc and 1.0Vdc for VDDC and VDDA, respectively. It should be noted that these values are much lower than the required voltage for normal operation of the chip.

The reset is held on while the power levels for both VDDC and VDDA are below their respective thresholds. Once the power levels rise above their thresholds, the reset is released. Once the reset is released, the registers are ready to be written to. It is also important to note that all the registers should be kept in their reset state for at least 6µs.

An additional internal RC filter based circuit is added which helps the circuit respond for fast ramp rates (~10µs) and generate the desired reset period width (~10µs at typical corner). This filter is also used to eliminate supply glitches which can generate a false reset condition, typically 50ns.

For reliable operation, it is recommended to write to register <u>SW_RESET REG0x00</u> upon power up. This will reset all registers to the known default state.

Note that when VDDA and/or VDDC are below the power on reset threshold, then the digital IO pins will go into a tri-state condition.

Application Notes:

 VDDA ramp up time for a guaranteed power on reset needs to be less than 50msec. The VDDA ramp down time for a guaranteed power off reset needs to be less than 125msec. If the ramp down rate is too slow (no pull down), then we can enable the minimum VREF impedance by <u>VMID_CTRL.VMIDSEL REG0X66[5:4]=11</u> with <u>VMID_CTRL.VMIDEN</u> <u>REG0X66[6]=1</u>, before shutdown in order to discharge VDDA quickly.

3.2 Reference Voltage Generation

The NAU85L40B includes a mid-supply reference circuit that is decoupled to VSS through the VREF pin by means of a bypass capacitor. The VREF voltage is used as the reference for the majority of the circuits inside NAU85L40B. Therefore, the bypass capacitor needs to be large in order to achieve good power supply rejection at low frequencies. Typically, a 4.7uF capacitor can be used. However, a larger value can be chosen but it will increase the rise time of VREF and therefore it will delay the valid line output signal. However, a pre-charge circuit can pre-charge the capacitor close to VDDA/2 at power up in order to reduce the rise time for fast line out availability. This bypass capacitor should also be low leakage due to the high impedance nature of the VREF pin

The VREF voltage can be enabled by setting <u>VMID_CTRL.VMIDEN Reg0x60[6]</u>. Once VREF has been enabled, the voltage will quickly ramp up due to the pre-charge circuit. The pre-charge circuit can then be disabled in order to save power or to prevent it from adjusting the VREF voltage when the supply varies. This can be done by setting <u>REFERENCE.PDVMDFST Reg0x68[13]</u> to 1. Once the VREF voltage has settled to VDDA/2, the output impedance on the VREF pin is determined by setting the bits <u>VMID_CTRL.VMIDSEL Reg0x60[5:4]</u>. The output impedance is set as per the following table.

VMIDSEL REG0x60[5:4]	VREF Resistor Selection	VREF Impedance
00	Open, no resistor selected	Open, no impedance installed
01	50kOhm	25kOhm
10	250kOhm	125kOhm
11	5kOhm	2.5kOhm

Table 3: V_{REF} Impedance

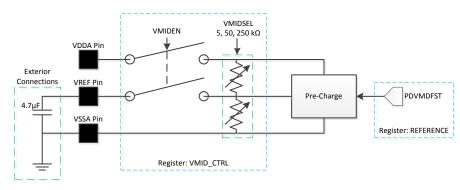


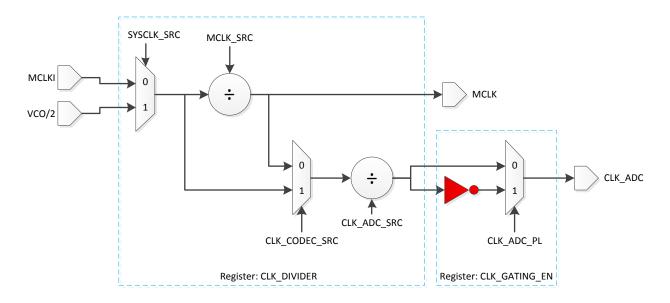
Figure 8: V_{REF} Circuitry

3.3 Microphone Bias Generation

The NAU85L40B provides two microphone bias pins which can be used in various stereo applications. The microphone bias can be used to power electret microphones. In order to ensure safe operation of the device, it is recommended that the microphones do not draw more than 4mA of current from each MICBIAS pin. Register <u>MIC_BIAS REG0x67</u> provides the control for powering up the MICBIAS circuitry. It should be noted that the two MICBIAS outputs both have the same voltage level.

4 Clocking and Sample Rates

The internal clocks for the NAU85L40B are derived from a common internal clock source, MCLK. This clock is the reference for the ADCs and DSP core functions, digital audio interface and other internal functions.


MCLK can be derived directly from MCLKI pin or may be generated from a Frequency Locked Loop (FLL) using MCLKI, BCLK or FS as a reference. The FLL provides additional flexibility for a wide range of MCLK frequencies and can be used to generate a free-running clock in the absence of an external reference source. See <u>FREQUENCY LOCKED LOOP (FLL)</u>

for further details.

It should be noted that the internal clock frequency MCLK must be running at 256*Fs (Fs = sample rate in Hz) in order to achieve the best performance. For example, when targeting 48 kHz sample rate audio, the MCLK must be set to 256*48k = 12.288MHz. When the input clock MCLKI is higher than this speed, <u>CLOCK_SRC.MCLK_SRC REG0x03[4:0]</u> provides flexible division selection to meet the requirement.

nuvoton

20

Figure	9:	Clock	Generation
riguio	υ.	01001	Conoration

Bits	MCLK_SRC REG0x03[4:0]
0000	Divide by 1
0001	Invert
0010	Divide by 2
0011	Divide by 4
0100	Divide by 8
0101	Divide by 16
0110	Divide by 32
0111	Divide by 3
1001	Invert
1010	Divide by 6
1011	Divide by 12
1100	Divide by 24

Table 4: CLOCK SRC.MCLK SRC REG0x03[4:0] Register Settings

Bits	CLK_ADC_SRC REG0x03[7:6]
00	Divide by 1
01	Divide by 2
10	Divide by 4
11	Divide by 8

Table 5: CLOCK_SRC.CLK_ADC_SRC REG0x03[7:6] Register Settings

The OSR (over sampling rate) is defined as CLK_ADC frequency divided by the audio sample rate.

$$OSR = \frac{CLK_ADC}{Fs}$$

Available over-sampling rates are 32, 64, 128 or 256 as set in the ADC_SAMPLE_RATE.OSR REG0x3A[1:0] register. CLK_ADC frequency is set by CLOCK SRC.CLK CODEC SRC REG0x03[13] and CLOCK_SRC.CLK_ADC_SRC REG0x03[7:6] registers.

It should be noted that the OSR and Fs must be selected so that the max frequency of CLK_ADC is less than 6.144MHz. When CLK_ADC is determined, ADC SAMPLE RATE.OSR REG0x3A[1:0] should be set to provide appropriate down sampling through digital filters. Nuvoton Technology Corporation America Rev. 1.5: March 8, 2018 Tel: 1-408-544-1718 Fax: 1-408-544-1787

Example 1:

To configure Fs = 48 kHz, MCLK = (256*Fs) = 12.288MHz, and CLK_ADC = 6.144MHZ

Set:

• <u>CLOCK_SRC.CLK_CODEC_SRC_REG0x03[13]</u> = 1'b0, <u>CLOCK_SRC.CKL_ADC_SRC</u> <u>REG0x03[7:6]</u> = 2'b01, and OSR = 2'b10 (128)

Example 2:

To configure Fs = 16 kHz, MCLKI = 12.288MHz, and CLK_ADC = 4.096MHz

Set:

- <u>CLOCK_SRC.MCLK_SRC REG0x03[4:0]</u> = 3'b111 (Divide MCLKI by 3) to get MCLK = (256*Fs) = 4.096MHz
- <u>CLOCK SRC.CLK CODEC SRC Reg0x03[13]</u> = 1'b0, <u>CLOCK SRC.CLK ADC SRC</u> <u>Reg0x03[7:6]</u> = 2'b00, and OSR = 2'b11 (256)

4.1 PCM Clock Generation

In master mode, BCLK is derived from MCLK via a programmable divider set by <u>PCM_CTRL1.BCLK_DIV Reg0x11[2:0]</u> and the FS is derived from BCLK via a programmable divider <u>PCM_CTRL1.LRC_DIV Reg0x11[13:12]</u>.

To select specific Fs values, <u>PCM_CTRL1.BCLK_DIV Reg0x11[2:0]</u> and <u>PCM_CTRL1.LRC_DIV</u> <u>Reg0x11[13:12]</u> must be set according to the block diagram seen in Figure 10 and the equation below.

 $BCLK = Fs \times data \ length \times channels$

Example 1:

If we want an Fs of 48 kHz and 16 bit data is to be sent to the I2S bus (2 channel)

- BCLK = 48000*16*2 = 1.536MHz and MCLK = 48000*256 = 12.288MHz
- Set <u>PCM_CTRL1.BCLK_DIV Reg0x11[2:0]</u> = 3'b011 (8) and <u>PCM_CTRL1.LRC_DIV</u> <u>Reg0x11[13:12]</u> = 2'b11 (32)

Or 32 bit data is to be sent

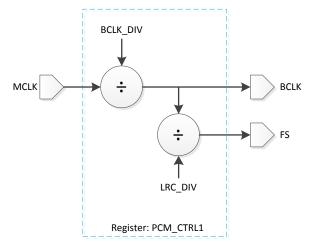
- BCLK = 48000*32*2 = 3.073MHz and MCLK = 48000*256 = 12.288MHz
- Set <u>PCM_CTRL1.BCLK_DIV REG0x11[2:0]</u>= 3'b010 (4) and <u>PCM_CTRL1.LRC_DIV</u> <u>REG0x11[13:12]</u>= 2'b10 (64)

Example 2:

If we want an Fs of 16 kHz and 16 bit data is to be sent to the I2S bus (2 channel)

- BCLK = 16000*16*2 = 512kHz and MCLK = 16000*256 = 4.096MHz
- Set <u>PCM_CTRL1.BCLK_DIV Reg0x11[2:0]</u> = 3'b011 (8) and <u>PCM_CTRL1.LRC_DIV</u> <u>Reg0x11[13:12]</u> = 2'b11 (32)

32 bit data is to be sent,


- BCLK = 16000*32*2 = 1.024MHz and MCLK = 16000*256 = 4.096MHz
- Set <u>PCM_CTRL1.BCLK_DIV REG0x11[2:0]</u>= 3'b100 (4) and <u>PCM_CTRL1.LRC_DIV</u> <u>REG0x11[13:12]</u>= 2'b10 (64)

Example 3:

If we want an Fs of 16 kHz and 32 bit data is to be sent to the I2S TDM bus (4 channels)

- BCLK = 16000*32*4 = 2.048MHz and MCLK = 16000*256 = 4.096MHz
- Set PCM_CTRL1.BCLK_DIV REG0x11[2:0]= 3'b001 (2) and PCM_CTRL1.LRC_DIV

REG0x11[13:12] = 2'b01 (128)

Bits	BCLK_DIV Reg0x11[2:0]
000	Divide by 1
001	Divide by 2
010	Divide by 4
011	Divide by 8
100	Divide by 16
101	Divide by 32

Table 6: PCM_CTRL1.BCLK_DIV REG0x11[2:0] Register Settings

Bits	LRC_DIV REG0x11[13:12]
00	Divide by 256
01	Divide by 128
10	Divide by 64
11	Divide by 32

Table 7: PCM_CTRL1.LRC_DIV REG0x11[13:12] Register Settings

4.2 Frequency Locked Loop (FLL)

The integrated FLL can be used to generate a master system clock, MCLK, from MCLKI, BCLK or FS as a reference. Because of the FLL's tolerance of jitter, it may be used to generate a stable MCLK from less stable input clock sources or it can be used to generate a free-running clock in the absence of an external reference clock source. To run as a free running clock, enable <u>FLL6.DCO_EN</u> <u>REG0x09[15]</u> and set <u>FLL_VCO_RSV.DOUT2VCO_RSV_REG0x04[15:0]</u> to 16'hF13C.

The FLL is enabled using <u>CLOCK_SRC.SYSCLK_SRC_Reg0x03[15]</u> and it is recommended that the FLL be disabled before any setting changes via <u>CLOCK_SRC.SYSCLK_SRC_Reg0x03[15]</u> and then re-enabled after the register settings have been updated. To select between sources, use <u>FLL3.FLL_CLK_REF_SRC_Reg0x06[11:10]</u> and use <u>FLL4.FLL_CLK_REF_DIV_Reg0x07[11:10]</u> to divide the reference source by 1, 2, 4 or 8 to bring the frequency down to 13.5MHz or below.

To control the internal gain loop of the FLL, <u>FLL3.GAIN ERR Reg0x06[15:13]</u> and <u>FLL4.FLL_REF_DIV_4CHK Reg0x07[14:12]</u> can be used. However, it is recommended that only the default settings be used in these registers.

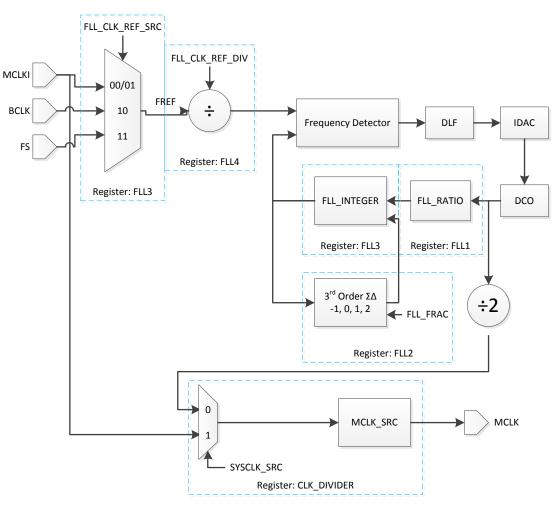


Figure 11: FLL Block diagram

The FLL output frequency is determined by the following parameters:

- FLL1.FLL_RATIO REG0x04[6:0]
- <u>CLOCK_SRC.MCLK_SRC Reg0x03[4:0]</u>
- FLL3.FLL_INTEGER REG0x06[9:0]
- FLL2.FLL_FRAC REG0x05[15:0]

To determine these settings, the following output frequency equations are used:

- 1. FDCO = FREF × <u>FLL INTEGER Reg0x06[9:0]</u> . <u>FLL FRAC Reg0x05[15:0]</u> ÷ <u>FLL4.FLL_CLK_REF_DIV Reg0x07[14:12]</u>
- 2. MCLK = (FDCO × <u>MCLK_SRC REG0x03[4:0]</u>)/2

Where FREF is the reference clock frequency, MCLK is the desired system clock frequency, and FDCO is the frequency of DCO in decimal. It should also be noted that the values in the above equations are the decimal values of the registers.

Example:

If the reference frequency (FREF) is 12MHz, the desired sampling rate (Fs) is 48 kHz, and MCLK = 256*Fs, what are the output frequency parameters?

Using these requirements, the following can be determined.

- MCLK = 256 × 48kHz = 12.288MHz
- Using Equation 2:

Nuvoton Technology Corporation America Tel: 1-408-544-1718 Fax: 1-408-544-1787

- FDCO = (2 × 12.288MHz) / MCLK_SRC
 - For FDCO to remain between 90MHz 100MHz, MCLK_SRC must be chosen to be 1/4. This and other values for <u>MCLK_SRC REG0x03[4:0]</u> can be seen on the register tables.
- FDCO = $(2 \times 12.288 \text{MHz}) / (1/4) = 98.304 \text{MHz}$
- Using Equation 1:
 - FLL_INTEGER REG0x06[9:0] . FLL_FRAC REG0x05[15:0] = FDCO / FREF × FLL4.FLL_CLK_REF_DIV REG0x07[14:12]
 - **FLL** RATIO REG0x04[6:0] = 1 because FREF \geq 512 kHz. This and other values for **FLL_RATIO** REG0x04[6:0] can be seen on the register tables.
 - FLL_INTEGER Reg0x06[9:0] . FLL_FRAC Reg0x05[15:0] = 98.304MHz / (12MHz × 1) = 8.192
 - FLL_INTEGER REG0x06[9:0] . FLL_FRAC REG0x05[15:0] represents an integer and fractional number in decimal
 - FLL INTEGER REG0x06[9:0] = 8
 - o <u>FLL_FRAC REG0x05[15:0]</u> = 0.192
- Now retrieve or convert the parameter values into their corresponding HEX values
 - <u>FLL_RATIO REG0x04[6:0]</u> = 7'h1 (this value is taken from the register chart for FREF \ge 512kHz)
 - MCLK_SRC REG0x03[4:0] = 4'h3 (this value is taken from the register chart for MCLK_SRC REG0x03[4:0] = 1/4)
 - FLL_INTEGER REG0x06[9:0] = 8 = 10'h8
 - **FLL_FRAC Reg0x05[15:0]** = 0.192 × 2^16 = 12583=16'h3126

If low power consumption is required, then FLL settings must be chosen where <u>FLL_INTEGER</u> <u>REG0x06[9:0]</u>. <u>FLL_FRAC REG0x05[15:0]</u> is an integer (i.e. <u>FLL_FRAC REG0x05[15:0]</u> = 0). In this case, the fractional mode can be turned off by disabling register setting <u>FLL6.SDM_EN</u> <u>REG0x09[14]</u>.

5 Control Interfaces

5.1 Selection of Control Mode

The NAU85L40B features include a serial control bus that provides access to all of the device control registers. This bus may be configured either as a 2-wire interface that is interoperable with industry standard implementations of the I2C serial bus, or as a 3-wire bus compatible with commonly used industry implementations of the SPI (Serial Peripheral Interface) bus.

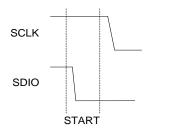
Mode selection is accomplished by means of combination of the MODE control logic pin and <u>MISC_CTRL.SPI3_EN Reg0x51[15]</u>. The following table shows the three functionally different modes that are supported.

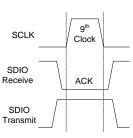
MODE Pin	<u>SPI3_EN</u> Reg0x51[15]	Description
1	х	2-Wire Interface, Read/Write operation
0	0	SPI Interface 3-Wire Write-only operation

Table 8: Control Interface Selection

The timing in all three bus configurations is fully static resulting in good compatibility with standard bus interfaces and software simulated buses. A software simulated bus can be very simple and low cost, such as by utilizing general purpose I/O pins on the host controller and software "bit banging" techniques to create the required timing.

5.2 2-Wire-Serial Control Mode (I²C Style Interface)


Nuvoton Technology Corporation America Tel: 1-408-544-1718 Fax: 1-408-544-1787 The 2-wire bus is a bidirectional serial bus protocol. This protocol defines any device that sends data onto the bus as a transmitter (or master), and the receiving device as the receiver (or slave). The NAU85L40B can function only as a slave device when in the 2-wire interface configuration.


5.3 2-Wire Protocol Convention

All 2-Wire interface operations must begin with a START condition, which is a HIGH-to-LOW transition of SDIO while SCLK is HIGH. All 2-Wire interface operations are terminated by a STOP condition, which is a LOW to HIGH transition of SDIO while SCLK is HIGH. A STOP condition at the end of a read or write operation places the device in a standby mode.

An acknowledge (ACK), is a software convention used to indicate a successful data transfer. To allow for the ACK response, the transmitting device releases the SDIO bus after transmitting eight bits. During the ninth clock cycle, the receiver pulls the SDIO line LOW to acknowledge the reception of the eight bits of data.

Following a START condition, the master must output a device address byte. This consists of a 7-bit device address, and the LSB of the device address byte is the R/W (Read/Write) control bit. When R/W=1, this indicates the master is initiating a read operation from the slave device, and when R/W=0, the master is initiating a write operation to the slave device. If the device address matches the address of the slave device, the slave will output an ACK during the period when the master allows for the ACK signal.

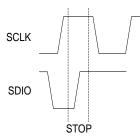
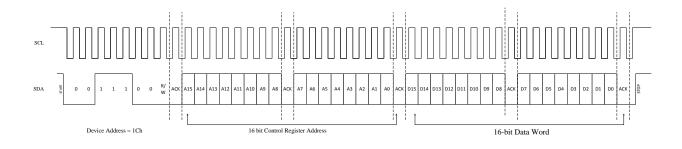
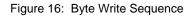


Figure 12: Valid START Condition

Figure 13: Valid Acknowledge

Device								
Addres	R/W	csb	0	1	1	1	0	0
Byte								
Contro	A8	A9	A10	A11	A12	A13	A14	A15
Addres								
Bytes	A0	A1	A2	A3	A4	A5	A6	A7
Data	D8	D9	D10	D11	D12	D13	D14	D15
		_						
Bytes	D0	D1	D2	D3	D4	D5	D6	D7


Figure 14: Valid STOP Condition


Figure 15: Slave Address Byte, Control Address Bytes, and Data Byte Order

5.4 2-Wire Write Operation

A Write operation consists of a three-byte instruction followed by one or more Data Bytes. A Write operation requires a START condition, followed by a valid device address byte with R/W=0, a valid control address byte, data byte(s), and a STOP condition.

The Device Address of the NAU85L40B is either 0x1C (CSB=0) or 0x1D (CSB=1). In I2C mode the CSB pin will set the LSB of the Slave Address. If the Device Address matches this value, the NAU85L40B will respond with the expected ACK signaling as it accepts the data being transmitted to it.

5.5 2-Wire Read Operation

A Read operation consists of a three-byte Write instruction followed by a Read instruction of one or more data bytes. The bus master initiates the operation issuing the following sequence: a START condition, device address byte with the R/W bit set to "0", and a Control Register Address byte. This indicates to the slave device which of its control registers is to be accessed.

If the device address matches this value, the NAU85L40B will respond with the expected ACK signaling as it accepts the Control Register Address being transmitted into it. After this, the master transmits a second START condition, and a second instantiation of the same device address, but now with R/W=1.

After again recognizing its device address, the NAU85L40B transmits an ACK, followed by a two byte value containing the 16 bits of data from the selected control register inside the NAU85L40B.

During this phase, the master generates the ACK signaling with each byte transferred from the NAU85L40B. If there is no STOP signal from the master, the NAU85L40B will internally autoincrement the target Control Register Address and then output the two data bytes for this next register in the sequence.

This process will continue as long as the master continues to issue ACK signaling. If the Control Register Address being indexed inside the NAU85L40B reaches the value 0xFFFF (hexadecimal) and the value for this register is output, the index will roll over to 0x0000. The data bytes will continue to be output until the master terminates the read operation by issuing a STOP condition.

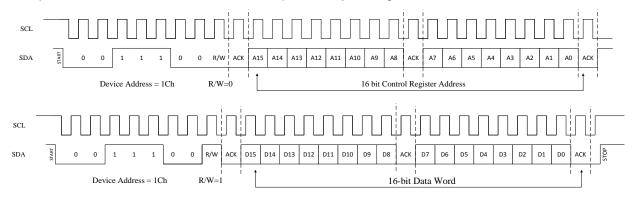


Figure 17: Read Sequence

5.6 Digital Serial Interface Timing

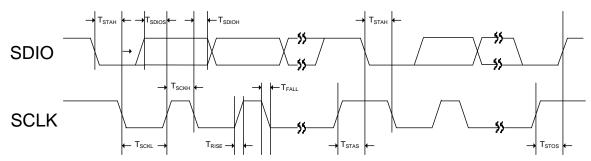


Figure 18: Two-Wire Control Mode Timing

Symbol	Description	min	typ	max	unit
T _{STAH}	SDIO falling edge to SCLK falling edge hold timing in START / Repeat START condition	600	-	-	ns
T _{STAS}	SCLK rising edge to SDIO falling edge setup timing in Repeat START condition	600	-	-	ns
T _{STOS}	SCLK rising edge to SDIO rising edge setup timing in STOP condition		-	-	ns
Т _{SCKH}	SCLK High Pulse Width	600	-	-	ns
T _{SCKL}	SCLK Low Pulse Width	1,300	-	-	ns
T _{RISE}	Rise Time for all 2-wire Mode Signals	-	-	300	ns
T _{FALL}	Fall Time for all 2-wire Mode Signals	-	-	300	ns
T _{SDIOS}	SDIO to SCLK Rising Edge DATA Setup Time	100	-	-	ns
T _{SDIOH}	SCLK falling Edge to SDIO DATA Hold Time	0	-	600	ns

5.7 Software Reset

The entire NAU85L40B and all of its control registers can be reset to default initial conditions by writing any value to <u>SW_RESET Reg0x00</u>, using any of the control interface modes. Writing to any other valid register address terminates the reset condition, but all registers will now be set to their power-on default values.

6 Digital Audio Interface

The NAU85L40B can be configured as either the master or the slave, by setting <u>PCM_CTRL1.MS</u> <u>REG0x11[3]</u>, 1 for master mode and 0 for slave mode. By default, the NAU85L40B is in Slave mode. In master mode, NAU85L40B outputs both Frame Sync (FS) and the audio data bit clock (BCLK) which has full control of the data transfer. In the slave mode, an external controller supplies BCLK and FS. Data is latched on the rising edge of BCLK.

In master mode, the BCLK and FS are generated from MCLK according to the clock division specified in <u>PCM CLOCK GENERATION</u>.

There are two data ports DO12 and DO34 used. The DO12 port only supports normal mode. DO34 can be configured in normal mode and TDM mode setting by <u>PCM_CTRL4.TDM_MODE</u> <u>REG0x14[15]</u>. The DO12/DO34 default setting is normal mode with PCM A format.

When DO12 or DO34 are not driving PCM data, they can be configured to drive a low output, be tristate, or have a weak pull-up or pull-down. If <u>PCM_CTRL1.DO12_DRV REG0x11[14]</u> is set then DO12 will drive an output low when not transmitting data. Likewise <u>PCM_CTRL2.DRO34_DRV</u> <u>REG0x12[14]</u> performs the same function for DO34. When DO12_TRI and DO34_TRI are set DO12/DO34 will be tri-state when not transmitting. Pull-up or pull-down devices can be added to the DO12/DO34 pins by setting pull enable (DO12_PE/DO34_PE) bits and selecting up or down with DO12_PS/DO34_PS where 1 = pull-up and 0 = pull-down. This enables user to configure for wired-OR type bus sharing. All of these controls can be found in register <u>PCM_CTRL1 REG0x11</u> and <u>PCM_CTRL2 REG0x12</u>.

If PE and PS are both logic=0, DO12/DO34 are high impedance, except when actively transmitting left and right channel audio data. After outputting audio channel data, DO12/DO34 will return to high impedance on the BCLK negative edge during the LSB data period if <u>PCM_CTRL1.TRI Reg0x11[9]</u>, is HIGH, or on the BCLK positive edge of LSB if <u>PCM_CTRL1.TRI Reg0x11[9]</u> is LOW. Tri-stating on the negative edge allows the transmission of data by multiple sources in adjacent timeslots with reduced risk of bus driver contention.

There are six types of data formats in normal mode, which is entered with $PCM_CTRL4.TDM_MODE$ REG0x14[15] = 0.

PCM Mode	PCM_CTRL0. <u>AIFMT</u> <u>Reg0x10[1:0]</u>	PCM_CTRL0. LRP REG0x10[6]	PCM_CTRL1. PCM_TS_EN REG0x11[10]	PCM_CTRL4.TDM OFFSET_EN REG0x14[14]
Right Justified	00	0	0	0
Left Justified	01	0	0	0
12S	10	0	0	0
PCM A	11	0	0	0
PCM B	11	1	0	0
PCM Time Slot	11	Don't care	1	0

Table 9: Digital Audio Interface Normal Modes

6.1 Right-Justified Audio Data

In right-justified mode, the LSB is clocked on the last BCLK rising edge before FS transitions. When FS is HIGH, left channel data is transmitted and when FS is LOW, right channel data is transmitted. This is shown in the figure below where N is the word length.

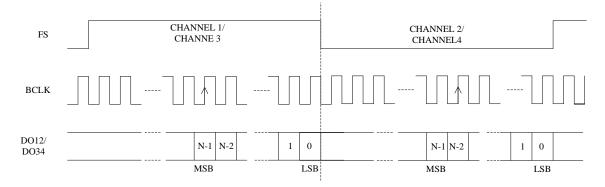


Figure 19: Right Justified Audio Format

6.2 Left-Justified Audio Data

In left-justified mode, the MSB is clocked on the first BCLK rising edge after FS transitions. When FS is HIGH, left channel data is transmitted and when FS is LOW, right channel data is transmitted. This is shown in the figure below.

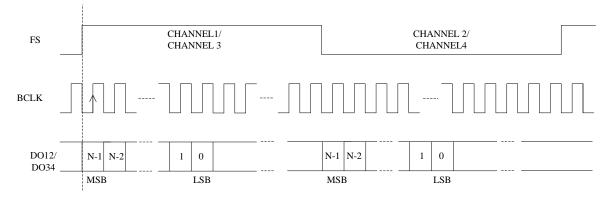
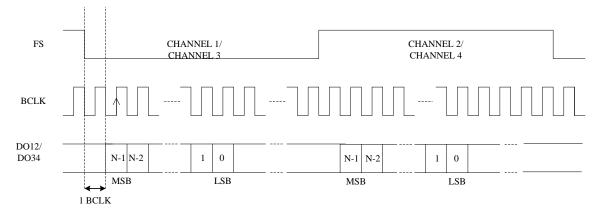
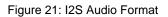




Figure 20: Left Justified Audio Format

6.3 I2S Audio Data Mode

In I2S mode, the MSB is clocked on the second BCLK rising edge after FS transitions. When FS is LOW, left channel data is transmitted and when FS is HIGH, right channel data is transmitted. This is shown in the figure below.

6.4 PCM A Audio Data

In the PCM A mode, left channel data is transmitted first followed immediately by right channel data. The left channel MSB is clocked on the second BCLK rising edge after the FS pulse rising edge, and the right channel MSB is clocked on the next SCLK after the left channel LSB. This is shown in the figure below.

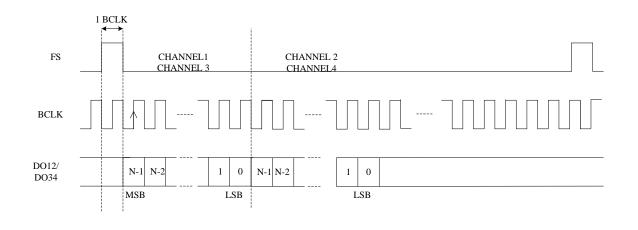
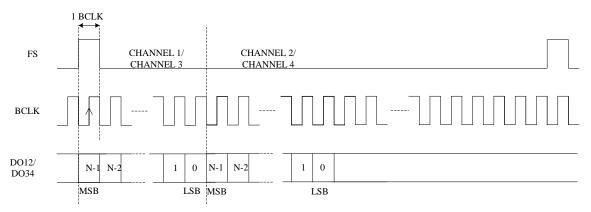
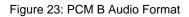




Figure 22: PCM A Audio Format

6.5 PCM B Audio Data

In the PCM B mode, left channel data is transmitted first followed immediately by right channel data. The left channel MSB is clocked on the first BCLK rising edge after the FS pulse rising edge, and the right channel MSB is clocked on the next SCLK after the left channel LSB. This is shown in the figure below.

6.6 PCM Time Slot Audio Data

The PCM time slot mode is used to delay the time at ADC data are clocked. This increases the flexibility of the NAU85L40B to be used in a wide range of system designs. One key application of this feature is to enable multiple NAU85L40B or other devices to share the audio data bus, thus enabling more than two channels of audio. This feature may also be used to swap left and right channel data, or to cause both the left and right channels to use the same data.

Normally, the ADC data are clocked immediately after the Frame Sync (FS). In the PCM time slot mode, the audio data are delayed by a delay count specified in the device control registers. The left channel MSB is clocked on the BCLK rising edge defined by the delay count set in <u>PCM_CTRL2.TSLOT_L_REG0x12[9:0]</u>. The right channel MSB is clocked on the BCLK rising edge defined by the delay count set in <u>PCM_CTRL3.TSLOT_R_REG0x13[9:0]</u>.

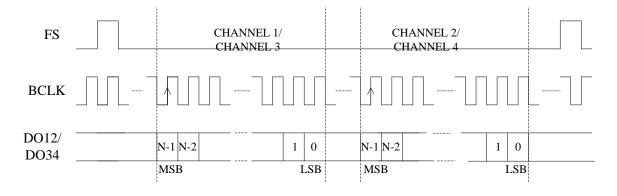


Figure 24: PCM Time Slot Audio Format

There are six types of data formats in TDM mode, entered by setting TDM_MODE, <u>PCM_CTRL4.TDM_MODE Reg0x14[15]</u> = 1.

PCM Mode	PCM_CTRL0. <u>AIFMT</u> Reg0x10[1:0]	PCM_CTRL0. LRP REG0x10[6]	PCM_CTRL1. PCM_TS_EN REG0x11[10]	PCM_CTRL4.TDM_ OFFSET_EN REG0x14[14]
Right Justified	00	0	0	0
Left Justified	01	0	0	0
I2S	10	0	0	0
PCM A	11	0	0	0
PCM B	11	1	0	0
PCM Time Slot	11	Don't care	0	1

Table 10: Digital Audio Interface TDM Modes.

6.7 AUDIO INTERFACE TIMING DIAGRAM

I2S timing diagram shows the audio timing diagram among BCLK, FS, DACIN, and ADCOUT. For NAU85L40B, the timing parameters are shown in <u>TABLE 11:AUDIO INTERFACE TIMING PARAMETERS</u>

6.7.1 AUDIO INTERFACE IN SLAVE MODE

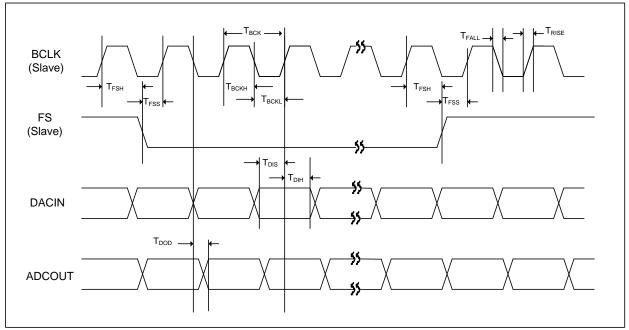


Figure 25: Audio Interface Slave Mode Timing Diagram

6.7.2 AUDIO INTERFACE IN MASTER MODE

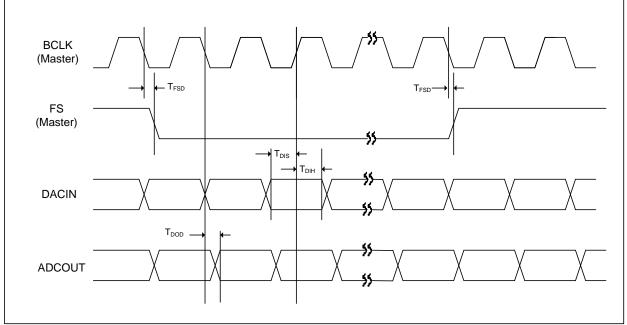


Figure 25: Audio Interface in Master Mode Timing Diagram

6.7.3 PCM AUDIO INTERFACE IN SLAVE MODE (PCM Audo Data)

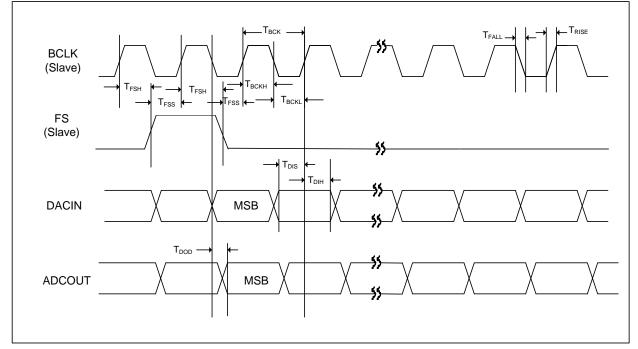


Figure 26:PCM Audio Interface Slave Mode Timing Diagram

6.7.4 PCM AUDIO INTERFACE IN MASTER MODE

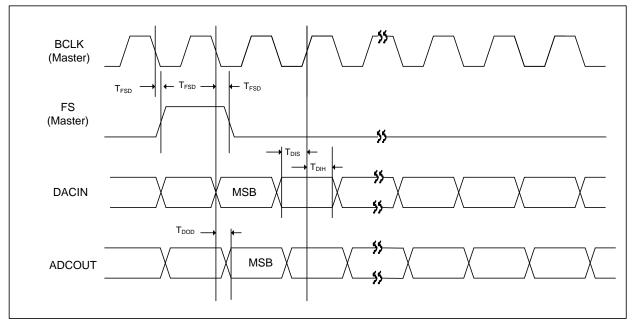


Figure 28:PCM AUDIO Interface Master Mode Timing Diagram

6.7.5 PCM AUDIO INTERFACE IN SLAVE MODE (PCM Time Slot Mode)

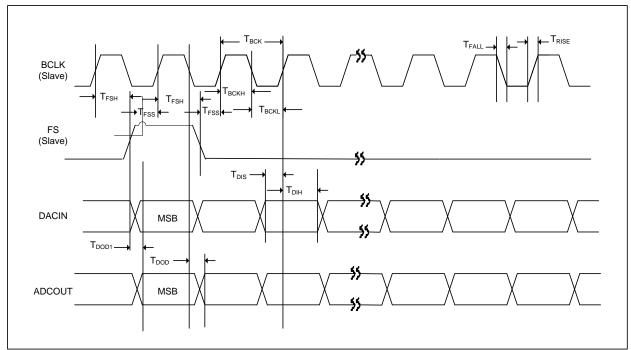
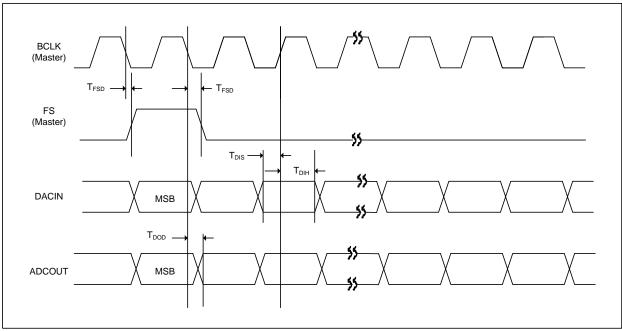



Figure 29:PCM Audio Interface Slave Mode (PCM Time Slot Mode)

6.7.6 PCM AUDIO INTERFACE IN MASTER MODE (PCM Time Slot Mode)

Figure 27:PCM Audio Interface Master Mode (PCM Time Slot Mode)Timing Diagram

6.7.7 AUDIO Timing Parameter

Parameters are under Fs=24KHz and word length 24bits, VDDA=VDDB=VDDC=1.8V and VDDMIC=4.2V at 27°C

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
Т _{вск}	BCLK Cycle Time (Slave Mode)	50			ns
Т _{вскн}	BCLK High Pulse Width (Slave Mode)	20			ns
T _{BCKL}	BCLK Low Pulse Width (Slave Mode)	20			ns
T _{FSS}	Fs to CLK Rising Edge Setup Time (Slave Mode)	20			ns
T _{FSH}	BCLK Rising Edge to Fs Hold Time (Slave Mode)	20			ns
T _{FSD}	Fs to SCK falling to Fs transition (Master Mode)			TBD	ns
T _{RISE}	Rise Time for All Audio Interface Signals			TBD	ns
T _{FALL}	Fall Time for All Audio Interface Signals			TBD	ns
T _{DIS}	ADCIN to BCLK Rising Edge Setup Time	15			ns
T _{DOD}	Delay Time from SCLK falling Edge to ADCOUT		45/27*	70/42*	ns

Table 11:AUDIO Interface Timing Parameters

* Fs=24KHz, word length 24bits, VDDA =VDDC=1.8V, VDDB=3.3, and VDDMIC=4.2V at 27°C

6.8 TDM Right Justified Audio Data

In right justified mode, the LSB is clocked on the last BCLK rising edge before FS transitions. When FS is HIGH, channel 1 then channel 3 data is transmitted and when FS is LOW, channel 2 then channel 4 data is transmitted. This is shown in the figure below.

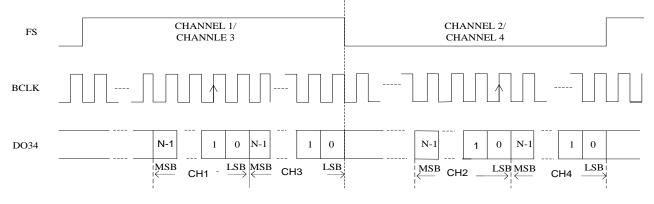


Figure 31: TDM Right Justified Audio Format

6.9 TDM Left Justified Audio Data

In left justified mode, the MSB is clocked on the first BCLK rising edge after FS transitions. When FS is HIGH, channel 1 then channel 3 data is transmitted and when FS is LOW, channel 2 then channel 4 channel data is transmitted. This is shown in the figure below.

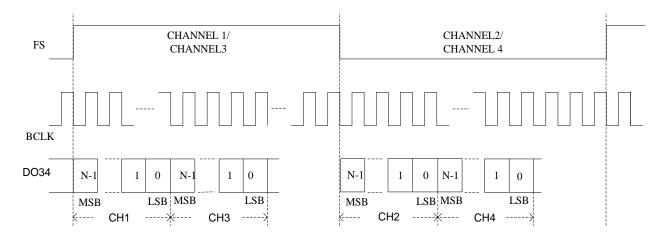


Figure 32: TDM Left Justified Audio Format

6.10 TDM I2S Audio Data

In I2S mode, the MSB is clocked on the second BCLK rising edge after FS transitions. When FS is LOW, channel 1 then channel 3 channel data is transmitted and when FS is HIGH, channel 2 then channel 4 channel data is transmitted. This is shown in the figure below.

ηυνοτοη

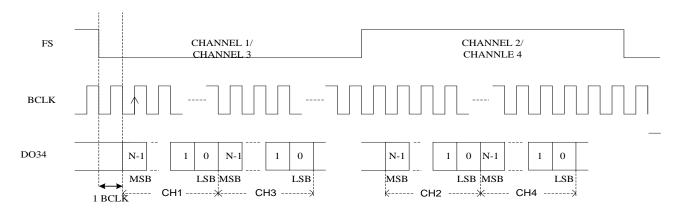


Figure 33: TDM I2S Audio Format

6.11 TDM PCM A Audio Data

In the PCM A mode, channel 1 data is transmitted first followed sequentially by channel 2, 3, and 4 immediately after. The channel 1 MSB is clocked on the second BCLK rising edge after the FS pulse rising edge, and the subsequent channel's MSB is clocked on the next BCLK after the previous channel's LSB. This is shown in the figure below.

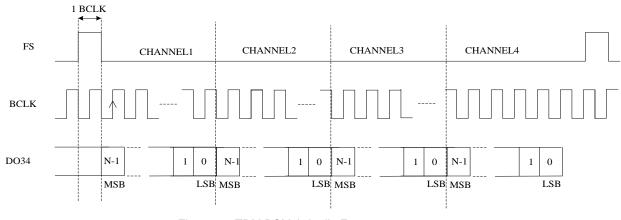
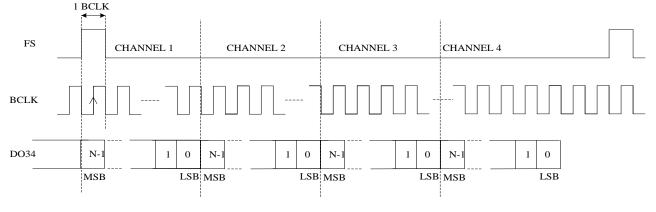
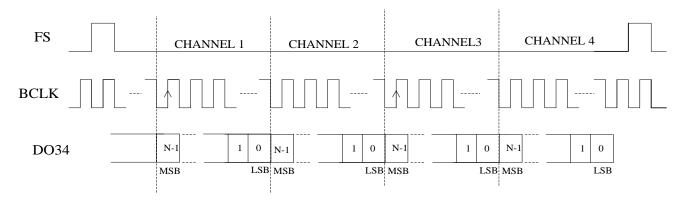
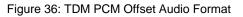


Figure 34: TDM PCM A Audio Format

6.12 TDM PCM B Audio Data

In the PCM B mode, channel 1 data is transmitted first followed sequentially by channel 2, 3, and 4 immediately after. The channel 1 MSB is clocked on the first BCLK rising edge after the FS pulse rising edge, and the subsequent channel's MSB is clocked on the next BCLK after the previous channel's LSB. This is shown in the figure below.


Figure 35: TDM PCM B Audio Format

6.13 TDM PCM Offset Audio Data

The PCM offset mode is used to delay the time at which the ADC data is clocked. This increases the flexibility of the NAU85L40B to be used in a wide range of system designs. One key application of this feature is to enable multiple NAU85L40B or other devices to share the audio data bus, thus enabling more than four channels of audio. This feature may also be used to swap channel data, or to cause multiple channels to use the same data.

Normally, the ADC data are clocked immediately after the Frame Sync (FS). In this mode audio data is delayed by a delay count specified in the device control registers. The channel 1 MSB is clocked on the BCLK rising edge defined by the delay count set in <u>PCM_CTRL2.TSLOT_L Rec0x12[9:0]</u>. The subsequent channel's MSB is clocked on the next BCLK after the previous channel's LSB. This can be seen in the figure below.

Application Notes:

When using <u>PCM_CTRL2.TSLOT_L Reg0x12[9:0]</u> for time slot shift in TDM mode, the four channels will shift together for the same chip. The shift number should be N* Word Lenghth +1, and available channels should be > N+4, where N is desired channel width shift.

7 Register Map

REG	Function
0	SW_RESET
1	POWER MANAGEMENT
2	CLOCK_CTRL
3	CLOCK_SRC
4	FLL1
5	FLL2
6	FLL3
7	FLL4
8	FLL5
9	FLL6
А	FLL_VCO_RSV
10	PCM_CTRL0
11	PCM_CTRL1
12	PCM_CTRL2
13	PCM_CTRL3
14	PCM_CTRL4
20	ALC_CONTROL_1
21	ALC_CONTROL_2
22	ALC_CONTROL_3
23	ALC CONTROL 4
24	ALC_CONTROL_5
2D	ALC_GAIN_CH12
2E	ALC_GAIN_CH34
2F	ALC_STATUS
30	NOTCH_FIL1_CH1
31	NOTCH_FIL2_CH1
32	NOTCH FIL1 CH2
33	NOTCH FIL2 CH2
34	NOTCH_FIL1_CH3
35	NOTCH_FIL2_CH3
36	NOTCH_FIL1_CH4
37	NOTCH FIL2 CH4
38	HPF_FILTER_CH12

REG	Function
39	HPF_FILTER_CH34
3A	ADC_SAMPLE_RATE
40	DIGITAL GAIN CH1
41	DIGITAL GAIN CH2
42	DIGITAL GAIN CH3
43	DIGITAL_GAIN_CH4
44	DIGITAL_MUX
48	P2P_CH1
49	<u>P2P_CH2</u>
4A	P2P_CH3
4B	P2P_CH4
4C	PEAK_CH1
4D	PEAK_CH2
4E	PEAK_CH3
4F	PEAK_CH4
50	GPIO_CTRL
51	MISC_CTRL
52	I2C_CTRL
58	I2C_DEVICE_ID
5A	<u>RST</u>
60	VMID_CTRL
61	MUTE
64	ANALOG_ADC1
65	ANALOG ADC2
66	ANALOG PWR
67	MIC_BIAS
68	REFERENCE
69	FEPGA1
6A	FEPGA2
6B	FEPGA3
6C	FEPGA4
6D	<u>PWR</u>

R										В	it								
E G	Function	Name	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0	Description
0	SW_RES	SW_RESET					_	_		•		•	•	_		_	_	_	Software reset register. Resets chip to POR state.
	ET	Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		ADC4_EN																	Channel 4 analog-to-digital converter power control 0 = ADC4 stage OFF 1 = Enabled
	POWER_	ADC3_EN																	Channel 3 analog-to-digital converter power control 0 = ADC3 stage OFF 1 = Enabled
1	MANAGE MENT	ADC2_EN																	Channel 2 analog-to-digital converter power control 0 = ADC2 stage OFF 1 = Enabled
		ADC1_EN																	Channel 1 analog-to-digital converter power control 0 = ADC1 stage OFF 1 = Enabled
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	CLOCK_C TRL	CLK_AGC_ SLOW_EN																	Enable AGC slow clock (only works with CLK_AGC_EN) 0 = Disable 1 = Enable
		CLK_AGC_ EN																	Enable AGC clock 0 = Disable 1 = Enable
		CLK_I2S_G EN_EN																	Enable I2S/PCM clock 0 = Disable 1 = Enable
		CLK_ADC_P OL																	ADC Clock Polarity 0 = Pass through 1 = Invert
		MCLKO_PS																	MCLKO_PS: =1 Selects the MCLKO pin pull-up. '0' selects the MCLKO pin pull-down
		MCLKO_PE																	MCLKO_PE: = 1 Turns on the MCLKO pin pull-up/down
		MCLKO_TRI				-													MCLKO_TRI =1 Turns of clock output driver on MCLKO pin and sets MCLKO pin in tri-state condition.
		ADC_DSP_ EN																	enable for ADC DSP path for high pass, ALC, and notch filter
		Default	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x8000
		SYSCLK_S RC																	Master System Clock Source 0 = MCLKI pin 1 = FLL VCO/2 as source
		CLK_CODE C_SRC																	CODEC Clock Source 0 = Internal MCLK (MCLK_SRC output) 1 = SYSCLK (SYSCLK_SRC output)
		CLK_GPIO_ SRC																	MCLK Scaling for GPIO clock divider 00 = Divide by 8 01 = MCLK 10 = Divide by 2 11 = Divide by 4
3	CLOCK_S RC	CLK_ADC_S RC																	ADC Clock Source 00 = Pass through 01 = Divide by 2 10 = Divide by 4 11 = Divide by 8
		MCLK_SRC																	Master Clock (MCLK) Source 0000 = Pass through 0001 = Invert 0010 = Divide by 2 0011 = Divide by 4 0100 = Divide by 8 0101 = Divide by 16 0110 = Divide by 32 0111 = Divide by 3 1001 = Invert 1010 = Divide by 6 1011 = Divide by 12 1100 = Divide by 24
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

4 FLL1 FLL2 FL2 FLL2 FL2 FL2 FL2 FL2 FL2 <th></th> <th></th>		
4 FL1 FL1 Increase FL1 Law find we strength. Default setting is on the increase of the strength by 1x. Other increase by 2x. In the increase by 2x. Interval increase by 2x. In the increase by 2x. In the increase by 2x. Interval increase		
4 FLL1 Image: construction of the second conseconstruction of the second construction of the second	fault setting is 000	<u> </u>
4 FIL1 CH 0 <td>iddit Setting is 000.</td> <td>·•</td>	iddit Setting is 000.	·•
4 FL1 ICTRL_V2I ICTRL_V2I <td></td> <td></td>		
4 FLL1 ICTRL_V2I ICTRL_V2I </td <td></td> <td></td>		
4 FLL1 ICTRL_V2I ICTRL_V2I </td <td>50% nominal value</td> <td>10</td>	50% nominal value	10
4 FLL1 ICTRL_V2I ICTRL_V2I </td <td></td> <td>10</td>		10
4 FLL1 FLL10CK, BP FLL_COCK, PS FLL		
4 FLL1 FLL_LOCK, BP I		
4 FLL1 FLL_LOCK_BP Image: Second Secon	_/	
P LUCK_BP 0 0 0 1 Fore lock anabled PLL_RATIO B0 <		
BP Image: Control and Contered Control and Control and Control		
6 FLL2 FLL2 FRAC 0		
FLL_RATIO [6:0] FLL_RATIO [7:0] FLL_RATIO [7:0] FLL_RATIO [7:0] FLL_RATIO [6:0] FLL_RATIO [7:0] FLL CLCLRATIO [7:0] FLL CLCLATIO [7:0] FLL CLCLATIO [7:0] FLL CLCLATIO [7:0] FLL CLCLATIO [7:0] FLL CLCLATIO [7:0]	- 512Khz	
FLL_RATIO [6:0] FLL_RATIO [6:0] FLL_RATIO [6:0] Comparison of the strength of the st		
Image: Picture of the second control contrendition control control control control control co		
Image: Second		
Image: Second		
Image: biological bio		
Default 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 </td <td></td> <td></td>		
5 FLL2 FLL_FRAC Default 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0		
5 FLL2 Default 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0		
6 FLL3 GAIN_ERR GAIN_ERR FLL GAIN_ERR FLL Gain = recommended GOD =		
6 FLL3 GAIN_ERR 0 0 0 00 icon icon 00 icon <		
6 FLL3 GAIN_ERR GAIN_ERR 0		
6 FLL3 GAIN_ERR GAIN_E		
6 FLL3 GAIN_ERR 0 0 0 0 0 0 1 x8 100 = x16 101 = x32 110 = x64 6 FLL_CLK_R FLL_CLK_R FLL_CLK_R FLL_Reference CLK Source Select 00 & 01 = MCLK Pin 10 = BCLK Pin 11 = FS Pin 7 FLL_0NTEG FLL_CLK_R		
6 FLL3 FLL_CLK_R EF_SRC Image: Constraint of the strength control block of FLL Filter Clock ER 6 FLL_CLK_R EF_SRC Image: Constraint of the strength control block of FLL Display Image: Constraint of the strength control block of FLL Display 7 FLL4 FLL_CLK_R EF_DIV Image: Constraint of the strength control block of FLL Display Image: Constraint of the strength control block of FLL Display 7 FLL4 FLL_CLK_R EF_DIV Image: Constraint of the strength control block of FLL Display Image: Constraint of the strength control block of FLL Display 7 FLL4 FLL_CLK_R EF_DIV Image: Constraint of the strength control block of FLL Display Image: Constraint of the strength control block of FLL Display 7 FLL4 FLL_CLK_R EF_DIV Image: Constraint of the strength control block of FLL Display Image: Constraint of the strength control block of FLL Display 7 FLL4 FLL_CLK_R EF_DIV Image: Constraint of the strength control block of FLL Display Image: Constraint of the strength control block of FLL Display 7 FLL4 FLL_CLK_R EF_DIV Image: Constraint of the strength control block of FLL Display Image: Constraint of the strength control block of FLL Display		
6 FLL3 Image: state of the strength control block of FLL PL Image: state of the strength control block of FLL PL 6 FLL3 FLL_CLK_R Image: state of the strength control block of FLL PL Image: state of the strength control block of FLL PL 6 FLL3 FLL_CLK_R Image: state of the strength control block of FLL PL Image: state of the strength control block of FLL DL 7 FLL4 FLL_CLK_R Image: state of the strength control block of FLL DL Image: state of the strength control block of FLL DL 7 FLL4 FLL_CLK_R Image: state of the strength control block of FLL DL Image: state of the strength control block of FLL DL 7 FLL4 FLL_CLK_R Image: state of the strength control block of FLL DL Image: state of the strength control block of FLL DL 7 FLL4 FLL_CLK_R Image: state of the strength control block of FLL DL Image: state of the strength control block of FLL DL 7 FLL4 FLL_CLK_R Image: state of the strength control block of FLL DL Image: state of the strength control block of FLL DL 7 FLL4 FLL_CLK_R Image: state of the strength control block of FLL DL Image: state of the strength control block of FLL DL 7 FLL4 FLL_CLK_R Image: state of the stren		
6 FLL3 II0 = x04 FLL_CLK_R FLL_CLK_R EF_SRC II0 = x04 FLL_INTEG II0 = x04 FLL_OLK_R FLL_NTEG ER II0 = x04 Default 0		
7 FLL4 FLL_CLK_R EF_SRC FLL_CLK_R EF_SRC FLL_CLK_R EF_SRC FLL CLK_R EF_SRC FLL CLK_R EF_SRC FLL CLK_R EF_SRC FLL CLK_R EF_SRC FLL CLK_R EF_SPIN 7 FLL4 FLL_CLK_R EF_DIV_4C HK FLL_CLK_R EF_DIV_4C FLL CLK_R EF_DIV_4C FLL CLK_R EF_DIV_		
FLL_CLK_R EF_SRC 0		
EF_SRC Image: SRC Image: SRC<		
FLL_INTEG ER Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D 7 FLL4 FLL_CLK_R EF_DIV_4C HK Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control block of FLL D Image: Constraint of the strength control b		
FLL_INTEG ER Image: Constraint of the strength of the strength on the		
ER Default 0<		
Default 0 </td <td></td> <td></td>		
7 FLL4 FLL_CLK_R EF_DIV_4C HK FLL_CLK_R FLL_CLK_R EF_DIV_4C HK FLL Clock Reference divider for accurate lock detect 000 = recommended 001 = div by 2 010 = div by 4 011 = div by 3 100 = div by 16 101 = div by 32 7 FLL4 FLL_CLK_R EF_DIV FLL_CLK_R EF_DIV FLL_PR-scalar 00 = Divide by 1 01 = Divide by 2 10 = Divide by 4 11 = Divide by 3 7 FLL_N2 FLL_N2 FLL_N2 FLL_N2 6 FLL_CLT Default 0 0 0 0 0 0 9 FLL_N2 I I I I I I I 9 FLL_N2 I I I I I I I I 9 FLL_N2 I I I I I I I I I 10 I <td></td> <td></td>		
7 FLL FLL_CLK_R FLL_CLK_R FLL_CLK_R FLL_CLK_R 7 FLL4 FLL_CLK_R FLL_CLK_R FLL_CLK_R FLL_CLK_R FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL OU FLL OU FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_RE FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL FLL_N2 FLL FLL FLL FLL OU FLL OU FLL_N2 FLL FLL FLL FLL FLL FLL_N2 FLL FLL FLL FLL FLL FLL_N2 FLL FLL FLL FLL FLL FLL FLL FLL FLL FLL FLL FLL FLL FLL FLL_N2 FLL FLL FLL FLL FLL FLL FLL FLL FLL		
7 FLL4 FLL_CLK_R EF_DIV_4C HK 0<		
7 FLL4 FLL_CLK_R EF_DIV_4C HK 0<	ate lock detection	
7 FLL4 FLL_AR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
7 FLL4 Inn In		
7 FLL4 FLL_CLK_R EF_DIV FLL_CLK_R EF_DIV FLL_CLK_R EF_DIV FLL_PR-scalar 00 = Divide by 1 01 = Divide by 2 10 = Divide by 4 11 = Divide by 8 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 Default 0 0 0 0 0 0 0 0 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL_N2 FLL 10-bit integer VCO divider for FLL Filter Clock FLL Default 0 0 0 0 0 0 0 0 0 CHB_FILTE R_EN I		
FLL_CLK_R FLL_CLK_R 00 = Divide by 1 FF_DIV 01 = Divide by 2 10 = Divide by 4 11 = Divide by 8 FLL_N2 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Intel_oth_integer Intel_oth_integer Intel_oth_integer Intel_oth_integer Intel_oth_integer Integer Integer <td></td> <td></td>		
EF_DIV 10 Divide by 4 FLL_N2 10 10 Default 0		
FLL_N2 Image: Constraint of the strength control block of FLL Distributed for FLL Filter Clock Default 0		
FLL_N2 Image: Constraint of the strength control block of FLL filter Clock Default 0		
Default 0 </td <td>Filter Clock</td> <td></td>	Filter Clock	
PD_DACICT 0 = Disable the drive strength control block of FLL D RL 1 = Enable the drive strength control block of FLL D/ CHB_FILTE 0 = Disable R_EN 1 = Enable 0 = Disable 1 = Enable 1 = Enable 1 = Enable 0 = Disable 1 = Enable 0 = Disable 1 = Enable		
RL 1 = Enable the drive strength control block of FLL D/ CHB_FILTE R_EN FLL Loop Filter 0 = Disable 1 = Enable OLK FILTE Select source of loop filter clock		—
CHB_FILTE R_EN CHK_FILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHKFILTE CHK		
CHB_FILTE 0 = Disable R_EN 1 = Enable Select source of loop filter clock	UCK ULLE DAG	
R_EN 1 = Enable Select source of loop filter clock		
Select source of loop filter clock		
R_SW 1 = VCO/FLL_N2		
FILTER_SW 1 = Select accumulator output		
Reserved		
Default 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

																			FLL free-running mode enable
		DCO_EN																	0 = Disable
						-													1 = Enable FLL sigma delta modulator
		SDM_EN																	0 = Disable
																			1 = Enable
9	FLL6	CUTOFF500																	FLL 500Khz cutoff frequency 0 = Disable
	-																		1 = Enable
		CUTOFF600																	FLL 600Khz cutoff frequency 0 = Disable
		001011000																	1 = Enable
		DLR																	FLL dynamic lock range. 0000 =
		Default	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	recommended 0x6000
		DOUT2VCO	Ű			Ű	Ű	Ű	<u> </u>	Ű	Ū	v	Ű	Ű	Ū	Ű	Ű	Ű	Set the FLL DCO frequency in free-running mode.
А	FLL_VCO _RSV	_RSV																	Set the FEE DOO inequelity in free furning mode.
ļ	_K3V	Default	1	1	1	1	0	0	0	1	0	0	1	1	1	1	0	0	0xF13C
																			ADC companding mode control
		ADCCM																	00 = Off (normal linear operation) 01 = Reserved
		//DOOM																	10 = u-law companding
																			11 = A-law companding
		CMB8																	8-bit word enable for companding mode of operation 0 = Normal operation (no companding)
																			1 = 8-bit operation for companding mode
		UA_OFF																	Companding Offset Mode.
																			Bit clock phase inversion option for BCLK
		BCP																	0 = Normal phase
																			1 = Input logic sense inverter
																			Phase control for I2S audio data bus interface 0 = Normal phase operation
1 0	PCM_CT RL0																		1 = Inverted phase operation
Ŭ	1120																		DOMA and DOMP laft/right wand and a sector
		LRP																	PCMA and PCMB left/right word order control 0 = MSB is valid on 2nd rising edge of BCLK after rising edge
																			of FS
																			1 = MSB is valid on 1st rising edge of BCLK after rising edge of FS
																			Word length (24-bits default) of audio data stream
		WLEN																	00 = 16-bit word length $01 = 20$ -bit word length $10 = 24$ -bit word length $11 = 32$ -bit word length
																			Audio interface data format (default setting is I2S)
																			00 = Right justified
		AIFMT																	01 = Left justified 10 = Standard I2S format
																			11 = PCMA or PCMB audio data format option
		Default	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0x000B
		DO40 TD																	ADCDO12 tri state
		DO12_TRI																	0 = Normal mode (Check DO12_OE) 1 = Output high Z (DO12 pad output disable)
															I				ADCDO12 drive enable
		DO12_DRV																	0 = Normal mode (check DO12_TRI) 1 = Always out
																			LRC DIVIDE Coefficient Setting
																			$00 = BCLK/2^{8} (256)$
		LRC_DIV																	01 = BCLK/2^7 (128)
																			10 = BCLK/2^6 (64) 11 = BCLK/2^5 (32)
1	PCM_CT	PCM TS E	1																Normal mode(not TDM mode)
1	RL1	N																	1 = Time slot function enable for PCM mode 0 = Only PCM A MODE or PCM B MODE(STEREO Only)
					L									L					can be used when PCM Mode is selected
		то																	normal mode for ADCDAT12 and ADCDAT34
		TRI																	1 = Tri-State the 2nd half of LSB 0 = Drive the full Clock of LSB
		PCM8_BIT																	1 = Select 8-bit word length
			-																0 = Use WLEN to select Word Length ADCDO12 pin pull-enable Enable (When DO12_TRI=0, set
																			ADCDO12 output pull condition.)
		DO12_PE																	1 = Enable
		DO12_PS				-													0 = Disable ADCDO12 pin pull Up/Down Enable (After DO12_PE=1)
1		2012_10	i	i	I	1								L		1	L	L	

NAU85L40B

					1		Ĩ	1			Ì								1 = Pull Up
																			0 = Pull Down 0 = ADCDO12 is not always out (when no data out,
		DO12_OE																	O = ADCDO12 is not always out (when no data out, ADCDO12 pin becomes high Z)
		_																	1 = ADCDO12 always out
		MS																	Master Mode Enable 0 = Slave Mode
		NIG																	1 = Master Mode
																			BCLK DIVIDE Coefficient Setting BCLK=MCLK/BCLKDIV
																			000 = No Divide 001 = Divided 2
		BCLKDIV																	010 = Divided 4
																			011 = Divided 8 100 = Divided 16
																			101 = Divided 10 101 = Divided 32
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0x0002
																			ADCDO34 tri state
		DO34_TRI																	0 = Normal mode (Check DO34_OE) 1 = Output high Z (DO34 pad output disable)
																			ADCDO34 drive enable
		DO34_DRV																	0 = Normal mode (check DO34_TRI)
																			1 = Always out
				1			1			1									ADCDO34 pin pull-enable Enable (When DO34_TRI=0, set ADCDO34 output pull condition.)
		DO34_PE		1			1			1									1 = Enable
								<u> </u>											0 = Disable
		DO34 PS		1	1		1	1			Í								ADCDO34 pin pull Up/Down Enable (After DO34_PE=1) 1 = Pull Up
1 2	PCM_CT RL2	D004_F0		1	1		1	1		1	ĺ								0 = Pull Down
		D001.05																	0 = ADCDO34 is not always out (when no data out,
		DO34_OE		1		1				1									ADCDO34 pin becomes high Z) 1 = ADCDO34 always out
																			ADC1, ADC3 PCM time slot start value when PCM_TS_EN
																			=1, both TSLOT_L0 and TSLOT_R0 need to set different
																			values: N*WordLength+1 Or PCM TDM Offset Mode Slot start value when in
		TSLOT_L																	PCM_CTRL4 both TDM and PCM_OFFSET_MODE_CTRL
																			both are 1 Shift value= N*WordLength+1. 4 channels will shift together and need have enough channels available > 4
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels
╠		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than
		Default FS_ERR_C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK
		FS_ERR_C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 10 = 254*MCLK 11 = 255*MCLK
1	PCM CT	FS_ERR_C MP_SE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic
1	PCM_CT RL3	FS_ERR_C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic
		FS_ERR_C MP_SE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic
		FS_ERR_C MP_SE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 10 = 254*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different
		FS_ERR_C MP_SE DIS_FS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1
		FS_ERR_C MP_SE DIS_FS	0																channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode
		FS_ERR_C MP_SE DIS_FS TSLOT_R Default																	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM TS EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode
		FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE																	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 253*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode
3	RL3	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS																	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode
		FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE																	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 11 = 255*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4
3	RL3	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS																	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4 1 = Enable
3	RL3	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN	0		0	0	0	0	0	0		0	0	0	0		0		channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 253*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4 1 = Enable 0 = Disable
3	RL3	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN ADC_TXEN Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 10 = 253*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4 1 = Enable 0 = Disable 0x0000
3	RL3	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN ADC_TXEN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4 1 = Enable 0 = Disable 0x0000 0 = ALC target range -28.5~ -6dB 1 = ALC target range -22.5 ~-1.5dB
3	RL3	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN ADC_TXEN Default ALCTABLES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4 1 = Enable 0 = Disable 0x0000 0 = ALC target range -28.5~ -6dB 1 = ALC target range -22.5 ~-1.5dB 000=Channel 1234 are independent
3	RL3	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN ADC_TXEN Default ALCTABLES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 11 = 255*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4 1 = Enable 0 = Disable 0x0000 0 = ALC target range -28.5~ -6dB 1 = ALC target range -22.5 ~-1.5dB 000=Channel 1234 are independent 001 = Channel 12 as one group, channel 1 as target.
3 1 4 2	RL3 PCM_CT RL4	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN ADC_TXEN Default ALCTABLES EL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 10 = 253*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4 1 = Enable 0 = Disable 0x0000 0 = ALC target range -28.5~ -6dB 1 = ALC target range -22.5 ~-1.5dB 000=Channel 1234 are independent 001 = Channel 1234 are outpendent 010 = Channel 34 grouped, channel 3 as target. Channel12
3	RL3	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN ADC_TXEN Default ALCTABLES EL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 11 = 255*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Tne slot function enable for PCM mode 1 = Enable 0 = Disable 0x0000 0 = ALC target range -28.5~ -6dB 1 = Channel 1234 are independent 001 = Channel 1234 are independent 011 = Channel 12 as one group, channel 1 as target. Channel34 are independent 010 = Channel 34 grouped, channel 3 as target. Channel12 are independent
3	RL3 PCM_CT RL4	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN ADC_TXEN Default ALCTABLES EL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 10 = 253*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4 1 = Enable 0 = Disable 0x0000 0 = ALC target range -28.5~ -6dB 1 = ALC target range -22.5 ~-1.5dB 000=Channel 1234 are independent 001 = Channel 1234 are outpendent 010 = Channel 34 grouped, channel 3 as target. Channel12
3	RL3 PCM_CT RL4	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN ADC_TXEN Default ALCTABLES EL ALC_GRP[2: 0]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 11 = 255*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4 1 = Enable 0 = Disable 0x0000 0 = ALC target range -28.5~ -6dB 1 = ALC target range -22.5 ~-1.5dB 000—Channel 1234 are independent 001 = Channel 12 as one group, channel 1 as target. Channel34 are independent 011 = Channel 12 as a group; channel34 as a group. Channel12 are independent 011 = Channel 12 as a group; channel34 as a group. Channel
3	RL3 PCM_CT RL4	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN ADC_TXEN Default ALCTABLES EL ALC_GRP[2: 0]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 10 = 253*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM TS_EN =1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Enable 0 = Disable 0x0000 0 = ALC target range -28.5~ -6dB 1 = ALC target range -22.5 ~-1.5dB 000=Channel 1234 are independent 001 = Channel 12 as one group, channel 1 as target. Channel34 are independent 010 = Channel 12 as a group; channel 3 as target. Channel12 are independent 010 = Channel 12 as a group; channel34 as a group. Channel 1, 3 is target respectively. 010 = channel 1234 grouped, channel 3 as target. 1, 3 is target respectiv
3	RL3 PCM_CT RL4	FS_ERR_C MP_SE DIS_FS TSLOT_R Default TDM_MODE TDM_OFFS ET_EN ADC_TXEN Default ALCTABLES EL ALC_GRP[2: 0]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	channels 0x0000 Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 11 = 253*MCLK 11 = 255*MCLK 0 = Enable short frame sync detection logic 1 = Disable short frame sync detection logic ADC2, ADC4 output channel PCM time slot start value when PCM_TS_EN = 1 both TSLOT_L0 and TSLOT_R0 need to set different values: N*WordLength+1 And unused for PCM TDM Offset Mode 0x0000 1 = TDM mode 0 = Normal mode PCM Time slots under TDM mode 1 = Time slot function enable for PCM mode ADC TX out enable for channel 1,2,3,4 1 = Enable 0 = Disable 0x0000 0 = ALC target range -28.5~ -6dB 1 = ALC target range -22.5 ~-1.5dB 000=Channel 1234 are independent 001 = Channel 12 as one group, channel 1 as target. Channel34 are independent 001 = Channel 34 grouped, channel 3 as target. Channel12 are independent 011 = Channel 12 as a group; channel34 as a group. Channel 1, 3 is target respectively.

						1	- 1								<u> </u>			1	0 = Peak decay
			L	<u> </u>												<u> </u>	L	<u> </u>	-
		ALC_PKDET _CLR		1												1		1	1 = If peak hold is "1" clear peak value 0 = Don't clear
																			1 = Limiter mode
		ALC_MODE																	0 = Normal mode
		ALC_PK_LI																	
		M_EN																	
		ALC_NGSE																	0 = Use peak_peak calculation output for noise gate threshold 1 = Use rectified peak detector output for noise gate threshold
																			1 = Use peak_peak calculation
		ALC_PKSEL																	0 = Use rectified peak detector
		ALC_NGEN																	
																			ALC noise gate threshold level 0000 = -19dB
																			0000 = -130B 0001 = -23.5dB
																			0010 = - 28dB
		ALC_NGTH																	
																			steps = -4.5dB ▼
																			1110 = -82dB
																			1111 = -86.5dB
		Default	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0x0070
																			Maximum ALC gain setting
																		1	000 = -6.75 dB
																		1	001 = -0.75 dB 010 = +5.25 dB
		ALCMAX																1	010 = +0.25 dB 011 = +11.25 dB
																		1	100 = +17.25 dB
																			101 = +23.25 dB 110 = +29.25 dB
																			111 = +35.25 dB
																			Minimum ALC gain setting
																			000 = -12 dB
		ALCMIN																	001 = -6 dB 010 = 0 dB
																			010 = 0.0B 011 = +6 dB
																			100 = +12 dB
																			Hold time before ALC automated gain increase
																			0000 = 0.00ms (default) 0001 = 2.00ms
																			0010 = 4.00ms
		ALCHLD																	▼
2 1	ALC_CON																		 time value doubles with each bit value increment
1	TROL_2																		▼ 1001 = 512ms
																			1010 through 1111 = 1000 ms
																			ALC target level
																			ALCTABLESEL = 0 1
																			0000 -28.5 dBFS -22.5 dBFS 0001 -27 dBFS -21 dBFS
																			0010 -25.5 dBFS -19.5 dBFS
				1															0011 -24 dBFS -18 dBFS
				1															0100 -22.5 dBFS -16.5 dBFS
																			0101 -21 dBFS -15 dBFS 0110 -19.5 dBFS -13.5 dBFS
		ALCLVL																	0111 -18 dBFS -12 dBFS
				1															1000 -16.5 dBFS -10.5 dBFS
																			1001 -15 dBFS -9 dBFS
																			1010 -13.5 dBFS -7.5 dBFS 1011 -12 dBFS -6 dBFS
																			1100 -10.5 dBFS -4.5 dBFS
																			1101 -9 dBFS -3 dBFS
				1															1110 -7.5 dBFS -1.5 dBFS 1111 -6 dBFS -1.5 dBFS
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		ALC_CH4E			-			-	-	-	-	-		-		-	-	1	1 = Channel 4 ALC enable
		N																1	0 = Disable
		ALC_CH3E																	1 = Channel 2 ALC enable
		N																	
2 2	ALC_CON	ALC_CH1E N																1	1 = Channel 2 ALC enable 0 = Disable
2	TROL_3	ALC_CH1E		-									-			-		-	1 = Channel 1 ALC enable
		N		1														1	0 = Disable
																			ALC Decay Timer (0.75dB / adjustment step)
1				1	1											1		1	Normal Mode:
		ALCDCY																	0000 = 500 us / step

NAU85L40B

Π					l		1	l						1					0001 = 1 ms / step
																			0010 = 2 ms / step ▼
																			 each subsequent setting doubles the decay timer
																			1001 = 256 ms / step 1010 = 512 ms / step
																			Limiter Mode:
																			0000 = 125 us / step 0001 = 250 us / step
																			0010 = 500 us / step
																			- each subsequent setting doubles the decay timer
																			1001 = 64 ms / step
																			1010 = 128 ms / step ALC Attack Timer (0.75dB / adjustment step)
																			Normal Mode: 0000 = 125 us / step
																			0001 = 250 us / step 0010 = 500 us / step
																			 each subsequent setting doubles the decay timer
																			▼ 1001 = 64 ms / step
1		ALCTK																	1001 = 64 ms / step 1010 = 128 ms / step
																			Limiter Mode:
																			0000 = 31 us / step 0001 = 63 us / step
																			0010 = 125 us / step ▼
																			 each subsequent setting doubles the decay timer
																			001 = 16 ms / step 1010 = 32 ms / step
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		ALC_UPEN_																	
		CH2																	1 = Channel 2 Gain Update Enable 0 = Disable
		CH2 ALC_ZCD_																	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing.
		CH2 ALCZCD_ CH2 ALC_INIT_G																	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB
		CH2 ALCZCD_ CH2																	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB
2	ALC CON	CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2																	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 010000 = 0dB ▼ 111111 = 35.25dB
2 3	ALC_CON TROL_4	CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1																	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 010000 = 0dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable
23		CH2 ALCZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_																	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = .12dB 000001 = .11.25dB ▼ 010000 = 0dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever
2 3		CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_																	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = .12dB 000001 = .11.25dB ▼ 010000 = 0dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing.
2 3		CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1 ALC_INIT_G																	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 010000 = 0dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps
23		CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1																	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 010000 = 0dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB
23		CH2 ALCZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1 ALC_INIT_G AIN_CH1																	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 110000 = 0dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ♥ 010000 = 0dB ▼ 111111 = 35.25dB
23		CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1 ALC_INIT_G	0	0	0		0	0	0	0	0	0	0			0	0	0	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 111111 = 35.25dB ▼ 010000 = 0dB ▼
23		CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1 ALC_ZCD_ CH1 ALC_INIT_G AIN_CH1 Default ALC_UPEN_ CH4	0	0			0		0	0	0	0	0		0	0	0	0	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 110000 = 0dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 111111 = 35.25dB ▼ 111111 = 35.25dB 0x1010 1 = Channel 4 Gain Update Enable 0 = Disable
23		CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1 ALC_INIT_G AIN_CH1 Default ALC_UPEN_	0	0	0		0	0	0	0	0	0	0		0	0	0	0	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps 000000 = -12dB 000000 = -12dB 000001 = -11.25dB ▼ 111111 = 35.25dB 1 = Channel 4 Gain Update Enable 0 = Disable 1 = Channel 4 Gain Update Enable 0 = Disable 1 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates whenever
23		CH2 ALCZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1 ALC_INIT_G AIN_CH1 Default ALC_UPEN_ CH4 ALC_ZCD_	0	0	0		0	0	0	0	0	0	0			0	0	0	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 110000 = 0dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 111111 = 35.25dB ▼ 111111 = 35.25dB 0x1010 1 = Channel 4 Gain Update Enable 0 = Disable 1 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates whenever Channel 4 Initial Gain. Increments in .75dB steps 000000 = -12dB
2	TROL_4	CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1 ALC_INIT_G AIN_CH1 ALC_UPEN_ CH4 ALC_ZCD_ CH4 ALC_ZCD_ CH4 ALC_INIT_G	0	0	0		0	0	0	0	0	0	0		0	0	0	0	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 010000 = 0dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 010000 = 0dB ▼ 1 = Channel 4 Gain Update Enable 0 = Disable 1 = Channel 4 Gain Update Enable 0 = Disable 1 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates whenever Channel 4 Initial Gain. Increments in .75dB steps 000000 = -12dB 000000 = -12dB
	TROL_4	CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1 ALC_INIT_G AIN_CH1 ALC_UPEN_ CH4 ALC_ZCD_ CH4	0	0	0		0	0	0	0	0	0	0		0	0	0	0	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 111111 = 35.25dB 010000 = 0dB ▼ 111111 = 35.25dB 0x1010 1 = Channel 4 Gain Update Enable 0 = Disable 1 = Channel 4 Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates whenever Channel 4 Initial Gain. Increments in .75dB steps 000000 = -12dB 000000 = 0dB ▼
2	TROL_4	CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1 ALC_INIT_G AIN_CH1 ALC_UPEN_ CH4 ALC_ZCD_ CH4 ALC_ZCD_ CH4 ALC_INIT_G	0	0	0			0	0	0	0	0	0		0	0	0	0	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 010000 = 0dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 010000 = 0dB ▼ 1 = Channel 4 Gain Update Enable 0 = Disable 1 = Channel 4 Gain Update Enable 0 = Disable 1 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates whenever Channel 4 Initial Gain. Increments in .75dB steps 000000 = -12dB 000000 = -12dB
2	TROL_4	CH2 ALC_ZCD_ CH2 ALC_INIT_G AIN_CH2 ALC_UPEN_ CH1 ALC_ZCD_ CH1 ALC_ZCD_ CH1 ALC_UPEN_ CH4 ALC_UPEN_ CH4 ALC_ZCD_ CH4 ALC_ZCD_ CH4 ALC_INIT_G AIN_CH4	0	0	0		0	0	0	0	0	0	0			0	0	0	0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 111111 = 35.25dB 1 = Channel 1 Gain Update Enable 0 = Disable 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever Channel 1 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ♥ 111111 = 35.25dB 1 = Channel 4 Gain Update Enable 0 = Disable 1 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates on zero crossing. 0 = Channel 4 ALC Gain updates whenever Channel 4 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ♥ 1 = Channel 4 ALC Gain updates whenever Channel 4 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ♥ 111111 = 35.25dB

		ALC_INIT_G AIN_CH3 Default	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	Channel 3 Initial Gain. Increments in .75dB steps 000000 = -12dB 000001 = -11.25dB ▼ 010000 = 0dB ▼ 111111 = 35.25dB 0x1010
			-	-	-		-	-	-	-	-	-				-	-	-	Reserved
2		ALC_GAIN_ CH2																	Readout channel 2 ALC gain setting
D	ALC_GAI N_CH12	ALC_GAIN_																	Readout channel 1 ALC gain setting
		CH1 Default	Х	х	Х	Х	x	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Read Only
																			Reserved
2	ALC GAI	ALC_GAIN_ CH4																	Readout channel 4 ALC gain setting
2 E	N_CH34	ALC_GAIN_ CH3																	Readout channel 3 ALC gain setting
		Default	Х	х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Read Only
		FAST_DEC																	
2 F	ALC_STA TUS	NOISE																	
	105	CLIP Default	Х	х	Х	Х	х	Х	Х	Х	х	Х	Х	Х	Х	х	Х	Х	Read Only
																			Update bit feature for simultaneous change of all notch filter
		NFU1																	parameters. Write-only bit. 1 = Update
																			0 = Do nothing
3 0	NOTCH_F IL1_CH1	NFEN																	Notch filter control bit 0 = Disabled
																			1 = Enabled
		NFA0 Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Notch filter A0 coefficient least significant bits. 0x0000
		Delault	0	v	U	U	U	U	U	U	U	U	U	U		U	U	U	Update bit feature for simultaneous change of all notch filter
		NFU2																	parameters. Write-only bit.
3	NOTCH_F																		1 = Update 0 = Do nothing
1	IL2_CH1																		Reserved
		NFA1	•	•	•			•	•	•	•	•	•		•	•	0	0	Notch filter A1 coefficient least significant bits.
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		NFU1																	Update bit feature for simultaneous change of all notch filter parameters. Write-only bit.
		NEUT																	1 = Update 0 = Do nothing
3 2	NOTCH_F IL1_CH2																		Notch filter control bit
2		NFEN																	0 = Disabled 1 = Enabled
		NFA0																	Notch filter A0 coefficient least significant bits.
IЦ		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
																			Update bit feature for simultaneous change of all notch filter parameters. Write-only bit.
3	NOTCH F	NFU2																	1 = Update
3	IL2_CH2																		0 = Do Nothing Reserved
		NFA1	_					_	_	_		_	_		^	_	_	_	Notch filter A1 coefficient least significant bits.
H		Default	0	0	0	U	0	U	U	U	U	U	0	0	0	0	U	0	0x0000 Update bit feature for simultaneous change of all notch filter
		NFU1																	parameters. Write-only bit.
																			1 = Update 0 = Do nothing
3 4	NOTCH_F IL1_CH3						\square												Notch filter control bit
	121_0113	NFEN																	0 = Disabled 1 = Enabled
		NFA0	,		-	-	-	<u>^</u>						_					Notch filter A0 coefficient least significant bits.
IН		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		NEUO																	Update bit feature for simultaneous change of all notch filter parameters. Write-only bit.
3 5	NOTCH_F	NFU2																	1 = Update 0 = Do nothing
э	IL2_CH3																		Reserved
		NFA1																	Notch filter A1 coefficient least significant bits.

فسمسه و		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
3	NOTCH_F	NFU1			-					-								-	Update bit feature for simultaneous change of all notch filter parameters. Write-only bit. 1 = Update 0 = Do nothing
6	IL1_CH4	NFEN																	Notch filter control bit 0 = Disabled 1 = Enabled
		NFA0 Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Notch filter A0 coefficient least significant bits. 0x0000
		Deladit	•	Ŭ	v	v		Ū	v	v	v	v	•	v	v	v	v	v	Update bit feature for simultaneous change of all notch filter
3 7	NOTCH_F IL2_CH4	NFU2																	parameters. Write-only bit. 1 = Update 0 = Do nothing
1	122_0114	NFA1																	Reserved Notch filter A1 coefficient least significant bits.
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~
		FLUSH_ME M																	1 = flush filter memory
		HPF_EN_C H2																	Channel 2 HPF filter control bit 0 = Disabled 1 = Enabled
		HPF_AM_C H2																	Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1,)
3 8	HPF_FILT	HPF_CUT_ CH2																	Channel 2 HPF Cut-off Frequency, reference TABLE 1
0	ER_CH12	HPF_EN_C H1																	Channel 1 HPF filter control bit 0 = Disabled 1 = Enabled
		HPF_AM_C H1																	Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1)
		HPF_CUT_ CH1																	Channel 1 HPF Cut-off Frequency, reference TABLE 1
		Default	0	0		~	~	-	•	~	•	^							
			v	U	0	U	U	U	0	U	U	U	0	0	0	0	0	0	0x0000
		HPF_EN_C H4		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0x0000 Channel 4 HPF filter control bit 0 = Disabled 1 = Enabled
					0					0		U	0	0	0	0	0	0	Channel 4 HPF filter control bit 0 = Disabled
		H4 HPF_AM_C			0							0	0	0	0	0	0	0	Channel 4 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1,) Channel 4 HPF Cut-off Frequency. reference TABLE 1 for more details.
3 9	HPF_FILT ER_CH34	H4 HPF_AM_C H4 HPF_CUT_			0										0	0	0	0	Channel 4 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1,) Channel 4 HPF Cut-off Frequency. reference TABLE 1 for more details. Channel 3 HPF filter control bit 0 = Disabled
		H4 HPF_AM_C H4 HPF_CUT_ CH4 HPF_EN_C															0	0	Channel 4 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1,) Channel 4 HPF Cut-off Frequency. reference TABLE 1 for more details. Channel 3 HPF filter control bit
		H4 HPF_AM_C H4 HPF_CUT_ CH4 HPF_EN_C H3 HPF_AM_C H3 HPF_CUT_ CH3																	Channel 4 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1,) Channel 4 HPF Cut-off Frequency. reference TABLE 1 for more details. Channel 3 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1) Channel 3 HPF Cut-off Frequency. reference TABLE 1 for more details
		H4 HPF_AM_C H4 HPF_CUT_ CH4 HPF_EN_C H3 HPF_AM_C H3 HPF_CUT_	0												0			0	Channel 4 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = $\sim 3.7Hz$). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1,) Channel 4 HPF Cut-off Frequency. reference TABLE 1 for more details. Channel 3 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = $\sim 3.7Hz$). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1) Channel 3 HPF Cut-off Frequency. reference TABLE 1 for more details 0x0000
		H4 HPF_AM_C H4 HPF_CUT_ CH4 HPF_EN_C H3 HPF_AM_C H3 HPF_CUT_ CH3																	Channel 4 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1,) Channel 4 HPF Cut-off Frequency. reference TABLE 1 for more details. Channel 3 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1) Channel 3 HPF Cut-off Frequency. reference TABLE 1 for more details
		H4 HPF_AM_C H4 HPF_CUT_ CH4 HPF_EN_C H3 HPF_AM_C H3 HPF_CUT_ CH3 Default Channel_syn																	Channel 4 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1,) Channel 4 HPF Cut-off Frequency. reference TABLE 1 for more details. Channel 3 HPF filter control bit 0 = Disabled 1 = Enabled Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1) Channel 3 HPF Cut-off Frequency. reference TABLE 1 for more details 0x0000 Channels time alignment bit. When it is enabled, All 4 channels have timing alignment output when all 4 channels have same input during NAU85L40 startup or reset. 0 = Disabled

Nuvoton Technology Corporation America Tel: 1-408-544-1718 Fax: 1-408-544-1787

		OSR384																	Reserved keep 0
																			ADC OSR selection. Controls SINC filter down sample ratio.
		000																	Must be set such that ADC_CLK = Fs * OSR. 00 = 32
		OSR																	01 = 64 (When Fs=96KHZ, it gets better THD.)
																			10 = 128 11 = 256.
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0x0002
																			ADC channel 1 digital gain. Increments in -0.125dB steps
4	DIGITAL_																		0x520 = + 36dB
4 0	GAIN_CH	CH1_DGAIN																	0x400 = 0dB ▼
Ŭ	1																		0x000 = -128dB
		Default	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0x0400
																			ADC channel 2 digital gain. Increments in -0.125dB steps 0x520 = + 36dB
4	DIGITAL_	CH2_DGAIN																	0x320 = + 30 B
1	GAIN_CH 2																		▼
	-	Default	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0x000 = -128dB 0x1400
		Delault	U	U	U	-	U	- 1	0	0	0	U	0	U	U	U	0	0	
	DIG																		ADC channel 3 digital gain. Increments in -0.125dB steps 0x520 = + 36dB
4	DIGITAL_ GAIN_CH	CH3_DGAIN																	0x400 = 0dB
2	GAIN_CH 3																		
		Default	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0x000 = -128dB 0x2400
H			Ŭ			•	Ť	•		-	, ,		Ű	, v	Ť	Ť	Ū		ADC channel 4 digital gain. Increments in -0.125dB steps
	DIGITAL																		0x520 = + 36dB
4	DIGITAL_ GAIN_CH	CH4_DGAIN																	0x400 = 0dB
3	4																		▼ 0x000 = -128dB
		Default	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0x0400
																			Digital Gain change zero cross enable
		DG_ZCEN																	1 = Enable
4	DIGITAL_	CH4_SEL																	Channel MUX ADC output selection 00 = ADC channel 1 IN
4	MUX	CH3_SEL																	01 = ADC channel 2 IN
		CH2_SEL																	10 = ADC channel 3 IN
		CH1_SEL																	11 = ADC channel 4 IN
		Default	0	0	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0x00E4
4	P2P_CH1	P2P CH1		X	×	X	×	V	×	N/	X	V	v	×	×	v		X	Channel 1 P2P value.
8	_	Default	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Read Only
4 9	P2P_CH2	P2P CH2 Default	х	X	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	х	Х	Х	Х	Channel 2 P2P value. Read Only
			^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	
4 A	P2P_CH3	P2P CH3 Default	х	x	Х	Х	х	x	Х	X	Х	х	x	Х	Х	Х	x	Х	Channel 3 P2P value. Read Only
4		P2P CH4		7.		7	~		~	7.	7	2.		7	7	~		7.	Channel 4 P2P value.
4 B	P2P_CH4	Default	x	х	Х	х	Х	Х	Х	Х	х	Х	Х	х	Х	Х	Х	х	
4	PEAK_CH	PEAK CH1																	Channel 1 Peak value.
Ċ					Х	х	Х	Х	х	Х	Х	Х	Х	х	Х	Х	Х	Х	Read Only
	1	Default	Х	X	~					_				_					
4	I PEAK_CH	Default PEAK CH2	X	X	~										_				Channel 2 Peak value.
4 D			X X	X X		X	X	X	X	X	Х	X	Х	X	X	X	Х	х	Channel 2 Peak value. Read Only
D 4	PEAK_CH 2 PEAK_CH	PEAK CH2 Default PEAK CH3	x	X	X	x													Read Only Channel 3 Peak value.
D	PEAK_CH 2 PEAK_CH 3	PEAK CH2 Default PEAK CH3 Default		X		x			x		X X							X X	Read Only
D 4 E 4	PEAK_CH 2 PEAK_CH 3 PEAK_CH	PEAK CH2 Default PEAK CH3 Default PEAK CH4	x	x	x	x	X	X	X	X	X	X	X	X	X	X	X	X	Read Only Channel 3 Peak value. Read Only Channel 4 Peak value.
D 4 E	PEAK_CH 2 PEAK_CH 3	PEAK CH2 Default PEAK CH3 Default PEAK CH4 Default	x	x	x	x			X	X			X	X			X	X	Read Only Channel 3 Peak value. Read Only
D 4 E 4 F	PEAK_CH 2 PEAK_CH 3 PEAK_CH 4	PEAK CH2 Default PEAK CH3 Default PEAK CH4 Default POL	x	x	x	x	X	X	X	X	X	X	X	X	X	X	X	X	Read Only Channel 3 Peak value. Read Only Channel 4 Peak value.
D 4 E 4	PEAK_CH 2 PEAK_CH 3 PEAK_CH	PEAK CH2 Default PEAK CH3 Default PEAK CH4 Default POL SEL	x	x	x	x	X	X	X	X	X	X	X	X	X	X	X	X	Read Only Channel 3 Peak value. Read Only Channel 4 Peak value.
D 4 E 4 F 5	PEAK_CH 2 PEAK_CH 3 PEAK_CH 4 GPIO_CT	PEAK CH2 Default PEAK CH3 Default PEAK CH4 Default POL	x	x	x	x	x	x	x	x	X	x	x	X	x	x	x	x	Read Only Channel 3 Peak value. Read Only Channel 4 Peak value.
D 4 E 4 F 5	PEAK_CH 2 PEAK_CH 3 PEAK_CH 4 GPIO_CT	PEAK CH2 Default PEAK CH3 Default PEAK CH4 Default POL SEL DIR	x x x	x x x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	Read Only Channel 3 Peak value. Read Only Channel 4 Peak value. Read Only 0x0000 Mode pin = 0
D 4 E 4 F 5 0	PEAK_CH 2 PEAK_CH 3 PEAK_CH 4 GPIO_CT RL	PEAK CH2 Default PEAK CH3 Default PEAK CH4 Default POL SEL DIR	x x x	x x x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	Read Only Channel 3 Peak value. Read Only Channel 4 Peak value. Read Only 0x0000 Mode pin = 0 1 = SPI4 – four wire SPI
D 4 E 4 F 5 0	PEAK_CH 2 PEAK_CH 3 PEAK_CH 4 GPIO_CT RL MISC_CT	PEAK CH2 Default PEAK CH3 Default PEAK CH4 Default POL SEL DIR	x x x	x x x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	Read Only Channel 3 Peak value. Read Only Channel 4 Peak value. Read Only 0x0000 Mode pin = 0
D 4 E 4 F 5 0	PEAK_CH 2 PEAK_CH 3 PEAK_CH 4 GPIO_CT RL	PEAK CH2 Default PEAK CH3 Default PEAK CH4 Default POL SEL DIR DEfault	x x x	x x x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	Read Only Channel 3 Peak value. Read Only Channel 4 Peak value. Read Only 0x0000 Mode pin = 0 1 = SPI4 – four wire SPI

		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
																			I2C time out function 1 = Disable
5 2	I2C_CTRL	TO_DIS																	0 = Enable
2		TIMEOUT Default	0		1	4	4	4	4	4	4	4	4	4	4	1	1	1	0xEFFF
		I2C DEVID	U			1	1	1	1	1		1	-				1	1	I2C device ID address
5 8	I2C_DEVI CE_ID	SI_REV																	Silicon Revision
0		Default	X	X	X	X	Х	X	Х	Х	X	X	Х	X	Х	Х	Χ	X	Read Only
5	RST	SW_RST	•			•	•	0	0	•	•	•	•	•	•	•	•	•	Software reset without reset of register contents.
A		Default TEST	0	0	U	U	0	U	U	U	0	U	0	0	0	0	0	0	0x0000
		IESI																	VMID
		VMIDEN																	0 = Disable 1 = Enable
																			Vmid tie-off selection options
		VMIDSEL																	00 = open (default) 01 = 50kΩ resistors
6 0	VMID_CT RL	VIVIIDOLL																	$10 = 250 k\Omega$ resistors
Ŭ	I.L																_		11 = 5kΩ resistors Master bias current power reduction options
																			00 = normal operation (default)
		BIAS_ADJ																	01 = 10% reduced bias current from default 10 = 17% reduced bias current from default
																			11 = 10% increased bias current from default
ĽЦ		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		MUTE CH4																	MIC4 PGA mute enable 0 = Mute Disable
																			1 = Mute Enable
		MUTE CH3																	MIC3 PGA mute enable 0 = Mute Disable
6																	_		1 = Mute Enable
1	MUTE	MUTE CH2																	MIC2 PGA mute enable 0 = Mute Disable
																			1 = Mute Enable
		MUTE CH1																	MIC1 PGA mute enable 0 = Mute Disable
		Default	0	0		0	0	0	0	•	0	0	0	•	0	0	0	0	1 = Mute Enable 0x0000
╠═┥		Delault	v		-	v	v	U	0	0	Ū	U	U	v	•	v	U	v	Reset integrators in ADC CH41
6	ANALOG_	resetR																	1 = Reset
4	ADC1	Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 = Normal operation 0x0000
			Ū			Ű	Ū	v	•	•	v	•	-	•	Ū		•	v	Channel 4 to 1 PGA bias current increase for driving the ADC
		adc_up																	at high sample rates
		bias1																	Change bias currents in ADC 00 = Nominal
		hia a Q																	01 = Double
		bias0																	10 = Half 11 = Quarter of nominal value
		Vrefsel1																	Change Vref in ADC: 00 = Use analog supply
																			01, 10, 11 use internal value derived from Vmid, value
6 5	ANALOG_ ADC2	Vrefsel0		\parallel														\vdash	changes in 0.5dB steps Reserved
_																			Reserved
		lfsrresetn																	0 = Reset the LFSR for the DEM algorithm 1 = Default
		monadd							L	L						L			Should remain zero.
		mon1st		\square															
		mon2nd mon3rd		$\left - \right $	\mid	\vdash	-								-				
		mon4th	_	Ę			Ļ						_		ļ				0.0000
IЦ		Default	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0x0020
		PON_CH4 PON_CH3		┢─┤	\mid	\vdash					-							\vdash	1 = Power on signal ADC CH1 to CH4
6 6	ANALOG_ PWR	PON_CH2																	
١ĭ		PON_CH1 Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		Derault										U	U U				U		0.0000
6	MIC_BIAS	PU_BUF		÷														1	MICBIAS output buffers

Nuvoton Technology Corporation America Tel: 1-408-544-1718 Fax: 1-408-544-1787

																			
																			Bit 0 = MICBIAS1 1 = Power on
																			0 = Power off
																			MICBIAS power on pre-amp
		PU_PRE																	1 = Enable
							_												0 = Disable MICBIAS fast charge filter
		FAST																	1 = Enable
																			0 = Disable
																			MICBIAS discharge filter
		DISCH																	1 = Enable
																			0 = Disable
																			MICBIAS Set output level 1.8V
		LVL_LOW																	1 = Enable
																			0 = Disable
																			MICBIAS Set output level
																			000 = 2.1V 001 = 2.2V
																			010 = 2.3V
		LVL																	011 = 2.4V
					1														100 = 2.5V
					1														101 = 2.6V 110 = 2.7V
					1														110 = 2.7V 111 = 2.8V
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0x0004
	-																		Enable PGA class A mode of operation (instead of class AB)
		STG2_SEL																	1 = Enable
																			0 = Class AB Power Down Fast VREF Ramp up
		PDVMDFST																	1 = Disable
		1 BYMBI OT																	0 = Enable
																			Enable Global Analog Bias enable /Bias/power management
6	REFEREN	BIASEN																	1 = Enable
8	CE																		0 = Disable Charge inputs selected by FEPGA2: ACDC_CTRL[7:0] to
		DISCHRG																	1 = Enable
																			0 = Disable
		BYPASS_IB																	Bypass PGA current control
		CTR																	1 = Enable 0 = Disable
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		CM_LCK																	Common mode Threshold lock adjust
		IB LOOP									-								PGA Current Trim
		IBCTR_COD																	PGA Current Trim
		Е																	
																			Channel 2 PGA mode selection;
																			MODE_CH2[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH2[1] = Disconnects MICP & MICN from FEPGA
																			MODE_CH2[2] = No function
		MODE_CH2																	MODE_CH2[3] = Shorts the inputs to ground with 12kOhm
6																			differentially terminated
9	FEPGA1				1														1 = Enable
																			0 = Disable Channel 1 PGA mode selection:
					1														MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz
					1														MODE_CH1[1] = Disconnects MICP & MICN from FEPGA
		MODE_CH1			1														MODE_CH1[2] = No function
					1														MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated
					1														1 = Enable
										L									0 = Disable
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
																			DC state control for Input pins. Action takes effect when
																			DISCHRG=1
																			ACDC_CTRL[0] charges MIC1P to VREF
																			ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[2] charges MIC2P to VREF
																l			
6		ACDC CTR																	
6 A	FEPGA2	ACDC_CTR L																	ACDC_CTRL[3] charges MIC2N to VREF ACDC_CTRL[4] charges MIC3P to VREF
	FEPGA2	ACDC_CTR L																	ACDC_CTRL[3] charges MIC2N to VREF ACDC_CTRL[4] charges MIC3P to VREF ACDC_CTRL[5] charges MIC3N to VREF
	FEPGA2	ACDC_CTR L																	ACDC_CTRL[3] charges MIC2N to VREF ACDC_CTRL[4] charges MIC3P to VREF ACDC_CTRL[5] charges MIC3N to VREF ACDC_CTRL[6] charges MIC4P to VREF
	FEPGA2	ACDC_CTR L																	ACDC_CTRL[3] charges MIC2N to VREF ACDC_CTRL[4] charges MIC3P to VREF ACDC_CTRL[5] charges MIC3N to VREF ACDC_CTRL[6] charges MIC4P to VREF ACDC_CTRL[7] charges MIC4N to VREF
	FEPGA2	ACDC_CTR L																	ACDC_CTRL[3] charges MIC2N to VREF ACDC_CTRL[4] charges MIC3P to VREF ACDC_CTRL[5] charges MIC3N to VREF ACDC_CTRL[6] charges MIC4P to VREF

		MODE_CH4																	Channel 4 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable
		MODE_CH3																	Channel 3 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
6		GAIN_CH2																	Channel 2 PGA Gain. Increments in 1dB steps 000000 = -1dB 000001 = 0dB ▼ 100100 = +35dB 100101 = +36dB
В	FEPGA3	GAIN_CH1																	Channel 1 PGA Gain. Increments in 1dB steps 000000 = -1dB 000001 = 0dB ▼ 100100 = +35dB 100101 = +36dB
		Default	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0x0101
6		GAIN_CH4																	Channel 4 PGA Gain. Increments in 1dB steps 000000 = -1dB 000001 = 0dB ▼ 100100 = +35dB 100101 = +36dB
с С	FEPGA4	GAIN_CH3																	Channel 3 PGA Gain. Increments in 1dB steps 000000 = -1dB 000001 = 0dB ▼ 100100 = +35dB 100101 = +36dB
		Default	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0x0101
6		PUP																	Power Up Channel 4 to 1 PGA

8 Typical Application Diagram

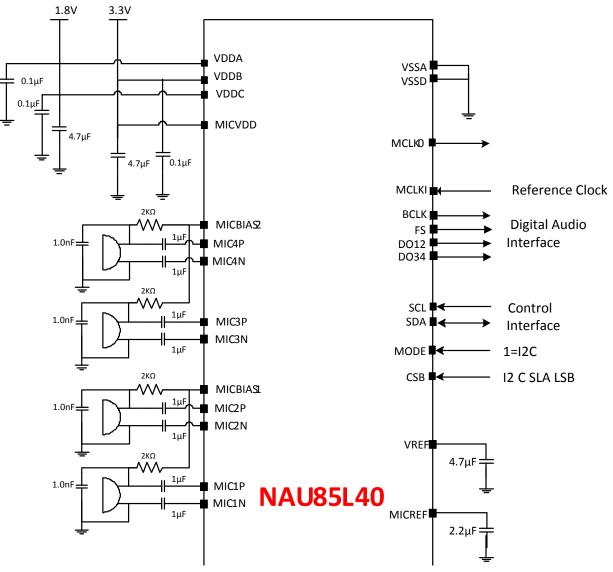


Figure 28: Typical Single-ended use Application Diagram

NAU85L40B

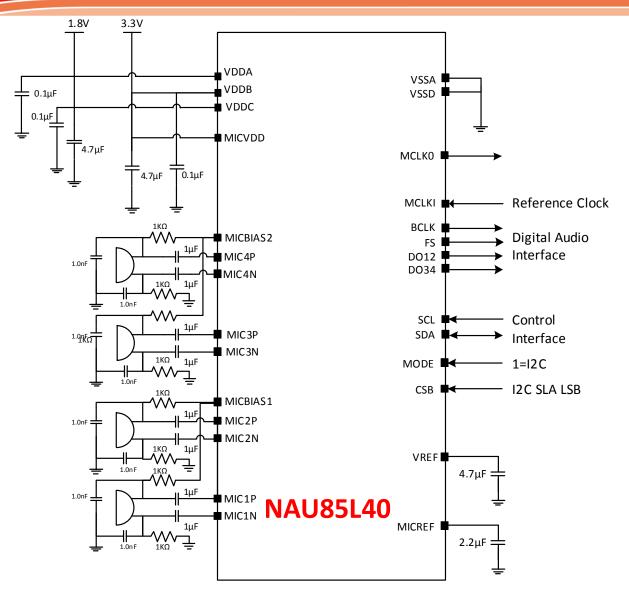
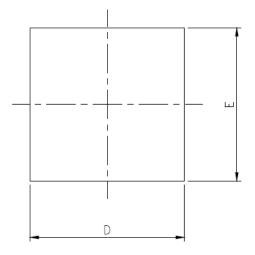
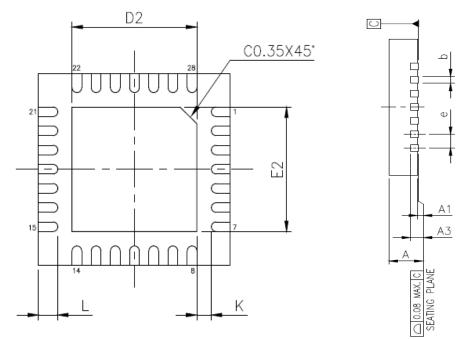
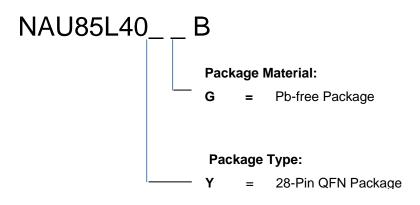




Figure 29: Typical Application Schematic for Differential Microphone Connection

9 Package Information

QFN 28L 4X4 mm², Thickness: 0.8 mm(Max), Pitch: 0.40 mm EP SIZE 2.6X2.6 mm

NAU85L	40B
--------	-----


PKG CODE	QFN 28L									
SYMBOLS	MIN.	NOM.	MAX.							
А	0.70	0.75	0.80							
A1	0.00	0.02	0.05							
A3	0.203 REF.									
b	0.15	0.20	0.25							
D	4.00 BSC									
E	4.00 BSC									
е	0	.40 BS	SC							
K	0.20									
D2	2.55	2.60	2.65							
E2	2.55	2.60	2.65							
L	0.30	0.40	0.50							

9.1 Version History

VERSION	DATE	PAGE/ CHAP.	DESCRIPTION
0.1	16 May 2014	-	Initial Draft Release
0.2			Expand Clocking description Expand register descriptions
0.3	4 June 2014		MCLK_SRC register changed/expanded
0.4	June 30, 2014		Analog supply voltage updated TDM Mode descriptions fixed Expand register descriptions and lookup table
0.5	September 09, 2014		Added bits 12, 13 & 14 to register 2 for power measurements Changed description of register 0x60 and modified listed features.
1.0	November, 05,2014		Updated AC/DC parameters
1.1	August, 6, 2015	7,36,37	VHI, Update REG0X11, 12
1.1.1	Sep 9, 2015	9,36,44	Figure 1 description change, Reg10, 69,6A description
1.1.2	October 1, 2015	16	Added PRO Reset application note
1.1.3	October 9, 2015	7,17	Added VDDB restriction
1.1.4	October 14 2015	49, 50	Revised package information
1.1.5	October 21, 2015	15	Figure.7 change noise gate from -19dB to -39dB
1.1.6	December 1, 2015	41	Register 23, 24 change default setting 0x1010
1.1.7	January 22, 2016	23 6 39	Figure 11, SYSCLK_SRC Updated shutdown current Reg0x12[9:0] & Reg0x13[9:0]
1.1.8	April 26, 2016	48,49 39 15	Resistor values added Reg0x20 description added Updated Fig.7
1.1.9	June 6, 2016	22 37 38 20 39 34 23,24	Table 7, Figure 10 CorrectedReg0x6, Reg0x11[13:12]Fig.9 changedReg0x12&13 Time slot descriptionAdded NoteFig 11, FLL equation 1 & example change
1.2	February 16, 2017	18 40 32-35	Sec 3.1 description error Adding description for Reg0x2[15] Adding 6.7 audio Interface timing diagram
1.3	April 4, 2017	1,6	Change to revision B, updated THD and SNR values
1.4	July 31, 2017	47	Update 0x3A [14] register description
1.5	August 25, 2017	1,47	Adding fs=96KHz, SMPL_RATE 0x3A[7:5]

10 ORDERING INFORMATION

Nuvoton Part Number Description

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.